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RESEARCH ARTICLE Open Access

Interaction of different Chlamydiae species
with bovine spermatozoa
Thomas Eckert1,2†, Sandra Goericke-Pesch1,3,4*† , Carsten Heydel5, Martin Bergmann6, Johannes Kauffold7,
Klaus Failing8 and Axel Wehrend1

Abstract

Background: Interaction of spermatozoa and Chlamydiae spp. might contribute to reduced fertility in cattle. To
proof this hypothesis, bovine semen was incubated with viable or heat inactivated Chlamydia (C.) abortus or psittaci
(Multiplicity of infection = 1) and sperm motility was monitored with a computer-assisted sperm analyzer over 24 h.
Additionally, the interaction with the spermatozoa was further investigated by means of light and transmission
electron microscopy (TEM).

Results: Only viable Chlamydiae of both species decreased sperm motility and this only after about 9 h. Taking
binding rates into account, the loss of sperm motility after about 9 h could likely be a consequence of Chlamydiae
attachment to the spermatozoa. About two thirds of the Chlamydiae elementary bodies were bound to the front
third of the sperm, the acrosomal region. No inclusions of Chlamydiae in spermatozoa were observed in TEM after
2 h co-incubation.

Conclusions: As initial motility was not affected following co-incubation of viable Chlamydiae and bovine sperm, it
seems likely that sperm could serve as a carrier/vehicle for Chlamydiae facilitating cervical passage of Chlamydiae
spp. in cattle. Additionally, our results suggest that spermatozoa carrying Chlamydiae may have no initial
disadvantage in reaching the oviduct, but are immotile at the time of ovulation what might have an impact on
fertilization capacities of the individual sperm. Consequently, high concentrations of the investigated Chlamydiae in
the seminal plasma or female genital tract might play a role in reduced fertility in cattle.

Keywords: Chlamydiae, Cattle, Semen motility, CASA (computer assisted sperm analysis)

Background
Chlamydia (C.) trachomatis infections are known to
have a serious impact on the fertility of women, mainly
by causing salpingitis [1–3]. In animals, Chlamydiae in-
fections may remain asymptomatic, e.g. in cattle [4] or
pigs [5], but they were also linked to several reproduct-
ive pathologies e. g. vaginitis and endometritis [5–7],
mastitis and agalactia [5, 8], salpingitis [9], reproductive
failure [5, 10] and abortion [11, 12].

Little is known about the role of Chlamydiae spp. in
male. The pathogen was detected in semen of several
species, like man, bull, ram and boar [13–18]. Infections
may cause urethritis and prostatitis [19, 20] but the in-
fluence of Chlamydiae on male fertility is still controver-
sial. Co-incubation with C. trachomatis or chlamydial
LPS was shown to cause sperm death [21–23], likely due
to increased apoptosis [23]. Some studies have demon-
strated Chlamydiae infections to be correlated with re-
duced motility, reduced velocity and increased abnormal
morphology of spermatozoa [24–26]. In other studies,
however, no significant impact on semen quality and fer-
tility was found in man [27, 28], rat [29], boar [14, 18]
and bull [13, 17].
Venereal infection is the classical route for the trans-

mission of C. trachomatis in humans [30–33]. There is
limited evidence that venereal transmission of C. abortus
is possible in sheep [15]. Recently, Schautteet et al. [16]
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reported severe reproductive failure in sows probably re-
lated to insemination of C. suis contaminated semen.
Hamonic et al. [34] confirmed that C. suis remains viable
and infectious during chilled storage and is more or less
unaffected by antibiotics in extenders. The authors con-
sequently hypothesized that extended semen may act as
a viable transmission mechanism for C. suis in swine
[33, 35]. Although it seems obvious that sperm can serve
as a vector (vehicle) for Chlamydiae to infect the female
genital tract, information on interactions between sperm
cells and these bacteria is still patchy. There are two
studies indicating that, after natural infection of man, C.
trachomatis penetrates the sperm, preferentially their
heads, and can also proliferate within the spermatozoa
as indicated by the presence of reticulate bodies [33, 35];
however, the interaction for other host-Chlamydiae spp.
has not been investigated yet.
To gain further insights into the role of Chlamydiae

spp. in the bovine, we studied the interaction of C. abor-
tus and psittaci, Chlamydiae spp. previously identified in
semen samples of breeding bulls [13, 17], with bovine
spermatozoa by means of light and transmission electron
microscopy. Furthermore, we monitored the motility of
spermatozoa in inoculated semen samples as a param-
eter directly correlated to fertility.

Methods
Animal and semen samples
Semen samples were obtained from an adult, sexually
mature black Holstein Friesian bull housed in the Clinic
for Obstetrics, Gynecology and Andrology of Large and
Small Animals with Veterinary Ambulance in Giessen,
Germany (50°35’N 8°40’O). The bull was kept in a 22m2

freestall barn under natural light conditions and temper-
atures ranging between 15 and 25 °C. He had ad libitum
access to water, hay and straw and was additionally fed a
commercial diet once a day according to the manufac-
turer’s instructions. Semen was collected using an artifi-
cial vagina (Minitube, Tiefenbach, Germany), and a cow
or a bull as dummy. Immediately after collection, the
semen samples were examined for sperm concentration
as well as for total and progressive motility. For further
experiments, samples were diluted to a concentration of
100 × 106 sperm/ml using 35 °C pre-warmed Biladyl® ex-
tender without antibiotics (Minitube).

Chlamydia stock solution
Chlamydiae were propagated on Buffalo-Green-Mon-
key-Kidney cells (ZBV Friedrich-Löffler-Institute, 17,493
Greifswald, Insel Riems, Germany), cultured in sterile fil-
trated medium [440 ml Eagle’s Minimum Essential
Medium supplemented with 0.425 g NaHCO3, 5 ml 200
mML-glutamine (Biochrom GmbH, Berlin, Germany), 5
ml Vitamin 100x (Biochrom GmbH) and 50 ml

heat-inactivated fetal bovine serum (FBS, all Biochrom
GmbH)] at 37 °C for about 4–7 days. After adding C.
abortus or C. psittaci to the cells, vials were centrifuged
for 1 h at 1935 rcf (centrifuge J2–21, rotor JS 7.5, Beck-
man Coulter GmbH, München, Germany) to promote
infection of cells. Chlamydiae were allowed to grow for
about 4–7 days at 37 °C before being harvested and sepa-
rated from cell debris as described elsewhere [36]. Ana-
lysis with a transmission electron microscope (Zeiss EM
109, Oberkochen, Germany) revealed that the harvested
pellet was mainly composed of elementary bodies. Chla-
mydiae concentrations were assessed by counting parti-
cles in Gimenez stained smears using an Ortholux II
microscope with a counting tube (Leitz Wetzlar,
Germany). Briefly, suspensions were diluted 1:50, 1:100
and 1:200 with sterile saline. 10 μl of each dilution were
air-dried on a 1 cm2 area on a slide and fixated with
100% methanol (Sigma Aldrich, Seelze, Germany) for 1
h. Slides were incubated for 6 min in 0.5 ml carbol fuchs-
ine solution (1.5 mg/ml Neofuchsine, Merck, Darmstadt,
Germany, 3 mg/ml phenol, Merck, in phosphate buffer).
Afterwards they were rinsed twice with water and coun-
terstained with 0.5 ml malachite green solution (8 g mal-
achite green, Merck, in 1000ml distilled water) for a
minute. Concentration of chlamydial particles was calcu-
lated based on the number of particles counted in 100
fields of a counting ocular considering optical magnifica-
tion (787.5 fold).

Influence of Chlamydiae spp. on total and progressive
motility
Ten [10] μl of either a suspension of viable Chlamydiae
spp. (C. abortus or C. psittaci, 100 × 108 particles/ml;
viability was confirmed by infection of Buffalo-Green--
Monkey-Kidney cells), a corresponding suspension of
heat-inactivated (95 °C, 1 h) Chlamydiae spp., or sterile
saline were added to 100 × 106 spermatozoa diluted in
990 μl Biladyl®. The Chlamydia: sperm ratio corresponds
to a multiplicity of infection (MOI) of 1. Samples were
incubated at 35 °C for 24 h. Every three hours, 3 μl were
then transferred into a 20-μl sample chamber (Leja®
Standard Count 4 Chamber Slide, 20 μm, Leja Products
B. V., Nieuw Vennep, Netherlands) for motility analysis
at 37 °C. Percentages of motile and progressively motile
spermatozoa were assessed as six repeated measure-
ments with the computer-assisted sperm analyzer
(CASA; SpermVisionTM Software Version 3.5.6.2; Mini-
tube) using the settings as given in Table 1. All experi-
ments were performed five times with semen from
different preparations.

Chlamydia-sperm interactions
To investigate the interactions of Chlamydiae spp. and
bovine spermatozoa by light microscopy, 1 ml Biladyl®
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diluted spermatozoa- Chlamydiae suspension (100 × 106

sperm and respective number of Chlamydiae spp./ml, C.
abortus or C. psittaci) were incubated at 35 °C for 24 h
(long-term co-incubation). In 3-h intervals, 25 μl of the
initial suspension were diluted with sterile saline up to 1
ml and centrifuged (tabletop centrifuge, 3 min, 4025 rcf).
The supernatant containing unbound Chlamydiae was
discarded. The pellet was re-suspended with sterile saline
and centrifuged again. This centrifugation-washing pro-
cedure was performed five times in total. After the last
centrifugation step (1935 rcf, 10min, centrifuge JS-21,
Rotor JS-7.5, Beckman Coulter GmbH), spermatozoa were
transferred on a cover slide in a 6ml polystyrene vial
(Greiner Bio-One). Afterwards, slides were fixed with 1ml
100% methanol (Sigma Aldrich) and Gimenez stained (see
above). Using a Leica DMRIIC microscope (Leica, Wet-
zlar, Germany), 50 spermatozoa were examined at a mag-
nification of × 1000. Presence (yes/no) and localization
(acrosomal region/remaining other parts of the sperm) of
Chlamydiae were recorded. The same experiment was
performed with samples taken every 30min over a total of
3 h (short-term co-incubation). All experiments were re-
peated four times.
For both Chlamydiae spp., the presence, localization,

and size of chlamydial particles as well as signs of inva-
sion into spermatozoa were further analyzed by electron
microscopy. One ml of the above described Chlamy-
diae-sperm suspension (100 × 106 Biladyl® diluted
spermatozoa and C. abortus or C. psittaci/ml) was incu-
bated at 35 °C for 2 h. Removal of unbound Chlamydiae

was performed as described above. For electron micro-
scopic investigations, the resulting pellets (n = 5) were
fixed for 12 h with 0.1 mol/l sodium cacodylate buffer
(Merck) containing 6% glutaraldehyde (Plano, Wetzlar,
Germany). Afterwards, the samples were centrifuged for
10 min at 447 rcf (tabletop centrifuge). The pellets were
washed three times with 0.1 mol/l sodium cacodylate
buffer. Briefly, they were fixed for 1 h with 1% osmium
tetroxide (Plano), dehydrated with ethanol (Merck), em-
bedded in epoxy resin (Plano), sectioned, stained with
0.2% lead citrate and 0.5% uranyl acetate using an Ultra-
stainer (Leica Reichert, Bensheim, Germany) and evalu-
ated with a transmission electron microscope (Zeiss EM
109, Zeiss, Oberkochen, Germany) at 80 kV. Pure Chla-
mydia particles in Buffalo-Green-Monkey-Kidney cell
culture treated in the same way as indicated above
served as positive control.

Statistical analysis
For all parameters assessed, the different Chlamydiae
spp., C. abortus and C. psittaci, were evaluated individu-
ally. In general, data was presented as mean ± standard
deviation (SD). For statistical analysis, samples were
evaluated as repeated measures over the different time
points.
To test for a significant effect of Chlamydiae spp. on

semen motility and progressive motility, respectively, a
mixed-effect model for a four-factorial analysis of vari-
ance with repeated measures and equal cell sizes was
used (fixed factors: treatment and time as repeated mea-
sures; random effects: ejaculate and replication; program
BMDP8V). A two-way analysis of variance (factors: time
and localization) with repeated measures (program
BMDP2V) was performed to analyze binding sites of
Chlamydiae on the sperm, i.e. at the acrosomal region of
the sperm head versus any other region of the sperm
cell, such as midpiece and tail. Calculations for short-
and long-term co-incubation, 3 and 24 h, respectively,
were performed separately, excluding the time point 0
(The time when the first sample was taken – time 0).
For all tests, the statistical software program package

BMDP Release 8.1 was used [37]. Values were consid-
ered to be statistically significant at P ≤ 0.05.

Results
Influence of chlamydia on total and progressive motility
Sperm motility constantly decreased during the 24 h of
observation in all experiments. The effect varied strongly
between the different ejaculates. Saline controls showed
a final reduction of total and progressive motility of 26–
90% and 19–81% respectively (data not shown). Never-
theless, test sets from single ejaculates showed a high re-
peatability. The relative standard deviation within 36
duplicates (saline control, 4 different ejaculates, and 9

Table 1 Technical settings of the CASA system SpermVision™
for motility analysis

Parameter Setting

Field-of-view depth = Depth of
sample chamber

20 μm

Light adjustment 90–105

Total number of cells evaluated
or number of fields

4000 spermatozoa or 8 fields

Sperm recognition area 22–99 μm2

Frame rate 60 frames/sec.

Points assessed for sperm motility 11

Total motility progressive motility + local
motility

Immotile sperm AOC < 5°

Local motility DSL < 6.0 μm

Progressive motility Every cell that is not “immotile” or
“local motile”

Hyperactive sperm VCL > 80 μm/s, ALH > 6.5 μm and
LIN < 0.65

Linear sperm STR > 0.5 and LIN > 0.35

Non-linear sperm STR≤ 0.5 and LIN≤ 0.35

Curvilinear sperm DAP/Radius ≥ 3 and LIN < 0.5
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different time points) was 0.83%, only. For evaluation of
the chlamydial influence on sperm motility, the results for
total and progressive motility of the Chlamydiae-inocu-
lated samples were related to the results of the respective
saline controls (normalized) and presented as the % differ-
ence (Fig. 1). Heat inactivated Chlamydiae of both species
did not significantly reduce sperm motility during the
course of the experiment. Spermatozoa co-incubated with
viable Chlamydiae spp. showed motility results compar-
able to saline controls in the first nine hours. Interestingly,
at all later examination times the immotile fraction was
increasingly higher than in the samples inoculated with
heat inactivated Chlamydiae spp. This effect was statisti-
cally significant for both Chlamydiae spp. with P < 0.0001
after 24 h. The average reduction of the motile fraction
was more distinct in samples inoculated with C. abortus
(19%) than with C. psittaci (15%). This effect was even
stronger in terms of the mean reduction of progressive
motility (C. abortus 34%, and C. psittaci 18%).

Chlamydia sperm interaction
Light microscopy revealed that viable C. abortus and
psittaci were both able to attach to bovine spermatozoa
(Fig. 2) with no significant differences between the two
investigated Chlamydiae spp.. Detailed results on the
time course and localization of attachment of the two
different Chlamydiae spp. studied are given in Fig. 3.
Binding rates increased in a time-dependent manner.
About two thirds of the Chlamydiae (in mean 60.3%
of C. abortus and 62.9% of C. psittaci) were found to
be attached to the acrosomal region of the sperm
head comprising only one third of the sperm surface.
In the course of the experiment, this ratio did not
change significantly.

Using transmission electron microscopy, Chlamydiae
were visualized as small round particles of 0.3 to 0.4 μm
attached to the spermatozoon’s surface (Fig. 4B). Double
membranes surrounded the dark and electron dense par-
ticles allowing for easy differentiation from larger cyto-
plasmic droplets. Chlamydia particles in Buffalo-
Green-Monkey-Kidney cell culture pellet were shown
after harvesting as positive control (Fig. 4A). Similar to
what has been observed with light microscopy (see Fig.
2), most of the Chlamydiae seemed to be located at the
apical part of the sperm in the acrosomal area. No parti-
cles or structures strongly ressembling Chlamydiae
could be identified inside the sperm head or its nu-
cleus after 2 h of co-incubation by using TEM, nor
were any changes in the acrosomal membrane of
spermatozoon obvious at the attachment site follow-
ing 2 h co-incubation.

Discussion
The present data shows that viable Chlamydiae of both
investigated species, C. abortus and C. psittaci, at an
MOI of 1 are capable to affect motility of bovine sperm.
The effect on motility, a reduction by 15–19%, as ob-
served in this study, is rather impressive, as spermatozoa
were inoculated with Chlamydiae spp. at an MOI of
only 1 resulting in low attachment rates (Fig. 2). Data on
natural chlamydial load in semen is rare and, to the best
of our knowledge, is not available for bovine ejaculates.
Low chlamydial loads, i.e. 1.5 × 104 [38] or 4.9 × 104 [39]
particles, were detected in ejaculates of infected men by
Real time-quantitative polymerase chain reaction
(RT-qPCR). Due to the lack of details about sperm con-
centration in the aforementioned studies [38–40], it is
impossible to compare those with this study in terms of
chlamydial load necessary to elicit effects on sperm.

Fig. 1 Viable Chlamydia abortus und psittaci signicantly decrease a. total and b. progressive motility of bovine spermatozoa. Percentage of
immotile bovine sperm (normalized against saline control) coincubated at 35 °C with viable and heat-inactivated Chlamydia (MOI = 1) for 24 h.
Results are depicted as mean values ± SD of 5 replicates. Motility of spermatozoa co-incubated with viable Chlamydiae spp. was significantly
reduced from 9 h onwards compared to motility of spermatozoa incubated with heat inactivated Chlamydiae (p < 0.0001)
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However, comparison with the WHO reported minimum
and average sperm concentrations in the human ejaculate
(9-73 × 106/mL; [41]) reveal possible MOIs between 2.1 ×
10− 4 and 5.4 × 10− 3. Different to the likely low chlamydial
load in semen, a higher chlamydial load might be expected
in the female genital tract where up to 8.5 × 107 C. tracho-
matis per ml genital fluid had been found in women [39]
indicating that similar chlamydial and sperm concentra-
tions as used here, might be possible naturally.
Sperm motility started to decrease nine hours of

co-incubation with the respective Chlamydiae spp.. In
contrast binding of chlamydial particles to sperm was
already microscopically observed immediately after the
start of co-incubation, and was correlated with time. It

seems possible that the negative effect of Chlamydiae spp.
on total and progressive motility might be due to chla-
mydial viability, since this effect was absent when sperm-
atozoa were co-incubated with saline only (negative
control) or heat-inactivated Chlamydiae. Heat-inactivated
Chlamydiae spp. showed a certain lightmicroscopical in-
tegrity and typical Gimenez-staining, however, detailed ex-
aminations on the morphology by transmission electron
microscopy were not performed as well as details on bind-
ing partners/receptors were lacking. These analyses should
be included in future studies to identify the binding mech-
anism. In contrast to this study, other investigations did
not find such negative effects on semen parameters, which
might be, at least in part, due to differences in the study

Fig. 2 Light microscopical evaluation clearly confirms binding of C. abortus and psittaci to bovine spermatozoa. The orange particles represent
chlamydial particles (a. C. abortus; b. C. psittaci) bound to a bovine spermatozoon. The particles look orange due to the use of a blue filter. In the
negative control (c.), no similar particles are visible (magnification: × 1000)

Fig. 3 C. abortus and psittaci can attach to bovine spermatozoa. The apical area of the sperm head seems to be the preferred location for
attachment. Attachment of Chlamydia spp. (C. abortus, C. psittaci,) to the apical (acrosomal) area and other parts of bovine spermatozoa during
24 h of coincubation (MOI = 1) at 35 °C. Results are depicted as mean values of 4 replicates of 50 sperms ± SD. [The top error bar indicates the
error bar of “the other parts” for the respective Chlamydia spp. (only positive SD presented); the lower error bar indicates the error bar of “the
apical part” (only negative SD presented).] Approximately 60% of Chlamydiae spp. particles are attached to the apical area corresponding to the
acrosomal region
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designs. In particular, semen parameters were evaluated
shortly after starting co-incubation (e.g. [27, 28, 35]) at a
time where also in this study, no effects of Chlamydiae
spp. on motility were observed.
Taken together, the results of the current study suggest

that spermatozoa start to display a reduced motility
around 9 h post co-incubation due to effects of Chla-
mydiae spp.. Moreover, C. abortus induced a slightly
stronger effect than C. psittaci. The reasons for this dif-
ference remain to be investigated.
Basic knowledge of the sperms’ fate in the bovine fe-

male genital tract is necessary for understanding possible
clinical effects of Chlamydiae-mediated reduced sperm
motility on female reproduction. Following male infec-
tion, Chlamydiae spp. are located in the accessory sex
glands in man [19, 20], bulls and boars [42]. During
ejaculation, spermatozoa get in contact to the pathogen
that is released from the accessory sex glands together
with the seminal plasma. In bovines, the spermatozoa
are deposited into the anterior vagina during breeding,
and are then required to rapidly enter the cervix. How-
ever, the cervical passage of sperm is hampered by the
cervical mucus, which acts as a mechanical barrier par-
ticularly to sperm with abnormal motility patterns or re-
duced motility thus being a mechanism of sperm

selection [43–46]. Additionally, the cervical mucus is
also considered to have a filter function for seminal
plasma and free microbes [47]. It might thus be that
binding to motile spermatozoa is necessary for Chla-
mydiae spp. to not be caught by the cervical mucus in
order to be able to reach the uterus and eventually also
the oviduct. After having passed the cervix, spermatozoa
quickly reach the utero-tubal junction where the apical
surface of the sperm head binds to the oviductal epithe-
lium [48, 49] at the site of sperm reservoir (for review
see [47, 50]). At this site, sperm remain viable for 18 to
24 h or even longer as earlier studies have shown that
artificial insemination with frozen semen (as common in
cattle) is most successful, if it is performed in oestrus
12–24 h before ovulation [51]. As motility was first sig-
nificantly affected after nine hours of co-incubation and
the percentages of spermatozoa with bound spermatozoa
are similar, it seems, however, likely that Chlamydiae–
carrying spermatozoa are immotile at the time of
fertilization. It remains to be investigated why motility
was affected from nine hours after co-incubation and
what were the reasons of immotility of spermatozoa. It
is noteworthy that heat inactivated Chlamydiae spp. had
no impact on sperm motility and it deserves further in-
vestigation if addition of specific antibiotics to

Fig. 4 Transmission electron microscopic images showing Chlamydia-sperm interactionExemplary chlamydial particles are marked. a. Chlamydial
particles in Buffalo-Green-Monkey-Kidney cell culture after harvesting, size indicating elementary bodies, additionally cell debris visible and b. a
Chlamydia spp. particle, resembling an elementary body localised at the apical part of the sperm head (all magnifications M12000, bar
indicates 0.6 μm)
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commercial semen extenders or semen freezing is cap-
able to induce the same effects on Chlamydiae sp.. in
semen samples. The inactivation process might have re-
sulted in denaturation of chlamydial structures relevant
e. g. for the binding to the host cell, the observed reduc-
tion of motility occurred when Chlamydiae spp. in other
host cells might start intracellular replication, energy
parasitism and induction of other severe metabolic
changes as a consequence of invasion [4, 52].
Our data did, however, not show an invasion of the stud-

ied Chlamydiae spp. into the bovine spermatozoa, only ad-
hesion of 0.3–0.4 μm particles considered as infectious
elementary bodies was visualised by means of light and
transmission electron microscopy. Adherence of chlamydial
particles to the sperm surface has been described before for
C. trachomatis following in vitro [53] and in vivo infection
[33, 35], with the latter authors also describing elementary
and reticulate bodies within the sperm head [33, 35] and
tail [33] by means of transmission and scanning electron
microscopy. Interestingly, the described changes resemble
previously described genetic or fixative-related membrane
changes and defects, crater-like changes in the acrosome
and chromatin defects in the sperm head (for review see
[54]). It remains to be clarified if the lack of invasion into
spermatozoa is real in this Chlamydiae spp. – sperm inter-
action or could have been related to the use of different
Chlamydiae spp. (C. trachomatis versus C. abortus and C.
psittaci) and hosts (human versus bovine), the duration of
Chlamydiae-sperm interaction (2 h) or due to the fact that
the experiments were based on in vitro co-incubation and
not on natural infection.
Considering the attachment of Chlamydiae spp. to the

sperm cells, seminal plasma proteins coating the sperm-
atozoa deserve further attention as binding mediators.
As about two thirds of the Chlamydiae particles were at-
tached to the apical part of the sperm head, PDC-109
and osteopontin can be considered as strong candidates.
Whereas PDC-109 modulates binding to the oviductal
epithelium [55–57] and is bound predominantly to the
midpiece, but also to the acrosome as well as the
post-equatorial and equatorial segments [57], osteopon-
tin, predominantly identified on the acrosome, is hy-
pothesized to be involved in sperm–oocyte interaction,
thereby affecting fertilization [57].

Conclusions
Data shows that viable C. abortus and psittaci (MOI = 1)
attach to spermatozoa. Initially, spermatozoa with at-
tached Chlamydiae are not hampered. However, taking
binding rates into account, our data also suggests that
Chlamydiae spp. reduce sperm motility after 9 h of
co-incubation in vitro, and thus possibly lead to a re-
duced fecundity of bull semen. As about two thirds of
the Chlamydiae particles were bound to the front third

of the sperm, the acrosomal region, it is suggested that
specific binding proteins, like e.g. PDC-109, are involved
in Chlamydiae-spermatozoa interaction.
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