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Abstract Several recent papers have reported strong signals of selection on European polygenic

height scores. These analyses used height effect estimates from the GIANT consortium and

replication studies. Here, we describe a new analysis based on the the UK Biobank (UKB), a large,

independent dataset. We find that the signals of selection using UKB effect estimates are strongly

attenuated or absent. We also provide evidence that previous analyses were confounded by

population stratification. Therefore, the conclusion of strong polygenic adaptation now lacks

support. Moreover, these discrepancies highlight (1) that methods for correcting for population

stratification in GWAS may not always be sufficient for polygenic trait analyses, and (2) that claims

of differences in polygenic scores between populations should be treated with caution until these

issues are better understood.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.39725.001

Introduction
In recent years, there has been great progress in understanding the polygenic basis of a wide variety

of complex traits. One significant development has been the advent of ‘polygenic scores’, which aim

to predict the additive genetic component of individual phenotypes using a linear combination of

allelic contributions to a given trait across many sites. An important application of polygenic scores

has been the study of polygenic adaptation—the adaptive change of a phenotype through small

allele frequency shifts at many sites that affect the phenotype.

Thus far, the clearest example of polygenic adaptation in humans has come from analyses of poly-

genic scores for height in Europe. However, as we will show here, this signal is strongly attenuated

or absent using new data from the UK Biobank (Bycroft et al., 2018), calling this example into

question.
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Starting in 2012, a series of papers identified multiple lines of evidence suggesting that average

polygenic scores for height increase from south-to-north across Europe (Table 1). Analyses from

multiple groups have concluded that the steepness of this cline is inconsistent with a neutral model

of evolution, suggesting that natural selection drove these differences in allele frequencies and poly-

genic scores (Turchin et al., 2012; Berg and Coop, 2014; Robinson et al., 2015;

Zoledziewska et al., 2015; Berg et al., 2017; Racimo et al., 2018; Guo et al., 2018). Significant

differences in polygenic scores for height have also been reported among ancient populations, and

these are also argued to have been driven by selection (Mathieson et al., 2015; Martiniano et al.,

2017; Berg et al., 2017). In parallel, (Field et al., 2016) developed the Singleton Density Score

(SDS)—which compares the distance to the nearest singleton on two alternative allelic back-

grounds—to infer recent changes in allele frequencies, and used it to analyze a large sample of Brit-

ish individuals (the UK10K; UK10K Consortium, 2015). They found a significant covariance of SDS

and effect on height, suggesting that natural selection drove a concerted rise in the frequency of

height-increasing alleles in the ancestors of modern British individuals during the last 2,000 years

(Field et al., 2016).

All such studies rely on estimates of individual allelic effects on height, as calculated from

genome-wide association studies (GWAS). These GWAS estimates are then combined with popula-

tion-genetic analysis to test for selection. Under a null model of no directional change, we would not

expect ‘tall’ alleles to increase (or decrease) in frequency in concert; thus, loosely speaking, a sys-

tematic shift in frequency of ‘tall’ alleles in the same direction has been interpreted as evidence for

selection.

While our focus here is on the the distribution of height polygenic scores in Europe, we see this

as a case study for understanding the challenges in comparing polygenic scores across populations

in general. Compared to other complex traits, height is particularly well-characterized, and the

Table 1. Studies reporting signals of height adaptation in Europeans.

Prior to the UK Biobank dataset, studies consistently found evidence for polygenic adaptation of height. Notes: Most of the papers

marked as having ‘strong’ signals report p-values <10�5, and sometimes <<10�5. In the present paper, the UK Biobank analyses gener-

ally yield p-values >10�3.

GWAS Approach Signal Reference

GIANT 2010 European frequency cline of top SNPs strong Turchin et al., 2012

validation:
Framingham sibs

GIANT 2010 Polygenic measures of pop. frequency differences strong Berg and Coop, 2014

GIANT Polygenic measures of pop. frequency differences strong Berg et al., 2017

strong Racimo et al., 2018

strong Guo et al., 2018

Polygenic diffs between ancient and modern populations strong Mathieson et al., 2015

GIANT Heterogeneity of polygenic scores among populations strong Robinson et al., 2015

validation: R15-sibs

Sardinia cohort Low polygenic height scores in Sardinians. Effect estimates from Sardinian cohort at
GIANT hit SNPs

strong Zoledziewska et al., 2015

GIANT and R15-sibs Singleton density (SDS) in UK sample vs GWAS strong Field et al., 2016

Also: LD Score regression (SDS vs GWAS) strong

UK Biobank Population frequency differences weak or
absent

This paper*

Singleton density (SDS) in UK sample weak or
absent

This paper*

LD Score regression (SDS vs GWAS) weak This paper*

*See also results from Sohail et al., 2019.
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evidence for adaptation of height in Europeans seemed clear. Thus our work highlights a need for

caution in this area until these issues are more fully understood (Novembre and Barton, 2018).

GWAS data used to study adaptation of height
Until recently, the largest height GWAS dataset came from the GIANT consortium (253,288 individu-

als as of 2014; Wood et al., 2014). This is the primary GWAS underlying most studies of adaptation

of height. Additionally, several groups have used other, smaller, datasets to replicate signals found

using GIANT (Turchin et al., 2012; Robinson et al., 2015; Zoledziewska et al., 2015; Field et al.,

2016; Berg et al., 2017). In particular, because it is known that population structure may be a con-

founder in GWAS, leading to false positive inferences of polygenic adaptation, several groups

sought to replicate signals using family-based analyses, which protect against confounding due to

stratification (Allison et al., 1999; Spielman and Ewens, 1998; Abecasis et al., 2000).

The first replication, by Turchin et al. (2012), showed that the effect sizes of the top 1,400 GIANT

associations (based on an earlier version of GIANT, published by (Lango Allen et al., 2010) were

statistically consistent with effect sizes re-estimated in a smaller sibling-based regression approach

using data from the Framingham Heart Study (4819 individuals across 1761 nuclear sibships from

Splansky et al., 2007). Sibling-based regression is considered to be immune to confounding by

population structure, and so the agreement of effect sizes between studies was taken as validation

of the north-south gradient observed when using the GIANT effect sizes.

The second, partially independent, replication came from Zoledziewska et al. (2015), who

selected 691 height-associated SNPs on the basis of the GIANT association study, and then com-

puted polygenic scores using effect sizes re-estimated in a cohort of 6307 individuals of Sardinian

ancestry. They determined that the average polygenic score of Sardinian individuals was significantly

lower than observed for other European populations, consistent with the previously reported north-

south gradient of polygenic scores.

A third replication was performed by Robinson et al. (2015), who used a different, larger sibling-

based GWAS to identify associations ( ~ 17; 500 sibling pairs from Hemani et al., 2013). We refer to

this sibling-based dataset as ‘R15-sibs’. These authors showed that the north-south frequency gradi-

ent replicates using SNPs ascertained from the sibling-based GWAS. This replication is stronger than

that performed by either Turchin et al. (2012), or that by Zoledziewska et al. (2015), as the cohort

is larger and the SNP ascertainment did not rely on GIANT. As pointed out in the supplementary

note of Robinson et al. (2015), this two-step procedure—ascertaining with a large but potentially

biased GWAS like GIANT, before switching to a less powerful but hopefully unbiased replication

GWAS—has the potential to introduce an ascertainment bias, even if the effects are correctly esti-

mated in the replication study (we note that a small fraction of the GIANT samples are contained

within the R15-sibs analysis, so the effect sizes are not strictly independent; however, because of the

sibling design, any bias due to stratification in GIANT should be absent in R15-sibs). The R15-sibs

study was also used by Field et al. (2016) to verify a signal of recent selection in ancestors of the

present day British population. Field et al. (2016) found that the signal of selection was fully repli-

cated when using R15-sibs data.

Lastly, Field et al. (2016) also used LD Score regression to test for height adaptation in the Brit-

ish while controlling for population structure (Bulik-Sullivan et al., 2015a; Bulik-Sullivan et al.,

2015b). While LD Score regression is typically used to estimate genetic covariance between two

phenotypes, Field et al. (2016) used it to test for a relationship between height effects and a recent

increase in frequency (measured by SDS)—and found a strong covariance of the two consistent with

selection driving allele frequency change at height loci.

Here, we reassess these previously reported signals using data from the UK Biobank (UKB) with

genotype and phenotype data for nearly 500,000 residents of the United Kingdom (Bycroft et al.,

2018). UKB has recently become a key resource for GWAS, thanks to its large sample, the relatively

unstructured population (compared to international studies such as GIANT), and the opportunity for

researchers to work directly with the genotype data rather than with summary statistics.

This paper has two aims. First, we will show that previously reported signals of directional selec-

tion on height in European populations generally do not replicate when using GWAS effect esti-

mates from the UK Biobank. Similar findings have been obtained independently by other groups

working in parallel (Sohail et al., 2019; Uricchio et al., 2019). Second, we will show that both the

GIANT and R15-sibs GWAS are confounded due to stratification along the North-South gradient
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where signals of selection were previously reported. Signals detected using R15-sibs effect estimates

were previously used as a significant source of evidence in favor of adaptation by Field et al. (2016),

as well as in (Berg et al., 2017). However, the investigators leading the (Robinson et al., 2016)

GWAS have now confirmed that the effect size estimates released from their 2015 study were

strongly affected by population structure due to a computational bug (Robinson and Visscher,

2018). We include an analysis of the R15-sibs GWAS here to document how these spurious signals

affected previous inferences, as well as the evidence that indicated the presence of confounding in

the data prior to detection of the bug.

The conclusion that adaptation signals in GIANT were spurious has broader implications for

GWAS analysis, as it indicates that standard approaches for population structure correction may not

always be sufficient, and that further study is needed to understand their limitations. While we antici-

pate that current methods are likely adequate for many applications, in particular for identification

and broad-scale localization of strong genotype-phenotype associations—they may be insufficient

for applications such as phenotypic prediction and the detection of polygenic adaptation as these

can be highly prone to the cumulative bias through uncorrected structure. Such analysis should be

undertaken with great care.

Results

GWAS datasets
We downloaded or generated seven different height GWAS datasets, each relying on different sub-

sets of individuals or using different analysis methods. The bold-faced text give the identifiers by

which we will refer to each dataset throughout this paper. These include two previous datasets that

show strong evidence for polygenic adaptation, as well as an updated version of the R15-sibs data-

set released in response to results in the initial preprint version of this manuscript:

GIANT: (n = 253 k) 2014 GIANT consortium meta-analysis of 79 separate GWAS for height in indi-

viduals of European ancestry, with each study independently controlling for population structure via

the inclusion of principal components as covariates (Wood et al., 2014).

R15-sibs: (n = 35 k) Family-based sib-pair analysis of data from European cohorts (Hemani et al.,

2013; Robinson et al., 2015). The effect sizes associated with this paper were publicly released in

2016 (Robinson et al., 2016).

R15-sibs-updated: (n = 35 k) In November 2018, while this paper was in the final stages of revi-

sion, the authors of the R15-sibs data reported that their earlier data release failed to correct prop-

erly for structure confounding. They released this corrected dataset as a replacement (Robinson and

Visscher, 2018).

We also considered four different GWAS analyses of the UK Biobank data, using different subsets

of individuals and different processing pipelines:

UKB-GB: (n = 337 k) Linear regression controlling for 10 principal components of ancestry (unre-

lated British ancestry individuals only) (Churchhouse and Neale, 2017).

UKB-Eur: (n = 459 k) All individuals of European ancestry, including relatives. Structure correction

was performed using a Linear Mixed Model (LMM) approach, which controls for genetic stratification

effects by modeling the genetic background as a random effect with covariance structure given by

the kinship matrix. Mild amounts of environmental stratification are subsumed into this term, and

therefore controlled implicitly (Loh et al., 2017).

UKB-GB-NoPCs: (n = 337 k) Linear regression without any structure correction—with only geno-

type, age, sex and sequencing array as covariates (unrelated British ancestry individuals only) [newly

calculated by us, see Materials and methods].

UKB-sibs: (n = 35 k) Family-based sib-pair analysis [newly calculated by us, see Materials and

methods].

To understand the extent to which these different datasets capture a shared signal, we treated

each set of summary statistics as if it were derived from a GWAS of a different phenotype and esti-

mated the genetic correlation between them using bivariate LD Score regression (Bulik-

Sullivan et al., 2015a). We find that all of these studies show high pairwise genetic correlations ,

consistent with the view that all of them estimate a largely-similar genetic basis of height (Table 2).
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Signal of selection across Eurasia
One well-studied signal of adaptation of height in Europe has been the observation that, among

height-associated SNPs, the ‘tall’ alleles tend to be at higher frequencies in northern populations.

Equivalently, the average polygenic scores of individuals in northern populations tend to be higher

than individuals in southern populations. To evaluate this signal for each dataset, we independently

ascertained the SNP with the smallest p-value within each of 1700 approximately independent LD

blocks (Berisa and Pickrell, 2016; Berg et al., 2017) (subject to the constraint that MAF > 0.05

within the GBR 1000 Genomes population). We used these loci to calculate average polygenic

scores for each of a set of European population samples taken from the 1000 Genomes and Human

Origins panels (Lazaridis et al., 2014; 1000 Genomes Project Consortium et al., 2015) (see Materi-

als and methods for statistical details).

As expected, we find highly significant latitudinal gradients in both the GIANT and R15-sibs data.

However, this signal does not replicate in any of the four UK Biobank datasets (Figure 1, top row),

or in the R15-sibs-updated dataset (Figure 1—figure supplement 1).

We also tested whether the polygenic scores are over-dispersed compared to a neutral model,

without requiring any relationship with latitude (the QX test from Berg and Coop, 2014). Here we

find a similar pattern: we strongly reject neutrality using both the GIANT and R15-sibs datasets, but

see little evidence against neutrality among the UK Biobank datasets, or the R15-sibs-updated data-

set (Figure 1). The sole exception is for the UKB-GB dataset, though the rejection of neutrality in

this dataset is marginal compared to that observed with GIANT and R15-sibs, and it does not align

with latitude.

While most studies have focused on a latitudinal cline in Europe, a preprint by Berg et al. (2017)

also recently reported a cline of polygenic scores decreasing from west to east across all of Eurasia.

Extending this analysis across all six datasets, we observe similarly inconsistent signals (Figure 1,

bottom row). Only the GIANT dataset shows the clear longitudinal signal reported by Berg et al.

(2017), though the R15-sibs dataset is again strongly over-dispersed in general, and retains some of

the longitudinal signal. Interestingly, we find a weakly significant relationship between longitude and

polygenic score in the UKB-Eur dataset (though not in the other UKB datasets), suggesting there

may be systematic differences between the results based on British-only and pan-European samples,

even when state of the art corrections for population structure are applied.

We also experimented with a larger number of SNPs using a procedure similar to Robinson et al.

(2015) (Appendix 1). We found that in some cases this led to significant values of QX when using

UKB-GB effect sizes to ascertain SNPs. However, this signal was sensitive to the particular method of

ascertainment, and seems to be diffuse (i.e. spread out across all axes of population structure,

Appendix 1–figure 6), with part of the signal coming from closely linked SNPs. Thus we conclude

that this signal is not robust and may, at least partially, arise from a violation of the assumption of

independence among SNPs that underlies our neutral model. We also tested different frequency,

effect size and probability-of-association cutoffs to determine which SNPs we included in the compu-

tation of the scores, but found none of these cutoffs affected the discrepancy observed between the

GIANT and UKB-GB datasets (Appendix 2).

Table 2. Pairwise genetic correlations between GWAS datasets.

Genetic correlation estimates (lower triangle) and their standard errors (upper triangle) between each of the height datasets, estimated

using LD Score regression (Bulik-Sullivan et al., 2015a). All trait pairs show a strong genetic correlation, as expected for different

studies of the same trait.

Giant R15-sibs UKB-Eur UKB-GB-NoPCs Ukb-gb UKB-sibs

GIANT (0.04) (0.01) (0.01) (0.01) (0.05)

R15-sibs 0.98 (0.04) (0.04) (0.05) (0.08)

UKB-Eur 1.03 0.87 (0.004) (0.004) (0.05)

UKB-GB-NoPCs 1.01 0.82 1.00 (0.002) (0.05)

UKB-GB 1.03 0.89 1.02 1.00 (0.05)

UKB-sibs 1.02 0.93 1.06 1.02 1.06

DOI: https://doi.org/10.7554/eLife.39725.003
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SDS signal of selection in Britain
We next evaluated the Singleton Density Score (SDS) signal of selection for increased height in the

British population, previously reported by Field et al. (2016). SDS estimates recent changes in allele

frequencies at each SNP within a population by comparing the distances to the nearest singleton

variants linked to each of the focal SNP’s alleles. (Field et al., 2016) applied SDS calculated across

the UK10K sample (UK10K Consortium, 2015) to investigate allele frequency changes in the ances-

tors of modern British individuals. SDS can be polarized according to the sign of a GWAS effect at

each SNP–this is denoted trait-SDS, or tSDS. Here, tSDS > 0 indicates that a height-increasing allele

has risen in frequency in the recent past; tSDS < 0 correspondingly indicates a decrease in frequency

of the height-increasing allele. A systematic pattern of tSDS > 0 is consistent with directional selec-

tion for increased height.

Using both GIANT and R15-sibs, Field et al. (2016) found a genome-wide pattern of positive

tSDS, indicating that on average, height-increasing alleles have increased in frequency in the last ~75

generations. tSDS also showed a steady increase with the significance of a SNP’s association with

height. We replicate these trends in Figure 2A,B.

This tSDS trend is greatly attenuated in all four GWAS versions performed on the UK Biobank

sample (Figure 2C–F), as well as the R15-sibs-updated dataset (Figure 2—figure supplement 1).

The correlation between UKB-GB GWAS p-value and tSDS is weak (Spearman � ¼ 0:009, block-jack-

knife p ¼ 0:04). This correlation is stronger for the UKB-Eur GWAS (� ¼ 0:018, p ¼ 5� 10
�7). Since

the UKB-Eur GWAS is not limited to British individuals—but instead includes all European ancestry

individuals—this might suggest that residual European population structure continues to confound
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Figure 1. Polygenic scores across Eurasian populations, for different GWAS datasets. The top row shows European populations from the combined

1000 Genomes plus Human Origins panel, plotted against latitude, while the bottom row shows all Eurasian populations from the same combined

dataset, plotted against longitude.

DOI: https://doi.org/10.7554/eLife.39725.004

The following figure supplement is available for figure 1:

Figure supplement 1. The R15-sibs-updated dataset shows no significant latitudinal or longitudinal signal.

DOI: https://doi.org/10.7554/eLife.39725.005
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UKB-Eur effect estimates, despite the use of LMM correction for structure, similar to the longitudinal

signal detected above for this same dataset (Figure 1).

We wondered whether the main reason for the weakened trend in UKB-GB is an overly conserva-

tive PC-correction. This could occur if the genetic contribution to height is highly correlated with

population structure axes. If this were the case, we would expect the correlation between GWAS

p-value and tSDS to still be observed in a UKB GWAS without population structure correction

(namely, in UKB-GB-NoPCs). However, we see no evidence for this correlation (block jackknife

p = 0.6). Taken together with the UKB-GB-NoPCs polygenic score analysis (Figure 1), the lack of sig-

nal in UKB-GB-NoPCs suggests that the main reason that UKB is less confounded by population

structure than GIANT is the relatively-homogeneous ancestry of the UKB British sample—rather than

differences in GWAS correction procedures.
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Figure 2. SDS signals for recent selection, assessed using different height GWAS. (A–F) Each point shows the average tSDS (SDS polarized to height-

increasing allele) of 1000 consecutive SNPs in the ordered list of GWAS p-values. Positive values of tSDS are taken as evidence for selection for

increased height, and a global monotonic increase—as seen in panels A and B—suggests highly polygenic selection. (G–L) tSDS distribution for the

most significant SNPs in each GWAS, thinned according to LD to represent approximately independent signals. Dashed vertical lines show tSDS = 0, as

expected under the neutral null; solid vertical lines show mean tSDS. A significantly positive mean value of tSDS suggests selection for increased

height.

DOI: https://doi.org/10.7554/eLife.39725.006

The following figure supplement is available for figure 2:

Figure supplement 1. Previously reported SDS selection signals are also absent from the R15-sibs-updated dataset.

DOI: https://doi.org/10.7554/eLife.39725.007
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Lastly, we examined tSDS at the most significant height-associated SNPs of each UKB GWAS (as

before, ascertained in approximately-independent LD blocks). Significant SNPs show a positive aver-

age tSDS (Figure 2I,K,L; t-test p < 0.05)—with the exception of the UKB-GB-NoPCs GWAS

(Figure 2J) in which the average tSDS is not significantly different from zero (t-test p = 0.6).

Relationship between GWAS estimates and European population
structure
We have now shown that signals of polygenic adaptation of height are greatly reduced in the UKB

data relative to the GIANT and R15-sibs datasets. To better understand the differences among the

datasets, we ascertained 1,652 approximately-independent lead SNPs based on the GIANT p-values

to form the basis of comparison between the GIANT and UKB-GB datasets.

Figure 3A shows the effect sizes of ancestral alleles, as estimated using GIANT (x-axis) and UKB-

GB (y-axis). The two datasets are highly correlated (r2 ¼ 0:78, p< 2:2� 10
�16), consistent with the

strong genetic correlation estimated in Table 2. The fact that the slope is <1 probably reflects, at

least in part, the standard winner’s curse effect for SNPs ascertained in one study and replicated in

another.

Importantly however, we also see clear evidence that the differences between the GIANT and

UKB-GB effect sizes are correlated with European population structure (Figure 3B). Specifically, for

each SNP we plotted the difference in effect size between GIANT and UKB-GB against the differ-

ence in allele frequency between northern and southern European samples (specifically, between the

British (GBR) and Tuscan (TSI) subsets of 1000 Genomes) . These differences have a significant corre-

lation (r2 ¼ 0:06, p< 2:2� 10
�16), indicating that alleles that are more frequent in GBR, compared to

TSI, tend to have more positive effect sizes in GIANT than in UKB-GB, and vice versa. We also

observed a similar signal for frequency differences between TSI and the Han Chinese in Beijing

(CHB, Figure 3—figure supplement 1), suggesting that longitudinal patterns observed by

Berg et al. (2017) were also likely driven by incompletely controlled stratification in GIANT.

Similar patterns are present in a comparison of the R15-sibs and UKB-GB datasets when ascer-

taining from R15-sibs p-values (Figure 3, panels C and D; 1,642 SNPs). Here, the correlation

between effect size estimates is much lower (r2 ¼ 0:14, p< 2:2� 10
�16), likely due to the much

smaller sample size of R15-sibs, and therefore elevated winner’s curse effects. However, the correla-

tion between the effect-size difference and the GBR-TSI allele frequency difference remains

(r2 ¼ 0:07, p< 2:2� 10
�16). In contrast, when SNPs are ascertained on the basis of their UKB-GB

p-value, these patterns are considerably weaker in both the GIANT and R15-sibs datasets (Figure 3—

figure supplement 2).

Finally, an unexpected feature of the R15-sibs dataset can be seen in Figure 3D: there is a strong

skew for the ancestral allele to be associated with increased height (1,201 out of the 1,642 SNPs

ascertained with R15-sibs p-values have positive effect sizes in R15-sibs). This pattern is not present

in the R15-sibs-updated dataset (851 out of 1,699 SNPs with positive effects), or any other dataset

we analyzed, suggesting that it is likely a result of the failure to control for population structure.

Together, these observations suggest that while all of the datasets primarily capture real signals

of association with height, both the GIANT and R15-sibs effect size estimates suffer from confound-

ing along major axes of variation in Europe and Eurasia. This could drive false positive signals in geo-

graphic-based analyses of polygenic adaptation. Furthermore, since SDS measured in Britain

correlates with north-south frequency differences (Field et al., 2016), this could also drive false posi-

tives for SDS.

To explore this further, we next turn to an analysis of the datasets based on LD Score regression.

LD Score regression signal
Another line of evidence from Field et al. (2016) came from LD Score regression (Bulik-

Sullivan et al., 2015a; Bulik-Sullivan et al., 2015b). LD Score regression applies the principle that,

under a polygenic model, SNPs in regions of stronger LD (quantified by a SNP’s ‘LD Score’) should

tag more causal variants and therefore have larger squared effect size estimates. Similarly, if two

traits share a genetic basis, then the correlation between estimated effect sizes of these traits should

increase with LD Score. Meanwhile, confounders such as population structure are argued to affect

Berg et al. eLife 2019;8:e39725. DOI: https://doi.org/10.7554/eLife.39725 8 of 47

Research Communication Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.39725


●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−0.08 −0.04 0.00 0.04 0.08

−
0
.0

8
−

0
.0

4
0
.0

0
0
.0

4
0
.0

8

GIANT Effect Size

U
K

B
−

G
B

 E
ff
e
c
t 
S

iz
e

A
UKB−GB Replication of Effect Sizes

Ascertained in GIANT

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−
0
.0

4
−

0
.0

2
0
.0

0
0
.0

2
0
.0

4

G
IA

N
T

 E
ff
e
c
t 
S

iz
e
 −

 U
K

B
−

G
B

 E
ff
e
c
t 
S

iz
e

GBR Allele Frequency − TSI Allele Frequency

B
UKB−GB/GIANT Effect Size Differences

vs European Allele Frequency Differences

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●
●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●●●

●

●●
●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●● ●

● ●●

●

●

● ●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●

● ●
●

●

●
●

●
●●

●
●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●● ●

●

●
●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

● ●

●

● ●

●

●

●
●

● ●●
●

●

●

● ●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●● ●●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●● ●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●●

● ●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

● ● ●
● ●

●
●

●

●

●
●● ●●

●●

●● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●● ●●
●

●

●

●

●
●

●

●● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●
●●

●

●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

● ●

●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●

−0.12 −0.08 −0.04 0.00 0.04 0.08 0.12

−
0
.0

8
−

0
.0

4
0
.0

0
0
.0

4
0
.0

8

R15−sibs Effect Size

U
K

B
−

G
B

 E
ff
e
c
t 
S

iz
e

C
UKB−GB Replication of Effect Sizes

Ascertained in R15−sibs

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0
UKB−GB/R15−sibs Effect Size Differences
vs European Allele Frequency Differences

R
1
5
−

s
ib

s
 E

ff
e
c
t 
S

iz
e
 −

 U
K

B
−

G
B

 E
ff
e
c
t 
S

iz
e

GBR Allele Frequency − TSI Allele Frequency

D

Figure 3. Effect size estimates and population structure. Top Row: SNPs ascertained using GIANT compared with UKB-GB. (A) The x- and y-axes show

the estimated effect sizes of SNPs in GIANT and in UKB-GB. Note that the signals are highly correlated overall, indicating that these partially capture a

shared signal (presumably true effects of these SNPs on height). (B) The x-axis shows the difference in ancestral allele frequency for each SNP between

1000 Genomes GBR and TSI; the y-axis shows the difference in effect size as estimated by GIANT and UKB-GB. These two variables are significantly

correlated, indicating that a component of the difference between GIANT and UKB-GB is related to the major axis of population structure across

Europe. Bottom Row: SNPs ascertained using R15-sibs compared with UKB-GB. (C) The same plot as panel (A), but ascertaining with and plotting R15-

sibs effect sizes rather than GIANT. Here, the correlation between effect size estimates of the two studies is reduced relative to panel A–likely due to

the lower power of the R15-sibs study compared to GIANT (D). Similarly, the same as (B), but with the R15-sibs ascertainment and effect sizes.

DOI: https://doi.org/10.7554/eLife.39725.008

The following figure supplements are available for figure 3:

Figure supplement 1. Similar patterns are seen for a TSI-CHB frequency contrast, suggesting the longitudinal patterns seen with GIANT data were also

a result of stratification.

DOI: https://doi.org/10.7554/eLife.39725.009

Figure 3 continued on next page
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SNPs of different LD Score equally, and therefore affect the intercept but not the slope of a linear

regression to LD Score (we return to this point below; Bulik-Sullivan et al., 2015b).

While LD Score regression is commonly used to estimate the genetic covariance between pairs of

phenotypes (Bulik-Sullivan et al., 2015a), Field et al. (2016) used it to test for a relationship

between height and SDS. SDS is similar to GWAS effect estimates in that the expected change in

frequency of an allele depends on both direct selection it experiences due to its own fitness effect

as well as correlated selection due to the effects of those in linkage disequilibrium with it.

Field et al. (2016) predicted that the covariance between estimated marginal height effect and SDS

should increase with LD Score—and found this to be the case using both GIANT and R15-sibs. This

provided further evidence for polygenic adaptation for increased stature in Britain.

Here, we revisit Field et al. (2016)’s observations (Figure 4A,B). Both GIANT and R15-sibs

exhibit a highly significant LD Score regression slope (scaled GIANT slope ¼ 0:17, p ¼ 5� 10
�9;

scaled R15-sibs slope ¼ 0:46, p ¼ 7� 10
�17), as well as a highly significant intercept (GIANT

intercept ¼ 0:093, p ¼ 4� 10
�71; R15-sibs intercept ¼ 0:119, p ¼ 2� 10

�87). These large intercepts

suggest that both GWAS suffer from stratification along an axis of population structure that is corre-

lated with SDS in the British population. In contrast, in LD Score regression with the UKB-GB GWAS,

the intercept is not significant (p ¼ 0:10), suggesting that UKB-GB is not strongly stratified (or at

least, not along an axis that correlates with SDS). The slope is ~1/3 as large as in GIANT, though still

modestly significant (p ¼ 1:2� 10
�2, Figure 4C). There is no significant slope (p ¼ 0:389) or inter-

cept (p ¼ 0:405) in R15-sibs-updated (Figure 4—figure supplement 1B), and analyses of other UKB

datasets give similar results to those for UKB-GB (Figure 4—figure supplement 2).

LD Score regression of population frequency differences
We next extended Field et al.’s LD Score rationale from SDS to test whether SNP effects on height

affected allele frequency differentiation between northern and southern Europe. We used 1000

Genomes British (GBR) and Tuscan (TSI) samples as proxies for northern and southern ancestry

respectively. To control for the correlation between allele frequencies and LD Score, we normalized

the frequency differences to have variance 1 within 1% average minor allele frequency bins. For

shorthand, we refer to this measure as [GBR-TSI]. Under a model of selection driving allele frequency

differences, we would expect the covariance of [GBR-TSI] and effect sizes to increase with LD Score.

To test this, we regressed the product [GBR-TSI] � effect size (estimated in previous and UKB

GWAS) against LD Score.

In contrast to SDS, we find that none of the GWAS datasets show a strongly positive slope

(Figure 4D–F): the slope is approximately zero in GIANT, weakly positive in R15-sibs (p ¼ 0:002),

and weakly negative in UKB-GB (p ¼ 0:09) Results were similar for the other UKB datasets (Fig-

ure 4—figure supplement 3), and for R15-sibs-updated (Figure 4—figure supplement 1A). We see

extremely strong evidence for positive intercepts in GIANT (p = 4�10
�80) and R15-sibs

(p = 9� 10
�161), but not in UKB-GB (p ¼ 0:05), R15-sibs-updated (p ¼ 0:848) or the other UKB data-

sets. The large intercepts in GIANT and R15-sibs are consistent with stratification affecting both of

these GWAS, as the North-South allele frequency difference is systematically correlated with the

effect sizes in these GWAS independently of LD Score (see the Materials and methods for a more

technical discussion). However, the relative lack of slope in these analyses suggests that the LD Score

signal for SDS must be driven by a component of frequency change that is largely uncorrelated with

the [GBR-TSI] axis of variation.

Population structure confounds LD Score regression slope
The original LD Score regression paper noted that in the presence of linked selection, allele fre-

quency differentiation might plausibly increase with LD Score. However, they concluded that this

effect was negligible in the examples they considered (Bulik-Sullivan et al., 2015b), and subsequent

Figure 3 continued

Figure supplement 2. The strength of the correlation between effect size difference and frequency difference is much reduced when ascertained using

UKB-GB, suggesting a significant effect of ascertainment bias.

DOI: https://doi.org/10.7554/eLife.39725.010
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applications of the LD Score regression approach have generally assumed that the two are indepen-

dent. We find that in bivariate LD Score analyses of SDS, both the intercept and the slope differ sig-

nificantly from zero for precisely the same GWAS datasets that show evidence of stratification

(GIANT and R15-sibs), while both the slope and intercept are much reduced in all of the UK Biobank

datasets. This suggests that the LD Score regression slope may not be as robust to stratification as

hoped, prompting us to revisit the assumption of independence.

We find that the squared allele frequency difference [GBR-TSI]2 is significantly correlated with LD

Score (p ¼ 2:5� 10
�5, Figure 5A), as are squared allele frequency contrasts for much lower levels of

differentiation (i.e. between self-identified ‘Irish’ and ‘White British’ individuals in the UK Biobank
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Figure 4. LD Score regression analyses. (A), (B), and (C) LD Score covariance analysis of SDS with GIANT, R15-sibs, and UKB-GB, respectively. The

x-axis of each plot shows LD Score, and the y-axis shows the average value of the product of effect size on height and SDS, for all SNPs in a bin.

Genetic correlation estimates are a function of slope, reference LD Scores, and the sample size Bulik-Sullivan et al. (2015a). Both the slope and

intercept are substantially attenuated in UKB-GB. (D), (E) and (F) Genetic covariance between GBR-TSI frequency differences vs. GIANT, R15-sibs, and

UKB-GB. GIANT and R15-sibs show highly significant nonzero intercepts, consistent with a signal of population structure in both datasets, while UKB-

GB does not. In addition, R15-sibs shows a significant slope with LD Score.

DOI: https://doi.org/10.7554/eLife.39725.011

The following figure supplements are available for figure 4:

Figure supplement 1. The R15-sibs-updated dataset shows no evidence of LD Score regression slope with [GBR-TSI] or with SDS.

DOI: https://doi.org/10.7554/eLife.39725.012

Figure supplement 2. UK Biobank datasets show little evidence of bivariate LD Score regression slope when analyzed together with SDS.

DOI: https://doi.org/10.7554/eLife.39725.013

Figure supplement 3. Similarly, no dataset has a significant positive slope for [GBR-TSI].

DOI: https://doi.org/10.7554/eLife.39725.014
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(p ¼ 2:5� 10
�7, Figure 5—figure supplement 1), and SDS2 (p ¼ 2:9� 10

�42, Figure 5B). Strikingly,

squared measures of more recent allele frequency change (i.e. SDS2 and the squared Irish vs. White

British contrast) are much more tightly correlated with LD Score than that of more diverged popula-

tions [GBR-TSI]2, suggesting that the LD Score regression slope may be equally vulnerable to stratifi-

cation involving closely related populations than for those that are more distantly related. Finally,

the product [GBR-TSI] � SDS is also correlated with LD Score (Figure 5C), demonstrating that the

general signal of greater allele frequency change in regions of stronger LD is also shared between

[GBR-TSI] and SDS.

Background selection and LD Score
As noted above, the correlation we observe between allele frequency differentiation and LD Score

could be generated by the genome-wide effects of linked selection. While a range of different

modes of linked selection likely act in humans, one of the simplest is background selection

(Charlesworth et al., 1993; Charlesworth, 1998; McVicker et al., 2009). Background selection

(BGS) on neutral polymorphisms results from the purging of linked, strongly deleterious alleles.

Because any neutral allele that is in strong LD with a deleterious mutation will also be purged from

the population, the primary effect of BGS is a reduction in the number of chromosomes that contrib-

ute descendants in the next generation. The impact of BGS can therefore be approximately thought

of as increasing the rate of genetic drift in genomic regions of strong LD relative to regions of weak

LD. Therefore, SNPs with larger LD Scores will experience stronger BGS and a higher rate of genetic

drift, and this effect could generate a positive relationship between LD Scores and allele frequency

differentiation.

In Appendix 3, we derive a simple model for the effect of BGS on the relationship between allele

frequency divergence and LD Scores. Empirically, we find that LD Scores are positively correlated

with the strength of background selection (Appendix 3—figure 1) (McVicker et al., 2009), and that

our simple model of background selection is capable of explaining much of the relationship between

LD Score and allele frequency divergence that we observe in Figure 5 (Appendix 3—figures 1–

3). Further, in the presence of BGS, bivariate regression of a stratified GWAS together with a
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Figure 5. Population allele frequencies show genetic correlation with European height GWAS. (A), (B) and (C) Magnitude of squared GBR-TSI allele

frequency differences, squared SDS effect sizes, and the product of allele frequency and SDS increase with LD Score. Both SDS and GBR-TSI frequency

difference are standardized and normalized within 1% minor allele frequency bins..

DOI: https://doi.org/10.7554/eLife.39725.015

The following figure supplement is available for figure 5:

Figure supplement 1. LD Score regression results for the difference in allele frequency between individuals who identified as Irish and those who

identified as White British in the UK Biobank (related individuals removed).

DOI: https://doi.org/10.7554/eLife.39725.016
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measure of allele frequency differentiation can result in a positive slope, provided that the axis of

stratification is correlated with the chosen measure of allele frequency divergence (Appendix 3).

Summary of LD Score regression results
What conclusions should we draw from our LD Score regression analyses? The significant positive

intercepts observed for LD Score regression of both GIANT and R15-sibs with [GBR-TSI] suggest

that both datasets suffer from confounding due to stratification along a north-to-south axis within

Europe. These observations are consistent with the evidence presented in Figure 3. A positive slope

in such analyses was previously interpreted as evidence of positive selection either on height or a

close genetic correlate (and presumed to be robust to stratification). However, BGS can, and empiri-

cally does, violate the assumptions of LD Score regression in a way that may generate a positive

slope. We therefore interpret the positive slopes observed for the LD Score regression signals for

GIANT and R15-sibs with SDS as likely resulting from a combination of stratification and BGS. A simi-

lar conclusion applies to the positive slope observed for R15-sibs � [GBR-TSI]. It is unclear why strati-

fication plus BGS should have elevated the slope for GIANT � SDS, but not for GIANT � [GBR-TSI].

This may suggest that the apparent SDS selection signal found in GIANT may be driven by an axis of

variation that is not strongly correlated with [GBR-TSI]. We view this as an area worthy of further

exploration.

Discussion
To summarize the key observations, we have reported the following:

. Multiple analyses based on GIANT and R15-sibs indicate strong signals of selection on height.

. However, the same signals of selection are absent or greatly attenuated in UK Biobank data. In
some, but not all, analyses of frequency differentiation and SDS we still detect weakly signifi-
cant signals of polygenic adaptation (Figures 1 and 2).

. The GIANT height GWAS is overall highly correlated with UKB-GB, but differs specifically by
having an additional correlation with the main gradient of allele frequency variation across
Europe, as modeled by frequency differences between GBR and TSI (Figure 3). LD Score anal-
ysis of [GBR-TSI] � GIANT effect-size also suggests that GIANT is stratified along this axis
(positive intercept in Figure 4D).

. Selection signals in the R15-sibs data are consistent with, and in some cases even stronger,
than the corresponding signals in GIANT, but are inconsistent with analyses using UK Biobank
data. While correctly implemented sib-based studies are designed to be impervious to popula-
tion structure, [GBR-TSI] � R15-sibs effect size also shows a highly positive intercept in the LD
Score analysis presented in Figure 4E. As discussed below, the R15-sibs authors have recently
identified a bug in the pipeline that generated this dataset. Analysis of corrected summary sta-
tistics does not show such a signal (Figure 4—figure supplement 1).

. LD Score analyses show a much stronger relationship between SDS and GIANT or R15-sibs
than between SDS and UKB-GB. LD Score regression is generally considered to be robust to
population structure (but see the discussion in Bulik-Sullivan et al., 2015b). However, the
intensity of background selection increases with LD Score (Figure 5, Appendix 3), and this has
likely inflated the LD Score-based signal of selection in GIANT and R15-sibs.

In principle, it is possible that height in the UKB is confounded in a way that suppresses the signal

of height adaptation. Instead, multiple lines of evidence strongly suggest that population-structure

confounding in GIANT and R15-sibs is the main driver of the discrepancy with UKB-based analyses.

The sib design used by Robinson et al offered a strong independent replication of the polygenic

adaptation signal, which should have been impervious to population structure concerns. However,

our analyses highlight multiple signs of stratification in this study. Robinson et al have now confirmed

(as of November 2018) that effect sizes they released from their 2015 study were strongly affected

by population stratification due to a bug. Furthermore, they have now stated that the effect sizes

that they released publicly in 2016 were not the effect sizes used in their 2015 paper. As part of our

own investigation, we have independently confirmed that sib-studies conducted using PLINK

v1.90b5 are robust to environmental stratification (Appendix 4–figure 1). Our analyses using the

newly rerun effect sizes released by Robinson and Visscher, 2018 show no consistent signal of
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selection (Figure 1—figure supplement 1, Figure 2—figure supplement 1. and Figure 4—figure

supplement 1), in line with our UKB-based analyses.

GIANT was conducted as a collaboration among a large number of research groups that provided

summary statistics to the overall consortium. While the overall value of this pioneering dataset is not

in question, it would not be surprising in retrospect if this GWAS were impacted by residual stratifi-

cation along major axes of population structure.

Lastly, we must conclude that the strong signal of LD Score genetic covariance between SDS and

both GIANT and R15-sibs is largely spurious. This would imply that the LD Score regression slope is

not robust to population structure confounding. Specifically, we demonstrated that background

selection—through its correlation with LD Score—can potentially generate a spurious LD Score

regression slope.

Taken together, these observations lead us to conclude that what once appeared an ironclad

example of population genetic evidence for polygenic adaptation now lacks any strong support.

That said, there is still strong evidence that typical GWAS, including GIANT, do capture genuine sig-

nals of genotype-phenotype associations. For example, GWAS datasets regularly show strong func-

tional enrichments of heritability within active chromatin from trait-relevant tissues (Finucane et al.,

2015), and the observation that top SNPs identified in GIANT tend to replicate in UKB-GB

(Figure 3A), together with the high genetic correlations among all of the datasets (Table 2), suggest

that the vast majority of the signal captured by GIANT is real.

Nonetheless, we have shown that GIANT effect-size estimates contain a component arising from

stratification along a major axis of European population structure (Figure 3B), and one would like to

know the extent to which the conclusions from other analyses of GIANT, or other GWAS, may be

affected. A complete investigation of this is beyond the scope of this study, and will depend on the

nature of the analyses performed. The problem is likely most acute for the analysis of polygenic

scores in samples drawn from heterogeneous ancestry. This is because while the bias in detection

and effect sizes at any individual locus is small, the systematic nature of biases across many loci com-

pound to significant errors at the level of polygenic scores. This error substantially inflates the pro-

portion of the variance in polygenic scores that is among populations. Individual level prediction

efforts therefore suffer dramatically from stratification bias, as even small differences in ancestry will

be inadvertently translated into large differences in predicted phenotype (Kerminen et al., 2018).

This seems likely to remain a difficult complication even within datasets such as the UK Biobank,

though we suspect that meta-analyses such as GIANT, which collate summary statistics from many

sources, may be particularly sensitive to structure confounding.

These issues are apparent even within our UK Biobank results, where we see marked differences

between results based on UKB-GB and UKB-Eur (Figure 2C,I vs. D, J and Figure 4—figure supple-

ment 3). The study subjects in the two datasets were largely overlapping, and both were computed

using widely-accepted structure-correction methods, suggesting that in the more demanding setting

of broad European ancestry variation, the linear mixed model approach did not provide complete

protection against stratification. This highlights a need for renewed exploration of the robustness of

these methods, especially in the context of polygenic prediction.

The study of polygenic scores across ancestry and environmental gradients offers a range of

promises and pitfalls (Berg and Coop, 2014; Novembre and Barton, 2018). Looking forward, we

recommend that studies of polygenic adaptation should focus on datasets that minimize population

structure (such as subsets of UKB), and where the investigators have access to full genotype data,

including family data, so that they can explore sensitivity to different datasets and analysis pipelines.

Materials and methods

Newly calculated GWAS
Figure 1 and Figure 2 display analyses based on six different GWAS. Two of these GWAS were

newly calculated by us using UK Biobank data. Below, we describe the specifics of these two GWAS.

UKB-GB-NoPCs
To preform this GWAS, we used the following plink v. 2.0 (Purcell et al., 2007) with command line

as follows:
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. plink2 –memory 64G –threads 16 –linear

. –bpfile hUKB imputed SNPs bp filei

. –keep hid list of individuals self-identified as ‘White British’i

. –out houtput filei

. –pheno hstanding height phenotype file (UKB phenotype 50.0.0)i

. —covar hcovariates filei

The covariates file included only the sex, age and sequencing array for each individual id. We fil-

tered all A$G or C$T SNPs–to prevent the possibility of strand errors. Finally, we excluded SNPs

for which SDS was not calculated in Field et al. (2016).

UKB-sibs
We used the estimated kinship coefficient (f) and the proportion of SNPs for which the individuals

share no allele (IBS0) provided by the UK Biobank, to call siblings as pairs with

1

25=2
<f<

1

23=2

and IBS0 >0:0012—following the conditions used by Bycroft et al. (2018). We further filtered sibling

pairs such that both individuals were ‘White British’, their reported sex matched their inferred sex,

were not identified by the UK Biobank as ‘outliers’ based on heterozygosity and missing rate nor

had an excessive number relatives in the data, and had height measurements. We standardized

height values for each sex based on its mean and standard deviation (SD) values in the sample of

336,810 unrelated British ancestry individuals: mean 175.9 cm and SD 6.7 cm for males, and mean

162.7 cm and SD 6.2 cm for females. We also removed pairs if one of the siblings was more than 5

SD away from the mean. After applying all filters, 19,268 sibling pairs remained, equaling 35,524

individuals in 17,275 families. We performed an association analysis on 10,879,183 biallelic SNPs

included in UKB-GB (converting dosages from imputation to genotype calls using no hard calling

threshold), using plink v. 1.9 (Purcell et al., 2007) QFAM procedure with the following command:

. plink –bfile hUKB hard-called SNPs filei

. -out houtput filei

. -qfam mperm = 100000

The family relationships, as well as the phenotypic values, were encoded in plink FAM files.

GBR-TSI allele frequency differences
Individuals from the GBR and TSI populations from 1000G Phase 3 (N = 189) (1000 Genomes Proj-

ect Consortium et al., 2015) were assigned binary phenotype labels and a �2 test was run using

plink (Purcell et al., 2007) with a Hardy-Weinberg equilibrium cutoff of 1e-6 (–hwe 1e-6) and miss-

ing genotype rate of 0.05 (–geno 0.05), but otherwise with default parameters. Additionally, a firth

adjusted logistic regression (Firth, 1993) was run and produced qualitatively similar results (data not

shown).

IRL-GBR allele frequency differences
Unrelated individuals, defined using estimates from KING (Manichaikul et al., 2010), who self-identi-

fied as White British or White Irish in the UK Biobank were compared with distinct phenotype labels.

Logistic regression (Hill et al., 2017) was run on the genotyped SNP set using plink2 (Chang et al.,

2015) with a Hardy-Weinberg equilibrium cutoff of 1e-6 (–hwe 1e-6) and missing genotype rate of

0.05 (–geno 0.05).

Polygenic score analyses
Population genetic datasets
1000 Genomes Phase 3 VCF files were downloaded from the 1000 Genomes website, and VCF files

for the Human Origins dataset were downloaded from the ‘Affymetrix Human Origins fully public

dataset’ link on the Reich lab website and subsequently imputed to full genomes using the Michigan

imputation server (Das et al., 2016). Because the Human Origins panel includes some 1000
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Genomes populations, individual IDs were compared between the two datasets, and any duplicates

were removed from the Human Origins dataset. Individuals were then clustered into populations

based on groupings provided by each data resource, and allele frequencies were calculated using

VCFtools version 0.1.15.

Neutrality tests
In Figure 1, we employ two separate tests to assess the evidence that the distribution of polygenic

scores among populations is driven in part by adaptive divergence. Both are based on a simple null

model introduced by Berg and Coop (2014), which states that the distribution of polygenic scores

under neutrality should be approximately multivariate normal. Here, we give a brief overview of the

assumptions and calculations underlying the null model, before describing the two tests used in Fig-

ure 1. For a more complete treatment, see Berg and Coop (2014).

Let ~p‘ be the vector of population allele frequencies at SNP ‘, while a‘ is the effect size for SNP

‘ 2 f1; :::; Lg. Then, population level polygenic scores are given by

~Z ¼ 2

X

‘

a‘~p‘: (1)

Under neutrality, the distribution of polygenic scores among populations should be approximately

~Z ~MVN �~1;2VAF

� �

(2)

where

�¼ 2

X

‘

a‘�‘ (3)

VA ¼ 2

X

‘

a2

‘ �‘ 1� �‘ð Þ (4)

where �‘ is the mean of ~p‘ across populations. The matrix F gives the population level co-ancestry

among populations. Here, we calculate the matrix F directly from the same set of SNPs used to cal-

culate polygenic scores, which is a conservative procedure. Concretely, let

~x‘ ¼
~p‘� �‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�‘ 1� �‘ð Þ
p : (5)

Then, if X is a matrix with the~x‘ as columns, we have

F¼ 1

L� 1
XX

T : (6)

Now, based on this null model, we perform two separate neutrality tests. One is a general over-

dispersion test (i.e. the ’QX test’ from Berg and Coop, 2014), for which the test statistic is

QX ¼
~Z��
� �T

F
�1 ~Z��
� �

2VA

: (7)

For M populations, this statistic is expected to have a �2

M�1
distribution under the multivariate nor-

mal null model (Equation 2). An unusually large value of QX indicates that the neutral null model is a

poor fit, and is therefore taken as evidence in favor of selection.

We also apply a second, more specific test, to test for evidence of a correlation with a specific

geographic axis that is unusually strong compared to the neutral expectation. For any vector ~Y, if ~Z

has a multivariate normal distribution given by Equation 2, then

~YT~Z ~N �~YT~1;2VA
~YT

F~Y
� �

(8)

and therefore
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~YT~Z��~YT~1

2VA
~YTF~Y

 !2

~�2

1
(9)

under the multivariate normal null. This fact can be used to test for an unexpectedly strong associa-

tion between polygenic scores and a geographic axis by choosing ~Y to be the vector of latitudes or

longitude across populations.

tSDS vs. GWAS significance
Polarizing SDS into tSDS
To analyze tSDS as a function of GWAS p-value, we first divided SNPs into 5% minor allele frequency

bins. We standardized SDS values—subtracted the mean and divided by the standard deviation—

within each bin. While SDS values were already standardized in a similar manner by Field et al.

(2016), we re-standardized SDS because the post-filtering composition of SNPs after in each GWAS

was variable across GWAS. We then assigned tSDS values to each SNP by polarizing SDS to the tall

allele. In other words, we set

tSDS :¼
SDS; derived = tall

�SDS; otherwise

�

(10)

where derived is the derived allele in UK10K (by which SDS was polarized in Field et al., 2016), and

tall is the height increasing allele in the GWAS. We only used sites for which SDS values are avail-

able. Notably, this implicitly means that sites with minor allele frequency lower than 5% in UK10K

were filtered out, due to the filtering used in Field et al. (2016).

Assessing significance of the correlation between GWAS p-value and tSDS
Figure 2 illustrates the correlation between tSDS and GWAS p-value (p-value for the strength of

association with height). We assessed the significance of the correlation between the two while

accounting for LD between SNPs. To do this, we used a blocked-jackknife approach (Kunsch, 1989;

Busing et al., 1999) to estimate the standard error of our Spearman correlation point estimate, �̂.

For each GWAS, SNPs were assigned to one of b = 200 contiguous blocks based on concatenated

genomic coordinates. tSDS values should not be correlated across such large blocks. For each block

i, we computed the Spearman correlation in the i’th jackknife sample, �̂bð�iÞ—that is the Spearman

correlation across all SNPs but the SNPs in block i. We then estimated the standard error of the

point Spearman estimate by ŝ, where

ŝ2 ¼ b� 1

b

Xb

i¼1

ð�̂bð�iÞ� ��bÞ;

and.

��b ¼ 1

b

Xb

i¼1

�̂bð�iÞ

is the average of jackknife samples. Finally, we compute a p-value for the null hypothesis.

H0 : �¼ 0;

by approximating �̂ as Normally distributed under the null with standard deviation ŝ, namely.

�̂~Nð0; ŝÞ:

LD Score regression
Summary statistics for traits were filtered and allele flipped using munge_sumstats.py (a python

program provided by Bulik-Sullivan et al., 2015b), with the default filters. All regressions were per-

formed using the LD Score Regression package, using the LD Scores derived from the 489 unrelated

European individuals in 1000 Genomes Phase III and a modified SNP set that excluded the HLA,

LCT, and chromosome eight inversion loci.

Berg et al. eLife 2019;8:e39725. DOI: https://doi.org/10.7554/eLife.39725 17 of 47

Research Communication Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.39725


For genetic correlations of traits presented in Table 2, raw summary statistics were used. For

other analyses, effect sizes of SNPs within each 1% minor allele frequency bin (as estimated by the

489 Europeans) were normalized to mean 0 and standard deviation 1, and those normalized statis-

tics were used for downstream analyses. The standard two-step regression method from LD Score

regression was used, with the default of 200 jackknife bins and a chi-square cutoff of 30, though

results with UKB-GB were reasonably robust to a wide range of bin sizes and cutoffs.

Data availability statement
The GWAS generated from the UK Biobank for this paper have been uploaded to Dryad: https://
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impacted by a computational bug, (R15-sibs, (Robinson et al., 2016)) as well as the newly rerun
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Jeremy J Berg, Ar-
bel Harpak, Nasa
Sinnott-Armstrong,
Anja Moltke Joer-
gensen, Hakhama-
nesh Mostafavi, Yair
Field, Evan August
Boyle
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UK Biobank

http://dx.doi.org/10.
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Dryad Digital
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dryad.mg1rr36

The following previously published datasets were used:
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Wood AR, Esko T,
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S, Pers TH, Gus-
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2014 GIANT Consortium 2014 Height
Summary Statistics

https://portals.broadin-
stitute.org/collaboration/
giant/index.php/GIANT_
consortium_data_fi-
les#GWAS_Anthropo-
metric_2014_Height

GIANT Consortium
Website, GWAS_
Anthropometric_20
14_Height

Loh PR, Kichaev G,
Gazal S, Schoech
AP, Price A

2017 Price Lab UK Biobank GWAS https://data.broadinsti-
tute.org/alkesgroup/
UKBB/

Broad Institute
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Robinson R 2016 Robinson and Visscher 2016 Height
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University of
Queensland Program
in Complex Trait
Genetics Website,
withinfam_summary_
ht_bmi_release_
March2016.tar.gz

Robinson R 2018 Robinson and Visscher 2018
Corrected Height Summary
Statistics

http://cnsgenomics.com/
data/robinson_et_al_
2015_ng/Within-family_
GWAS_of_height_
based_on_sib_regres-
sion_using_data_from_
Robinson_et_al_2015_
LYMRR.txt.gz

University of
Queensland Program
in Complex Trait
Genetics Website,
Within-family_GWAS_
of_height_based_on_
sib_regression_
using_data_from_
Robinson_et_al_20
15_LYMRR.txt.gz
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Appendix 1

DOI: https://doi.org/10.7554/eLife.39725.018

Expanded SNP Sets
Some analyses of polygenic score variation among populations have used many more than the

SNPs we use in our main text analyses, in the hope of increasing power to detect adaptive

divergence (e.g. Robinson et al., 2015). Here, we use three alternative ascertainment

schemes that increase the number of SNPs used, and apply them to the UKB-GB GWAS to

determine the resulting effect on the signal of selection:

20k
19,848 genotyped SNPs ascertained from the UKB-GB dataset by running plink’s clumping

procedure with r2 < 0:1, a maximum clump size of 1Mb, p< 0:01, and using 10,000 randomly

selected unrelated British ancestry individuals as the reference for LD structure.

5k
4,880 SNPs with the smallest p values subsampled from the 20k ascertainment.

HapMap5k
5,675 SNPs ascertained from UKB-GB GWAS SNPs after first restricting to HapMap3 SNPs

(International HapMap 3 Consortium, 2010), using the same plink clumping procedure as

the 20k ascertainment. This HapMap3 ascertainment was performed in order to mimic the

ascertainment in Robinson et al. (2015).

We also tested two alternative ascertainments of the R15-sibs-updated dataset, described

immediately below. While the majority of this appendix focuses on analyses of the three

alternate ascertainments of the UKB-GB datasets, described above, we include a brief analysis

of these R15-sibs-updated alternate ascertainments.

R15-sibs-updated-3.5k
3,579 SNPs ascertained from the R15-sibs-updated dataset by running plink’s clumping

procedure with r2 < 0:1 a maximum clump size of 1Mb, p< 0:01, using the same set of 10,000

randomly selected unrelated British ancestry individuals as the reference for LD structure.

R15-sibs-updated-22k
22,243 SNPs ascertained under the same plink setting as R15-sibs-updated-3.5k, but with the

p value threshold relaxed to p< 0:1.

For each expanded SNP set, we applied both the general QX test for overdispersion, as

well as the specific test for a correlation with latitude (both tests are outlined in the

Materials and methods). In all three datasets, the relationship between polygenic scores and

latitude was consistent with neutrality. However, in both the 20k and HapMap5k datasets, we

can reject the neutral model, as the QX p value is 1.68 � 10�3 for 20k and 9.88 � 10�9 for

HapMap5k. On the other hand, 5k is not significant, with a p value of 0.75.

We were concerned that the rejection of the neutral null with 20k and HapMap5k

ascertainments may be partly due to the higher proximity of SNPs included—leading to

deviations from the independent evolution assumption of the neutral model underlying the QX

hypothesis test. To investigate this, we leveraged a decomposition of the QX statistic in terms

of the underlying loci used to calculate the polygenic scores. Specifically, Berg and Coop

(2014) showed that QX can be expressed in terms of and ’FST-like’ component, which
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describes the extent to which loci underlying the polygenic scores are marginally

overdispersed, and an ’LD-like’ component, which describes the extent to which pairs of loci

which affect the trait covary in their allele frequencies across populations. This decomposition

can be written as

QX ¼ M� 1ð Þ2
P

‘a
2

‘Var ~p‘ð Þ
VA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

FST�liketerm

þ M� 1ð Þ
2
P

‘ 6¼‘0 a‘a‘0Cov ~p‘;~p‘0ð Þ
VA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LD�liketerm

:
(A1)

Here, we have assumed that the allele frequencies, pl, have been transformed so as to

remove the influence of population structure. See the discussion surrounding equations 12-14

in Berg and Coop (2014) for a more complete explanation of this transformation.

Here, we extend this decomposition further, breaking the LD-like term into components as

a function of the degree of physical separation of SNPs along the chromsome. Specifically, we

define a set of partial QX statistics (pQXðkÞ), such that pQXðkÞ gives the contribution to from

sites which are k SNPs apart on the chromosome:

pQXðkÞ ¼ ðM� 1Þ
2
P

‘;‘02Sk a‘a‘0Cov ~p‘;~p‘0ð Þ
VA

(A2)

where Sk denotes the set of SNP pairs which are k SNPs apart on the same chromosome (note

that only SNPs included in the a given ascertianment are included for the purposes of

counting how many SNPs apart any two SNPs are). So pQXð0Þ would give the ’ FST term’, while

pQXð1Þ gives the component of the ’LD term’ that comes from covariance between pairs of

SNPs which do not have another SNP (that is included in the polygenic scores) physically

located between them. pQXð2Þ gives the component that comes from covariance between

pairs of SNPs separated by exactly one other SNP included in the polygenic scores, pQXð3Þ the
component from SNPs separated by exactly two intervening SNPs, etc. We let S¥ be the set of

pairs which are on separate chromosomes, so that pQXð¥Þ gives the contribution to QX coming

from pairs of SNPs on different chromosomes. This decomposition retains the property that

QX ¼
XKmax

k¼0

pQXðkÞþ pQXð¥Þ; (A3)

where Kmax is the maximum separation of two SNPs on any chromosome. We note that the

pQXðkÞ terms are not independent of one another, but they are uncorrelated under the neutral

null.
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Appendix 1—figure 1. pQXðkÞ statistics for k ¼ 1 : 450 for the 20 k dataset. The x axis gives the

average physical distance between all pairs of SNPs contributing to a given pQXðkÞ statistic.
The uptick in pQXðkÞ on the left side of the plot (i.e. small values of k) indicates that SNPs

which are physically close to one another and have the same sign in their effect on height

covary across population disproportionately as compared to more distant pairs of SNPs. Note

that the number of pairs of SNPs ð Skj jÞ contributing to a given pQXðkÞ decreases as k increases,

as smaller chromosomes have fewer pairs at larger distances than they do at shorter distances.

This leads to a decrease in the variance of pQXðkÞ under the null as k increases. However, this

decline in variance is not responsible for the decay in signal as k increases, as Skj j remains

approximately constant until well past the dashed vertical line, which indicates the distance

between between the ends of chromosome 21 (the shortest chromosome, and therefore the

first to drop out of the pQXðkÞ calculation).
DOI: https://doi.org/10.7554/eLife.39725.019
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Appendix 1—figure 2. pQXðkÞ statistics for k ¼ 1 : 150 for the 5 k dataset. The x axis gives the

average physical distance between all pairs of SNPs contributing to a given pQXðkÞ statistic.
The boxplots give an empirical null distribution of pQXðkÞ statistics derived from permuting the

signs of all effect sizes independently (this empirical null was omitted from Appendix 1—

figure 1 due to computational expense). In this case, SNPs that are physically close to one

another do not contribute disproportionately to the signal.
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Appendix 1—figure 3. pQXðkÞ statistics for k ¼ 1 : 150 for the HapMap5k dataset. The x axis

gives the average physical distance between all pairs of SNPs contributing to a given pQXðkÞ
statistic. The boxplots give an empirical null distribution of pQXðkÞ statistics derived from

permuting the signs of all effect sizes independently (this empirical null was omitted from

Appendix 1—figure 1 due to computational expense). The uptick in signal from pairs of SNPs

physically nearby to one another is present in this dataset, again suggesting a role for physical

linkage in contributing to the signal. However, note that in contrast to the 20 k and 5 k

ascertainments, the HapMap5k ascertainment also has a large amount of signal from pQXð¥Þ,
which cannot be explained by linkage.

DOI: https://doi.org/10.7554/eLife.39725.021

In Appendix 1—figure 4 and 5 of this Appendix, we show the pQx statistics for various k

values in these three different ascertainments. In both the 20 k and the HapMap5k

ascertainments, pQX is higher for low k values–that is there is more signal coming from

covariance among SNP pairs which are physically close to one another on the chromosome

than from distant pairs. This indicates a role for linkage in generating the signals detected in

these two ascertainments (we also observed these sort of signals in the R15-sibs-updated-3.5k

and R15-sibs-updated-22k ascertainments; Appendix 1—figure 4 and 5). In contrast, we see

no linkage-associated signal in the 5 k ascertainment (in fact, we see no signal whatsoever).

The major difference between the signal we observe in the 20 k ascertainment and that in the

HapMap5k ascertainment is that pQXð¥Þ is strongly positive for the HapMap5k ascertainment,

whereas it is weakly negative for the 20 k ascertainment. This difference in the strength of

between-population LD between loci on separate chromosomes is largely responsible for the

fact that the neutral null hypothesis is strongly rejected for the 20 k ascertainment, but only

weakly so for the HapMap5k ascertainment.
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Appendix 1—figure 4. pQXðkÞ statistics for the R15-sibs-updated-3.5k ascertainment. Similar to

the expanded UKB-GB ascertainments, the elevated signal from covariance among SNPs in

adjacent bins suggests that the independence assumption of the neutral model is being

violated.
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Appendix 1—figure 5. pQXðkÞ statistics for the R15-sibs-updated-22k. Similar to Appendix 1—

figure 4, the elevated signal from covariance among SNPs in adjacent or nearby bins suggests

that the independence assumption of the neutral model is being violated. Similar to

Appendix 1—figure 1, we omitted the sign flipping null due to computational expense.
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This heterogeneity of signals across different ascertainments suggests that the signals we

do observe are unlikely to be the result of selection—but rather result from some other

process or phenomenon which we do not fully understand. Perhaps the most unusual

observation is the fact that the among chromosome component of QX (i.e. pQXð¥Þ) is so strong

from HapMap5k, when it is absent under all other ascertainments. This suggests a role for

some ascertainment bias impacting SNPs included in the HapMap3 SNP set. This seems

plausible, as SNPs included in the HapMap3 SNP set have an elevated minor allele frequency

as compared to a genome-wide sample. While it seems plausible that patterns of among

population LD would differ for SNPs included on genotyping platforms, it is not clear why

among-population LD should be systematically positive with respect to the SNPs’ effect on

height.

To better understand the signal observed in the HapMap5k ascertainment, we make use of

an alternate decomposition of the QX statistic (Berg et al., 2017; Josephs et al., 2018). First,

write the eigenvector decomposition of F as ULU
T. The mth column of U (~Um) gives the mth

eigenvector of F, and the mth diagonal entry of L (lm) gives the mth eigenvalue of F. Note that

because this eigen-decomposition is performed on the population level covariance matrix,

they capture only the major axes of variation among our pre-specified population labels, in

contrast to how PCA is usually done at the individual level in demographic inference

applications. Now, we can define a statistic

QUðmÞ ¼
~Z��
� �T~Um

� �2

2lmVA

(A4)

which has a �2

1
distribution under the neutral null hypothesis. These statistics, like the pQX

statistics, have the property that QX is given simply by their sum:

QX ¼
~Z��
� �T

F
�1 ~Z��
� �

2VA

(A5)

¼
~Z��
� �T

UL
�1
U

T ~Z��
� �

2VA

(A6)

¼
X

m

~Z��
� �T~Um

� �2

2lmVA

(A7)

¼
X

m

QUðmÞ: (A8)

An unusually large value of QUðmÞ for a given choice of m is an indication that the polygenic

scores are more strongly correlated with the mth axis of population structure than expected

under the neutral null model. Therefore, once a signal is detected with QX , the QU statistics

can be used to understand which specific axes of divergence among populations are

responsible for generating the signal in QX .

In Appendix—figure 6, we show a quantile-quantile plot of the �log10 p values for the

HapMap5k ascertainment, derived from comparing these QU statistics from the European set

of populations to the �2

1
distribution. It is particularly noteworthy that the signal in this

ascertainment is diffuse, resulting from inflation of nearly all of the QU statistics, rather than

just a few. This is a statement that the signal detected in the HapMap5k ascertainment results

from the polygenic scores simply being more variable along all axes, rather than one particular

axis of population structure. In general, we are skeptical that this represents a real signal of

selection, particularly given how sensitive it is to ascertainment.
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Appendix 1—figure 6. The QQ plot of �log10 P values for the QU statistics calculated a within-

Europe sample using the HapMap5k ascertainment. The systematic inflation of QU indicates a

non-specific rejection of neutrality: polygenic scores are more variable in all directions than

expected under the null model. This pattern is not expected under adaptive divergence of

labeled populations.

DOI: https://doi.org/10.7554/eLife.39725.024

One biological hypothesis is that the HapMap5k ascertainment could suggest ancient

assortative mating on the basis of height. Specifically, our neutral null model assumes that all

loci drift independently. However, assortative mating on the basis of a phenotype will lead to

a build-up of within population LD that is positive with respect to the direction of allelic effects

on the trait—even among distant or unlinked alleles. As populations drifted apart, within-

population LD due to assortative mating would get converted into among-population LD—

causing a deviation from our null-model assumption of independent evolution across all loci.

This phenomenon would result in populations drifting apart in height-associated loci faster

than expected by the rest of the genome. This hypothesis is consistent with the diffusion of QX

across all QU terms in HapMap5k. This hypothesis is also consistent with higher pQX for

physically proximate SNPs, as assortative mating would leads to a stronger buildup of trait LD

among pairs of loci which are tightly linked than for those that are not, which would lead to

stronger among population LD among these loci as populations diverge

However, under this hypothesis, it is not clear why we would expect the uptick in pQxðkÞ for
small k to be present in the HapMap5k and 20 k datasets but not the 5 k dataset, or why the

pQxð¥Þ signal should be present in only the HapMap5k dataset. At this point, we leave the

assortative mating hypothesis outlined above as purely speculative, and leave further

investigations for future work.

It also possible that all of the signals seen here are entirely the result of a violation of the

assumption of independence among SNPs under the null model. This may be the case even

for pQxð¥Þ signals. Consider for example 3 SNPs, with SNPs 1 and 2 adjacent to one another

on a chromosome, and SNP three located on a different chromosome. pQxð¥Þ would include

the covariance between SNP 1 and 3, and that between 2 and 3. However, if SNPs 1 and 2

covary, then these two covariance terms will be correlated with one another. Therefore, the

variance of the pQxð¥Þ term will be underestimated by a null that assumes independence
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among SNPs, even though all of the terms that contribute to it come from covariance among

SNPs on separate chromosomes.
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Appendix 2

DOI: https://doi.org/10.7554/eLife.39725.018

Robustness of differences in differentiation signal to
filtering schemes
Here, we explore whether the failure to replicate GIANT signals with UKB-GB could be

explained as a result of differences in filtering of SNPs in one or the other dataset. This

analysis was performed by Anja Moltke Jørgensen and Fernando Racimo, and doubles as a

demonstration of the failure to replicate the GIANT signal of excess among population

variance (Turchin et al., 2012; Berg and Coop, 2014; Robinson et al., 2015;

Zoledziewska et al., 2015; Berg et al., 2017) that was performed independently from that in

the main text.

We focused on present-day populations from phase 3 of the 1000 Genomes Project

(1000 Genomes Project Consortium et al., 2015). We divided the genome into 1700

approximately independent LD blocks, using fgwas (Pickrell, 2014; Berisa and Pickrell,

2016), and extracted, for each of the two GWAS for height, the SNP with the highest

posterior probability of association (PPA) from each block, using. This resulted in a total of

1700 SNPs (one per block). Unless otherwise stated, we computed scores using the subset of

these SNPs that were located in blocks with high per-block posterior probability of association

(PPA>95%), after retrieving the allele frequencies of these SNPs in the 1000 Genomes

population panels, using glactools (Renaud, 2018). We tested different types of filters to

assess how they influenced the results.

Appendix 2—figure 2 (upper row) shows that genetic scores computed for each of the

1000 Genomes phase three populations. In each plot below in which we report a P-value, this

P-value comes from calculating the QX statistic, and assuming this statistic is chi-squared

distributed (Berg and Coop, 2014; Berg et al., 2017). The candidate SNPs used for

calculating the genetic scores were filtered so that the average minor allele frequency across

populations was more than or equal to 5%.

To investigate the effect of the per-block posterior probability of association (Block PPA) on

the genetic scores, we also used two alternative PPA thresholds for including a block in the

computation of the PPA score: 0 (i.e. including all blocks, lower row of Appendix 2—figure 2)

and 0.5 (middle row of Appendix 2—figure 2) shows that this filtering has little effect in the

difference in results between the two GWASs.
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Population.Code

ACB

Population.Description

ASW

ESN

GWD

LWK

MSL

YRI

CLM

MXL

PEL

PUR

CDX

CHB

CHS

JPT

KHV

CEU

FIN

GBR

IBS

TSI

BEB

GIH

ITU

PJL

STU

African Caribbeans in Barbados

Americans of African Ancestry in SW USA

Esan in Nigeria

Gambian in Western Divisions in the Gambia

Luhya in Webuye, Kenya

Mende in Sierra Leone

Yoruba in Ibadan, Nigeria

Colombians from Medellin, Colombia

Mexican Ancestry from Los Angeles USA

Peruvians from Lima, Peru

Puerto Ricans from Puerto Rico

Chinese Dai in Xishuangbanna, China

Han Chinese in Beijing, China

Southern Han Chinese

Japanese in Tokyo, Japan

Kinh in Ho Chi Minh City, Vietnam

Utah Residents (CEPH) with Northern and Western European Ancestry

Finnish in Finland

British in England and Scotland

Iberian Population in Spain

Toscani in Italia

Bengali from Bangladesh

Gujarati Indian from Houston, Texas

Indian Telugu from the UK

Punjabi from Lahore, Pakistan

Sri Lankan Tamil from the UK

Appendix 2—figure 1. Present-day populations from 1000 Genomes Project Phase 3 used to

build population-level polygenic scores, colored by their respective super-population code.

DOI: https://doi.org/10.7554/eLife.39725.026

Berg et al. eLife 2019;8:e39725. DOI: https://doi.org/10.7554/eLife.39725 34 of 47

Research Communication Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.39725


●
●

●●●●●

●

●

●

●

●●●●●

●

●

●

●●

●
●

●
●

●

−2

0

2

4

AC
B
A
S
W
E
S
N
G
W

D
LW

K
M

S
L
Y
R
I
C
LM

M
X
L
P
E
L
P
U
R
C
D
X
C
H
B
C
H
S
JP

T
K
H
V
C
E
U

FIN
G
B
R

IB
S

TS
I
B
E
B
G
IH

IT
U

P
JL

S
TU

Populations

G
e
n
e
ti
c
 S

c
o
re

Wood, 1000 G. − Block PPA >= 0
Pval:  <1e−16

●●●●●●●

●●●●●●●●●
●●●●●●

●
●

●●

−2

0

2

4

AC
B
A
S
W
E
S
N
G
W

D
LW

K
M

S
L
Y
R
I
C
LM

M
X
L
P
E
L
P
U
R
C
D
X
C
H
B
C
H
S
JP

T
K
H
V
C
E
U

FIN
G
B
R

IB
S

TS
I
B
E
B
G
IH

IT
U

P
JL

S
TU

Populations

G
e
n
e
ti
c
 S

c
o
re

UKB, 1000 G. − Block PPA >= 0
Pval:  0.023

●●
●●

●
●

●

●
●

●

●

●●●●●

●
●

●
●●

●
●●

●
●

−2

0

2

4

AC
B
A
S
W
E
S
N
G
W

D
LW

K
M

S
L
Y
R
I
C
LM

M
X
L
P
E
L
P
U
R
C
D
X
C
H
B
C
H
S
JP

T
K
H
V
C
E
U

FIN
G
B
R

IB
S

TS
I
B
E
B
G
IH

IT
U

P
JL

S
TU

Populations

G
e
n
e
ti
c
 S

c
o
re

Wood, 1000 G. − Block PPA > 0.5
Pval:  5.6e−14

●●●●●
●●

●●●●●●●●●
●●●●●

●
●●●●

−2

0

2

4

AC
B
A
S
W
E
S
N
G
W

D
LW

K
M

S
L
Y
R
I
C
LM

M
X
L
P
E
L
P
U
R
C
D
X
C
H
B
C
H
S
JP

T
K
H
V
C
E
U

FIN
G
B
R

IB
S

TS
I
B
E
B
G
IH

IT
U

P
JL

S
TU

Populations

G
e
n
e
ti
c
 S

c
o
re

UKB, 1000 G. − Block PPA > 0.5
Pval:  0.0122

●●●●●●●
●●

●

●

●●●●●

●
●●

●●

●●●
●●

−2

0

2

4

AC
B
A
S
W
E
S
N
G
W

D
LW

K
M

S
L
Y
R
I
C
LM

M
X
L
P
E
L
P
U
R
C
D
X
C
H
B
C
H
S
JP

T
K
H
V
C
E
U

FIN
G
B
R

IB
S

TS
I
B
E
B
G
IH

IT
U

P
JL

S
TU

Populations

G
e
n
e
ti
c
 S

c
o
re

● ● ● ● ●AFR AMR EAS EUR SAS

Wood, 1000 G. − Block PPA > 0.95
Pval:  1.14789e−05

●●●●
●

●●
●●●●●●●●●

●●●●●
●

●●●●

−2

0

2

4

AC
B
A
S
W
E
S
N
G
W

D
LW

K
M

S
L
Y
R
I
C
LM

M
X
L
P
E
L
P
U
R
C
D
X
C
H
B
C
H
S
JP

T
K
H
V
C
E
U

FIN
G
B
R

IB
S

TS
I
B
E
B
G
IH

IT
U

P
JL

S
TU

Populations

G
e
n
e
ti
c
 S

c
o
re

● ● ● ● ●AFR AMR EAS EUR SAS

UKB, 1000 G. − Block PPA > 0.95
Pval:  0.0259

Appendix 2—figure 2. Genetic scores in present-day populations, colored by their super-popu-

lation code, and created using different block-PPA thresholds. Left column: Wood et al.

(2014) GWAS. Right column: Neale lab UK Biobank GWAS.

DOI: https://doi.org/10.7554/eLife.39725.027

To visualize the contribution of each SNP to the difference in scores between two

populations with high differentiation in the Wood et al. GWAS (CHB and CEU), we produced a

contour plot in which we display the absolute effect size of each SNP contributing in the

computation of the genetics scores, plotted as a function of the difference in the frequency of

the trait-increasing allele for that SNP in the two populations (Appendix 2—figure 3).
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Appendix 2—figure 3. Distribution of the absolute value of effect sizes (y-axis) plotted as a

function of the difference in frequency of the trait-increasing allele between CEU and CHB (x-

axis), for candidate SNPs used to build genetic scores. Top left: trait-associated SNPs from

Wood et al., with effect sizes from the same GWAS. Top right: trait-associated SNPs from the

Neale lab GWAS, with effect sizes from the same GWAS. Bottom left: trait-associated SNPs

from Wood et al., but with their corresponding effect sizes from the Neale lab GWAS. Bottom

right: trait-associated SNPs from the Neale lab GWAS, but with their corresponding effect

sizes from Wood et al. Contour colors denote the density of SNPs in different regions of each

plot.

DOI: https://doi.org/10.7554/eLife.39725.028

Appendix 2—figure 3 shows that the distribution of the difference in scores between the

two populations is shifted in favor of CEU when using the Wood et al. dataset, but not when

using the UKB dataset. When selecting SNPs via PPAs from the Wood et al. dataset but using

their UKB effect sizes, the distribution of differences is also shifted in favor of CEU, but this

does not occur when performing the converse: using PPAs from UKB to select SNPs, but

plotting their effect sizes from Wood et al.

This figure also reveals that there are a number of SNPs in the UKB dataset with high effect

sizes and very small differences in allele frequency between the two populations. These SNPs

tend to have allele frequencies near the boundaries of extinction or fixation in both

populations, suggesting they could possibly be under the influence of negative selection. To

investigate the contribution of these high-effect SNPs on the overall genetic scores with the

UKB dataset, we removed their corresponding blocks from the score computation, and re-
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calculated the genetic scores for all populations. We chose a minimum absolute effect size

equal to 0.08 for removal of SNPs, and the 6 SNPs in the UKB dataset which are above this

threshold were therefore excluded from the analysis. This filtering, however, does not seem to

serve to recover the Wood et al. signal (Appendix 2—figure 4).

●
●

● ●

●
●

●

●

●

●

●

● ●
●

● ●

●

● ●

● ●

●

●
●

●

●

−1

0

1

2

AC
B

ASW
ESN

G
W

D
LW

K
M

SL
YR

I
C
LM

M
XL

PEL
PU

R
C
D
X

C
H
B

C
H
S

JP
T

KH
V

C
EU

FIN
G
BR

IB
S

TSI
BEB

G
IH

IT
U

PJL
STU

Populations

G
e
n
e
ti
c
 S

c
o
re

● ● ● ● ●AFR AMR EAS EUR SAS

1.G. Wood − No high effect SNPs
Pval: 3.95e−08, SNPs: 586

● ●
● ●

●

● ●

● ●
●

●
● ● ●

● ●

● ●
● ●

●

●

●

●
●

●

−1

0

1

2

AC
B

ASW
ESN

G
W

D
LW

K
M

SL
YR

I
C
LM

M
XL

PEL
PU

R
C
D
X

C
H
B

C
H
S

JP
T

KH
V

C
EU

FIN
G
BR

IB
S

TSI
BEB

G
IH

IT
U

PJL
STU

Populations

G
e
n
e
ti
c
 S

c
o
re

● ● ● ● ●AFR AMR EAS EUR SAS

1.G. UKB − No high effect SNPs
Pval: 0.029, SNPs: 789

Appendix 2—figure 4. Genetic scores for present-day populations, after excluding 6 high-effect

SNPs from UKB, colored by super-population code. Left: Wood et al. GWAS. Right: Neale lab

UK Biobank GWAS.

DOI: https://doi.org/10.7554/eLife.39725.029

In Appendix 2—figure 5 we restrict the candidate SNPs used, by only allowing SNPs that

have minor allele frequencies larger than 0.05 in all populations. This is different from our

previous default allele frequency filtering, in which we only required the average of the minor

allele frequency across populations to be larger than 0.05. Nevertheless, this filtering does not

recover the Wood et al. signal either.
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Appendix 2—figure 5. Genetic scores computed only with SNPs that have minor allele frequen-

cies larger than 0.05 in all populations. Left: Wood et al. GWAS. Right: Neale lab UK Biobank

GWAS.

DOI: https://doi.org/10.7554/eLife.39725.030

We also looked into whether the candidate SNPs found using the UK Biobank dataset were

also present in the Wood et al. GWAS, but perhaps with much smaller effect sizes, and this

was somehow affecting the genetic scores made using the UKB data. In Appendix 2—figure 6

all UK Biobank candidate SNPs that were also found in Wood et al. were evaluated and if a
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SNP’s absolute effect size in Wood et al. was smaller than or equal to 0.05, the SNP was

excluded from the UK Biobank candidate set.
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Appendix 2—figure 6. Genetic scores computed using the UK Biobank data, after removing

SNPs with absolute effect sizes smaller than or equal to 0.05 in Wood et al.

DOI: https://doi.org/10.7554/eLife.39725.031

We also excluded all UKB-candidate SNPs found in Wood et al. with absolute effect sizes

smaller than or equal to 0.01, and recomputed the scores using the UK Biobank effect sizes

(Appendix 2—figure 7).
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Appendix 2—figure 7. Genetic scores computed using the UK Biobank data, after removing

SNPs with absolute effect sizes smaller than or equal to 0.01 in Wood et al.

DOI: https://doi.org/10.7554/eLife.39725.032
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Appendix 3

DOI: https://doi.org/10.7554/eLife.39725.018

LD Score regression and linked selection
In this section we discuss how linked selection, specifically background selection (BGS), may

be a potential confounder of LD Score regression. In the first section we discuss the intuition

behind univariate LD Score regression and how BGS can cause a correlation between LD Score

and allele frequency differentiation. In the second section we show empirically how LD Score

and BGS covary across the genome, and how this can account for the empirical patterns of LD

Score correlating with allele frequency differentiation. In the third section we show the BGS

confounding of the slope and intercept of the univariate LD Score regression. In the final

section we work through bivariate LD Score regression and show that it can be used to

highlight the confounding of GWAS by specific axes of population structure.

Through this supplement we discuss the potential issue with linked selection in terms of

BGS. However, it is likely that basic intuition of theses results, that is that linked selection is

confounder of LD Score regression, apply more generally to other models of linked selection

(e.g. selective sweeps).

Background
Bulik-Sullivan et al. (2015a) and Bulik-Sullivan et al. (2015b) introduced LD Score regression

as a robust way to assess the impact of population structure confounding on GWAS, and to

robustly assess heritabilities and genetic correlations in GWAS even in the presence of such

confounding. The LD Score of a SNP (i) is found by summing up LD (R2) in a genomic window

of W surrounding SNPs:

‘i ¼
XW

j¼0

R2

i;j: (A9)

Following the logic laid out in the appendix of Bulik-Sullivan et al. (2015b), consider a GWAS

done using a sample drawn from two populations, with a sample of N=2 draws from each

population. The trait is controlled by a very large number of loci (M), and the total narrow-

sense heritability of the trait is h2g. The GWAS is partially confounded by population structure,

as the squared difference in mean phenotype between the populations is a, and the allele

frequency differentiation between the populations is FST . The expected �2

i statistic of the trait

association of the ith SNP is

E½�2

i � ¼
Nh2g

M
‘i þ 1þ aNFST ; (A10)

following Equation 2.7 of Bulik-Sullivan et al. (2015b).

The basic idea of LD Score regression is that we regress �2

i on ‘i, the deviation of the

estimated intercept away from 1 gives aNFST , the confounding by population structure, while

the slope of the regression gives
Nh2g
M
. Underlying this separation of the confounding effects of

population structure (aFST ) and the heritability (h2g) is the assumption that FST is not correlated

with LD Score. However, as noted by Bulik-Sullivan et al. (2015b) this assumption may be

violated by background selection (BGS). In short, regions of low recombination (and thus

higher LD Score) experience more BGS—which in turn drives higher FST (Charlesworth, 1998).

To a first approximation, the effects of strong BGS in a well-mixed, constant-sized

population can be modeled by a reduction in the effective population size, as the rate of drift

increases in regions subject to BGS. We can express this mathematically by saying that SNP i

experiences an effective population size BiNe, where Ne is the effective population size in the
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absence of BGS and Bi is the reduction due to BGS. The expected LD between SNP i and

another SNP L bp apart is

EðR2Þ»1=ð1þ 4NeBirBP;iLÞ

where rBP;i is the recombination rate surrounding SNP i.

FST , in turn, is a decreasing function of NeBi. For example, if the two populations at hand

split T generations ago, without subsequent gene-flow or population size changes,

EðFSTÞ»T=ð4NeBiÞ (A11)

(this approximation holds for small values of T=Ne). Similar inverse dependences of FST on

Bi can be derived in other models of weak population structure (Charlesworth, 1998).

Empirical results on LD Score and BGS
To explore the empirical relationship between LD Score, recombination rate and BGS we

make use of the B values estimated along the human genome by McVicker et al. (2009). We

use the 1000 Genomes CEU LD Scores (Bulik-Sullivan et al., 2015b), and the Kong et al.

(2010) recombination rates (the latter are standardized by the genome-wide average

recombination rate).

In Figure 1 we plot the LD Score, averaged in 100 kb windows, as a function of

recombination rates and McVicker’s B values. As expected, LD Scores are higher in regions of

low recombination and regions of stronger background selection (lower B). Based on a simple

model of BGS (Equation A11), FST / 1=B. Therefore in Figure 2 we plot the relationship

between LD Scores and 1=B values each averaged in 30 quantiles of LD Score.

In the main text (Figure 5A and Figure 5—figure supplement 1) we plotted the

relationship between LD Score and the �2 statistic for allele frequency differentiation. To make

our �2 statistic comparable to FST we standardized it. To do this we note that because

population membership is not a genetic trait, setting h2 ¼ 0 in Equation A10 we obtain

E½�2

i � ¼ 1þ aNFST ; (A12)

Therefore, to make our �2

i statistic comparable to FST we standardize our �2

i as:

ð�2

i � 1Þ=�2
i ; (A13)

where the overbar in the denominator signifies a genome-wide average. In Figure 2 we plot

the expected relationship between LD Score and standardized �2

i predicted under our simple

BGS model (using McVicker B values as an estimate for the intensity of background selection).

We compare it to the the empirical relationship between LD Score and the standardized �2

i

statistics for the Irish-British and GBR-TSI allele frequency differences. The agreement between

the empirical results and the BGS-theoretical predictions is reasonable, suggesting that a

model of BGS, as parameterized by McVicker’s B, could explain the confounding in LD Score

regression by linked selection.
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Appendix 3—figure 1. Windows with lower recombination rates and B values have higher LD

Scores. The autosome is divided into 100 kb windows and the average LD Score, B-value, and

standardized recombination rate is calculated in each bin. The red lines are a lowess fit as a

guide to the eye.

DOI: https://doi.org/10.7554/eLife.39725.034
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Appendix 3—figure 2. A plot across 30 quantiles of genome-wide LD Score of our simple BGS

model of differentiation, parameterized by McVicker’s B (Equation A11).
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Appendix 3—figure 3. A plot across 30 quantiles of LD Score a standardized �2

(Equation A11) of allele frequency differentiation (black dots) and that expected under our sim-

ple BGS model parameterized by McVicker’s B (red dots, Equation A11, standardized by its

genome-wide mean). Note that the red dots are the same values in both panels, and match

those given in Figure 2.
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Predicted effect on linked selection on the slope and intercept of
LD Score regression.
The expectations of the slope and intercept of univariate LD Score were derived in the

absence of linked selection. In this section we show how these expectations can be distorted

by BGS.

In the regression of �2

i ~ ‘i the slope is:

b�2;‘ ¼
Covð�2

i ; ‘iÞ
Varð‘iÞÞ

(A14)

¼
Nh2g
M
Varð‘iÞþ aNCovð‘i;FST;iÞ

Varð‘iÞ
(A15)

¼
Nh2g

M
þ aNbFST ;‘ (A16)

where bFST ;‘ is the slope of FST regressed on LD Score. Therefore the slope of the univariate

LD Scor regression is biased upwards by linked selection. The intercept is

a�2;‘ ¼ �2 �b�2;‘‘¼ 1þ aNðFST �bFST ;‘‘Þ; (A17)

where the bars denote genome-wide averages. In other words, the intercept is suppressed by

aNbFST ;‘‘. Another useful way to write the intercept is
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a�2 ;‘ ¼ aNFSTð1�
bFST ;‘

FST

�‘Þ; (A18)

as
bFST ;‘

FST

is the slope of the
FSTi

FST

~ ‘i regression—that is the effect of LD Score on the relative

reduction in FST from its mean.

Using LD Score regression to assess ‘genetic correlations’ with
allele frequency differentiation.
In the main text we plot the (Height GWAS effect size) � (Allele frequency difference) LD

Score regression (Figure 4D–F and Figure 4—figure supplement 3). In a number of cases we

see a strong intercept for this regression, and in some cases a significant slope. Here we show

how a non-zero intercept may be a signal of stratification in the original GWAS along the axis

represented by the allele frequency difference, while a non-zero slope may demonstrate that

this stratification has interacted with BGS.

The logic of assessing genetic correlations via LD Score regression (Bulik-Sullivan et al.,

2015a) is that at each SNP (i) we have a pair ðZi;1; Zi;2Þ: scores for phenotypes 1 and 2 and the

genetic correlation (�g) between the phenotypes is captured by the slope of the regression

ðZi;1 � Zi;2Þ~ ‘i. Imagine that these Z’s were estimated by conducting a GWAS of the two traits

in a sample of size N1 and N2 respectively, with a sample overlap of Ns individuals. The

intercept of this regression, under the assumptions of Bulik-Sullivan et al. (2015a), is

determined by the phenotypic correlation (�) in the NS overlapping samples. Bulik-

Sullivan et al. (2015a) show that under their assumptions of no stratification and no linked

selection,

E½Zi;1Zi;2� ¼
ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
�g

M
‘iþ

Ns�
ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p (A19)

Yengo et al. (2018) extended this to the case of a phenotype from a stratified population.

Consider as before a population that consists of two equally sized samples from two

populations with allele frequency differentiation FST . The difference in mean phenotype 1 and

2 between the two populations are s1 and s2 respectively. Yengo et al. (2018) show that

E½Zi;1Zi;2� ¼
ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
�g

M
‘i þ

Ns�
ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p þ �gF
2

ST

ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
þN2

s FSTs1s2
ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p : (A20)

(This is equation (17) of Yengo et al. (2018), up to slight differences in notation.)

Let us return to our case of the LD Score regression of (Height GWAS effect size) � (Allele

frequency difference). Assume for the moment that our ‘Allele frequency difference’ (e.g.

[GBR-TSI]) measures the difference in allele frequency between the two populations stratifying

our GWAS. In our case, let phenotype 1 be a phenotype (e.g. height) and let 2 be an

individual’s population membership (e.g. 1 if in population 1 and 0 if in population 2) Zi;H and

the Zi;P score-proxy of the allele frequency difference. The two phenotypes are measured in

the same cohort (such that N1 ¼ N2 ¼ NS. The difference in mean phenotype (height) between

the two populations is s1. The mean difference in population membership is 1. As we can

assume that population membership is not a genetic trait it follows that �g ¼ 0. However,

there is a ‘phenotypic’ correlation between population membership and height, as height

differs between our two populations stratifying our GWAS (� ¼ s1 � 1). Following the logic of

Equation A20 then

E½Zi;HZi;P�»As1þCFSTs1 (A21)

where A and C are constants. Note the strong similarity of Equation A21 to the univariate LD

Score regression for allele frequency �2 (Equation A12). In reality the population samples

(GBR and TSI) used to assess European N-S allele frequencies differences, in Figure 4D–F, and

related figures, are not the population samples used in the GWAS. However, the spirit of

Berg et al. eLife 2019;8:e39725. DOI: https://doi.org/10.7554/eLife.39725 44 of 47

Research Communication Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.39725


Equation A21 holds if the confounding in a GWAS falls along this N-S axis. A significant

intercept of this regression potentially indicates that some portion of the phenotypic variance

(e.g. height) in the GWAS samples was confounded by residual N-S population structure and

this problem has been transmitted through into the GWAS effect sizes. This LD Score

regression is not necessarily expected to have any slope as Equation A21 does not include

the LD Score (‘i). However, if the population structure confounding (FST ) in the GWAS samples

is correlated with LD Score (‘i), for example due to BGS, then a slope will be induced (in a

manner similar to Equation A16).
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Appendix 4

DOI: https://doi.org/10.7554/eLife.39725.018

Testing QFAM’s immunity to population stratification
confounding
We set out to evaluate how effect sizes estimated in the sibling-based GWAS as implemented

in plink’s QFAM procedure are affected by population stratification. To this end, we added an

artificial bias to the height of UK Biobank individuals along PC5-axis (we used PC5, among the

top 40 PCs provided by the UK Biobank, along which the British ancestry individuals are most

variable). We considered two cases. First, we added a bias proportional to the mean PC5

score in the family. Specifically, we set

Y
fam�bias
i ¼ Yi þ

2

jF ið ÞSj2F ið Þgj (A22)

where Yi is an individuals actual recorded height in the UK Biobank, F ið Þ indexes all siblings in
individual i’s family, and gj gives individual j’s projection onto PC5. This induced bias mimics

an environmental contribution to the trait that varies with genetic ancestry across families but

not within a family.

Second, we added a bias proportional to the individual’s PC5 score:

Y ind�bias
i ¼ Yiþ 2gi: (A23)

This mimics a scenario where there is a real genetic gradient in height along PC5. Height and

PC5 score values were standardized as described in the section on newly calculated GWAS

under Materials and methods.

In the first case, QFAM within-family effect size estimates are identical with and without

including the bias, illustrating that plink v1.9b5’s implementation correctly accounts for cross-

family population structure (Appendix 4—figure 1A). Further, there is no correlation between

the effect sizes and SNP loadings on PC5 (Figure Appendix 4—figure 1B, Pearson p = 0.81).
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Appendix 4—figure 1. QFAM effect size estimates, under two population stratification scenar-

ios. Top Row: Height values made biased along PC5-axis, proportional to the mean PC5 scores

within family. (A) The x- and y-axes show effect size estimates without and with the added

bias, respectively. (B) The x-axis shows the SNP loadings on PC5. Bottom Row: Height values

made biased along PC5-axis, proportional to individuals’ PC5 scores. (C) The same plot as

panel (A), but with individual-level bias. (D) The same plot as panel (B), but with individual-

level bias. All results are shown for 11,611 SNPs on chromosome one for which PC loadings

where provided by the UK Biobank.

DOI: https://doi.org/10.7554/eLife.39725.038

In the second case, the within-family effect size estimates are biased (Figure Appendix 4—

figure 1C), proportional to the SNP contributions to PC5 (Figure Appendix 4—figure 1D,

Pearson p~10-67). These results, however, do not reflect an issue with plink’s implementation.

Rather, they show that even correctly implemented family based studies can lead to biased

effect size estimates if variation in ancestry segregates among siblings, provided that the

different ancestries have different mean genetic contributions to the phenotype. There is no

reason to think that this phenomenon is responsible for patterns seen in any of the real sibling

datasets we analyze, but we present it here for completeness.
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