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Abstract
Trigeminal autonomic cephalalgia (TAC) encompasses 4 unique primary headache types: cluster headache, paroxysmal
hemicrania, hemicrania continua, and short-lasting unilateral neuralgiform headache attacks with conjunctival injection and
tearing and short-lasting unilateral neuralgiform headache attacks with cranial autonomic symptoms. They are grouped on the
basis of their shared clinical features of unilateral headache of varying durations and ipsilateral cranial autonomic symptoms. The
shared clinical features reflect the underlying activation of the trigeminal–autonomic reflex. The treatment for TACs has been
limited and not specific to the underlying pathogenesis. There is a proportion of patients who are refractory or intolerant to the
current standard medical treatment. From instrumental bench work research and neuroimaging studies, there are new therapeutic
targets identified in TACs. Treatment has become more targeted and aimed towards the pathogenesis of the conditions. The
therapeutic targets range from the macroscopic and structural level down to the molecular and receptor level. The structural
targets for surgical and noninvasive neuromodulation include central neuromodulation targets: posterior hypothalamus and, high
cervical nerves, and peripheral neuromodulation targets: occipital nerves, sphenopalatine ganglion, and vagus nerve. In this
review, we will also discuss the neuropeptide and molecular targets, in particular, calcitonin gene-related peptide, somatostatin,
transient receptor potential vanilloid-1 receptor, nitric oxide, melatonin, orexin, pituitary adenylate cyclase-activating polypep-
tide, and glutamate.

Keywords Trigeminal autonomic cephalalgia . Cluster headache . Hemicrania continua . Paroxysmal hemicrania . SUNCT/
SUNA

Abbreviations
GON Greater occipital nerve
VNS Vagal nerve stimulation
nVNS Noninvasive vagus nerve stimulation
TAC Trigeminal autonomic cephalalgia
PH Paroxysmal hemicrania
HC Hemicrania continua

SUNCT Short-lasting unilateral neuralgiform headache at-
tacks with conjunctival injection and tearing

SUNA Short-lasting unilateral neuralgiform headache at-
tacks with cranial autonomic symptoms

SSN Superior salivatory nucleus
VIP Vasoactive intestinal polypeptide
DBS Deep brain stimulation
SPG Sphenopalatine ganglion
CGRP Calcitonin gene-related peptide
NO Nitric oxide
PACAP Pituitary adenylate cyclase polypeptide
TCC Trigeminocervical complex
ONS Occipital nerve stimulator
SCN Suprachiasmatic nucleus
NMDA N-Methyl-D-aspartate
AMPA α-Amino-3-hydroxy-5-methyl-4-isoazolepropionic

acid
TRPV Transient receptor potential vanilloid
CSF Cerebrospinal fluid

Invited review prepared for BMigraine Therapeutics: Current Practice,
Recent Advances and Future Directions^.

* Diana Y. Wei
Diana.wei@kcl.ac.uk

1 Headache Group, Department of Basic and Clinical Neuroscience,
Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, UK

2 Danish Headache Centre, Department of Neurology,
Rigshospitalet-Glostrup, University of Copenhagen,
Copenhagen, Denmark

Neurotherapeutics (2018) 15:346–360
https://doi.org/10.1007/s13311-018-0618-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s13311-018-0618-3&domain=pdf
mailto:Diana.wei@kcl.ac.uk


NOS Nitric oxide synthase
cGMP Cyclic guanosine monophosphate
cAMP Cyclic adenosine monophosphate

Introduction

Trigeminal autonomic cephalalgia (TAC) encompasses 4 pri-
mary headache disorders that are characterized by their shared
unique features. TAC is a term coined by Goadsby and Lipton
in 1997 [1], in which they described the 4 conditions with
cranial autonomic features as a separate entity to short-
lasting headaches without cranial autonomic features. The ini-
tial conditions included were: cluster headache (CH), parox-
ysmal hemicrania (PH), short-lasting unilateral neuralgiform
headache attacks with conjunctival injection and tearing
(SUNCT)/short-lasting unilateral neuralgiform headache at-
tacks with cranial autonomic symptoms (SUNA).
Hemicrania continua (HC) officially appeared in the
International Classification of Headache Disorders version 2
(ICHD 2) in 2004 [2]. Each condition presents with severe
unilateral pain in the trigeminal nerve distribution of varying
durations and ipsilateral cranial autonomic symptoms
(Table 1). Their shared clinical features are the basis of this
classification and gives rise to the underlying pathophysiology
which involves the trigeminovascular reflex and the trigemi-
nal–autonomic reflex. In this review, we will describe each
TAC condition and discuss the neurotherapeutic targets,
starting with structural targets for neuromodulation followed
by molecular targets for future therapies (Fig. 1).

Cluster Headache

Cluster headache is the most common TAC and is well char-
acterized by attacks of severe unilateral orbital, supraorbital,
and/or temporal pain lasting 15 to 180 min when untreated,
according to the International Classification of Headache
Disorders 3 (ICHD 3) [3]. It affects approximately 0.1% of
the population. The pain is often compared to and felt worse
than that of fractured bones, renal colic, and child birth [4].
Each painful attack is accompanied by prominent ipsilateral
cranial autonomic symptoms, which arise from parasympa-
thetic overdrive: ipsilateral lacrimation, conjunctival redness,
periorbital swelling, nasal congestion, rhinorrhea, aural dis-
comfort, or sympathetic inhibition: ptosis and miosis.
During the attack, patients have an intense sense of restless-
ness and agitation and most prefer to pace, rock, and press
hard into the side of their face of the attack [5]. The attacks
can occur once every other day to up to 8 times a day, with a
circadian pattern, whereby attacks often occur at the same time
each day and there is a tendency for nocturnal attacks. There is
also a predilection for a circannual pattern, with an increased
likelihood for attacks in spring and autumn [6]. Patients with

episodic cluster headache have a cluster of attacks followed by
a period of remission between attacks for more than 3 months
without any preventive treatment, and chronic cluster headache
patients have an absence of a remission period or remissions
last less than 3 months for at least 1 year [3].

The unique clinical features of cluster headache in its
circannual and circadian tendency [6, 7], as well the neurohor-
monal changes in testosterone [8–10], cortisol [11], and mel-
atonin [12–15], support the hypothalamus as key player in the
pathogenesis.

Paroxysmal Hemicrania

Paroxysmal hemicrania (PH) is a rare TAC characterized by
attacks that are shorter in duration than CH and with more
attacks in a day. PH attacks are unilateral in the distribution
of the trigeminal nerve and last from 2minutes to half an hour.
Attacks can recur up to 40 times a day with a mean of 11
attacks a day [16]. Patients can have photophobia and
phonophobia lateralized to the side of the pain. The attacks
are mostly spontaneous; however, in 10% of patients, the at-
tacks can be triggered by head turning [17]. The attacks do not
tend to occur at night, as cluster headache attacks do. A
distinguishing feature is that PH is indomethacin sensitive
compared to cluster headache [16, 18].

Episodic PH occurs in 35% of patients and is defined when
there are remission periods lasting 3 months or longer, whereas
in chronic PH, either there is the absence of a remission period
or remissions last less than 3 months, for at least 1 year [3].

Hemicrania Continua

Hemicrania continua is a continuous strictly unilateral headache,
whereby the severity of the headache waxes and wanes with
periods of worsening, without complete resolution. There can
be associated ipsilateral cranial autonomic features during the
worsenings; however, the features can be bilateral [19]. There
can be associated nausea, photophobia, and phonophobia.
Similar to PH, hemicrania continua is responsive to adequate
doses of indomethacin [19].

SUNCT/SUNA

SUNCT and SUNA are short-lasting unilateral attacks of
pain, presenting typically in the V1 region of the trigeminal
nerve. The attacks present in 3 types: single stab, a group of
stabs, or in a saw-tooth pattern [20]. The attacks last from1 to
600 seconds and occur multiple times a day, with a tendency
of the frequency to be in the hundreds. Attacks can be trig-
gered by a cutaneous trigger, such as touch, chewing, and
brushing teeth. There is an absence of a refractory period to
retriggering; in a recent cohort study, less than 5% of
SUNCT/SUNA patients had a refractory period [21]. Each
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attack is associated with ipsilateral cranial autonomic symp-
toms. In SUNCT, there is conjunctival injection and tearing,
whereas inSUNA, there is onlyoneor neither of conjunctival
injection and lacrimation [3].

Pathogenesis

Our understanding of the pathogenesis for TACs has come
from key bench work [22, 23] and functional neuroimaging
studies. The unifying mechanism for TACs is the role of the
trigeminal–autonomic reflex with parasympathetic activation
[1]. The trigeminal–autonomic reflex is a reflex pathway that
consists of a brainstem connection between the trigeminal
nerve and facial cranial nerve parasympathetic outflow via
the superior salivatory nucleus (SSN) and sphenopalatine gan-
glion (SPG). The postganglionic parasympathetic neurons
contain nitric oxide synthase [24], vasoactive intestinal poly-
peptide (VIP) [25], and pituitary adenylate cyclase-activating
polypeptide (PACAP) [26].

From functional neuroimaging studies, it has been shown
that the hypothalamus is activated ipsilateral to the pain in
cluster headache [27–30], contralateral in paroxysmal
hemicrania [31], ipsilateral [32] and bilateral [33] hypotha-
lamic activation in SUNCT, and contralateral in hemicrania
continua [34]. There is further evidence to support the hypo-
thalamic involvement from deep brain stimulation targeting
the posterior hypothalamus in cluster headache [35–37] as
well as changes in testosterone [8–10], cortisol [11], melatonin
[12–15, 38–40], and orexin [41, 42] in cluster headache [43].

Management and treatment for TACs thus far have been
limited and have not been targeted towards the mechanisms of
the underlying pathophysiology. Recent advances in our un-
derstanding of TAC pathophysiology have allowed the devel-
opment of neuromodulation therapies and pharmacological
treatments targeting mechanisms known to be important in
the disorder, thereby leading to better and more efficacious
management of patients.

Central Neuromodulation Targets

Hypothalamus

Neuroimaging findings have demonstrated the posterior hypo-
thalamus as a key area of activation during cluster headache
attacks [27]. Furthermore, a voxel-based morphometry study
demonstrated increased neuronal density in the posterior infe-
rior hypothalamic gray matter outside the bout phase of cluster
headache patients [44]. In 2000, Leone and colleagues [35]
were the first to use stereotactic deep brain stimulation to target
the ipsilateral hypothalamus in a drug-resistant chronic cluster
headache patient; since then, at least 69 refractory chronic

cluster headache patients have undergone this procedure [45].
From the cumulative data of 108 cluster headache attacks treat-
ed in 16 patients, it was effective in reducing the acute attack
pain intensity by more than 50% in 23%, but it was not effec-
tive as an acute treatment, only 16% aborted the attack within
20 min stimulation [46]. A long-term follow-up (median,
8.7 years; range, 6–12 years) of 17 refractory chronic cluster
headache patients showed an overall beneficial frequency re-
sponse rate in 71% of the 17 patients, whereby 6 patients were
almost completely pain free and 6 patients experienced long
periods of remission, with the pattern of the headaches becom-
ing episodic. It should be noted that there is often a significant
delay between the initial use of the DBS and the clinical effect
[37, 47]. The pain-free state has been shown to continue even
after the stimulators had been off; this was found in 5 patients
after years of continuous stimulation and then switching off for
a median of 3 years [48]. This implies that chronic hypothalam-
ic stimulation can modulate disease course. In another attempt
to test the efficacy, a randomized controlled small study was
initiated and there was no difference in the attack frequency
with sham versus verum stimulation, but the randomization
period lasted only 1 month [49]. Inherently, a proper long-
lasting randomized control study is considered to be unethical
and complicated to conduct.

One challenge to deep brain stimulation is accuracy and
localizing the stimulation site. To date, there is no consensus
whether it is the posterior hypothalamus or anterior
periventricular gray matter [48, 50].

Deep brain stimulation is not risk free and the most serious
side effect is fatal intracerebral hemorrhage; this occurred in 1
patient who died after developing an intracerebral hemorrhage
[37]. Other side effects include visual disturbances, especially
diplopia; this has been noted when the amplitude increased
too rapidly but the diplopia resolves within a few minutes to
days [51]. There has been a case of a medically refractory
chronic cluster headache patient who developed recurrent par-
oxysms of sneezing soon after deep brain stimulation of the
posterior hypothalamus was started [52].

Chabardes and colleagues [53] conducted a pilot study
using less invasive approaches to reach the posterior hypothal-
amus to minimize side effects. They used an endoventricular
approach to perform posterior hypothalamus deep brain stim-
ulation using a MRI brain and contrast ventriculography.
Seven chronic cluster headache patients were enrolled in this
pilot study, with encouraging clinical outcomes. Initially, the
procedure was attempted in 2 patients under local anesthesia;
however, they suffered from vomiting during the insertion of
the lead into the third ventricle. Therefore, the subsequent 5
cases were performed under general anesthesia. The clinical
outcome at 12 months was encouraging; 3 patients had gone
into clinical remission, 3 patients had gone into subtotal re-
mission, and 1 patient, who had no response for the first 3 and
6 months, continued to have attacks but these attacks were

348 D. Y. Wei and R. H. Jensen



reduced from the baseline amount. They did not see any
intraparenchymal hemorrhages; however, there was a patient
that required a repositioning of the electrode that had sponta-
neously moved. The side effects from stimulation included
ipsilateral autonomic symptoms and Btrembling vision^ attrib-
uted to the stimulation of the upper brainstem regions around
the pedunculopontine nucleus area.

In other TACs, there have been 3 drug-resistant SUNCT
patients where deep brain stimulation has been implanted in
the ipsilateral posterior hypothalamus with improvement
[54–56]. In 1 patient, deep brain stimulation resulted in long-
lasting pain relief without oral medications [54]; in another
patient, there was an 80% reduction in daily frequency of at-
tacks at 1 year after implantation [55]; and for the third patient,
there was a decrease in attack frequency initially; however, the
patient was not able to reduce the oral medications [56].

In a PH patient intolerant to medication, the ipsilateral pos-
terior hypothalamus was implanted and this was effective in
controlling acute attacks [57]. From neuroimaging, the poste-
rior hypothalamic activation in PH was found to be contralat-
eral to the side of attacks [31].

High Cervical Nerves

High cervical spinal cord stimulation was first used in clus-
ter headache in 2004 [58] and since then has been performed
in 7 medically refractory cluster headache patients at low
frequency [59]. The results showed that there was an imme-
diate improvement in pain as well as a neuromodulation
effect with reduced attack frequency, duration, and intensity.
The disadvantage is that there is a high number of revision
surgeries required due to electrode breakage and lead revi-
sions. Some patients describe paresthesia induced by certain
head movements. High-frequency spinal cord stimulation
(HF10 SCS) targets stimulation at C2 to C3 levels and
was tried in medication-refractory headache disorders, 2 pa-
tients with chronic SUNA and 1 patient with chronic cluster
headache [60]. The authors reported the patients having an
almost immediate therapeutic effect, but long-term observa-
tions are still required. It is postulated that by high cervical
low-frequency stimulation it reaches the trigeminal cervical
complex (TCC) and generates neuromodulation, but further
evidence and randomized control studies are needed. The

Table 1 Overview of the features of each trigeminal autonomic cephalalgia

Features Cluster headache Paroxysmal hemicrania Hemicrania continua SUNCT/SUNA

Gender ratio (male to female) 3:1 1:1 1:2 1.5:1

Pain quality Sharp/stab/throb Sharp/stab/throb Baseline—dull pain. During
worsenings can be
sharp/throb

Sharp/stab/throb

Pain severity Very severe Very severe Baseline—mild to moderate.
Worsenings—moderate to
severe

Severe

Distribution of maximal pain V1 > C2 >V2 >V3 V1 > C2 >V2 >V3 V1 > C2 >V2 >V3 V1 >C2 >V2 >V3

Attacks per day 1-8 1-40 Daily in 50% 1-100

Attack duration 15-180 min 2-30 min 30 min to 3 days 1-10 min

Cranial autonomic features Prominent and
ipsilateral to pain

Prominent and
ipsilateral to pain

Present during worsenings
and can be bilateral

Prominent and
ipsilateral to pain

Restlessness during attack 95% 80% 69% 65%

Circadian periodicity Present Absent Absent Absent

Triggers

Alcohol +++ + + −
Nitroglycerin +++ + − −
Cutaneous − − − +++

Associated migraine features

Nausea 50% 40% 53% 10%

Photophobia 56% 65% 74% 25%

Phonophobia 43% 65% 79% 25%

Treatment response

Oxygen Yes No No No

Sumatriptan injection Yes Partial Partial No

Indomethacin No Yes Yes No

SUNCT = short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing, SUNA = short-lasting unilateral neuralgiform
headache attacks with cranial autonomic symptoms
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TCC is an important part of the trigeminal–autonomic reflex
and transmits to the central pain centers.

Peripheral Neuromodulation Targets

Occipital Nerves

The greater occipital nerve emerges from the C2 spinal root,
and near the occipital bone, the nerve may divide into
branches supplying the posterior aspect of the head and vertex
cutaneously. In rats, stimulation of the greater occipital nerve
caused increased central excitability of the dural afferent in
rats [61]. In cat studies, we know that stimulation of the great-
er occipital nerves increases metabolic activation in the cervi-
cal spinal region and the trigeminal nucleus caudalis in the
brainstem [62]. The studies suggested that there was a 2-way
connection between the upper cervical segments and the tri-
geminal branches via the trigeminal nucleus caudalis. The C1
to C3 cervical dorsal horns and the trigeminal nucleus caudalis
form the TCC.

Greater occipital nerve (GON) region injections with cor-
ticosteroids and local anesthetics can provide a rapid benefit
for patients and have been beneficial as a bridging therapy in
cluster headache. Several studies have looked at the efficacy
of greater occipital nerve blocks in cluster headache [63–67],
the most recent being a prospective observational study, using
10 mg triamcinolone in 1 mL sodium chloride and 1 mL
bupivacaine 0.5% to infiltrate both the greater and lesser oc-
cipital nerves [68]. They found more than 80% of patients had

complete or partial response [68]. The methods vary between
studies, with different constituents used in the injection and
some studies using serial and/or bilateral injections; therefore,
the results are not directly comparable and show a range of
duration of benefit. In one study with 83 chronic cluster head-
ache patients, they showed for a single injection to the greater
occipital nerve using 80 mg methylprednisolone and 2 mL of
2% lidocaine, the median duration of benefit was 21 days,
with the main side effects of lightheadedness, neck stiffness,
and continuous pain at the site of injection [67]. A rare com-
plication of permanent alopecia and cutaneous atrophy at the
injection site has been noted [69].

Greater occipital nerve injections have also been used in a
handful of the other TACs as an interim treatment. In a
review by Afridi and colleagues [64], 3 SUNCT patients
who had GON injections, there was 1 with complete re-
sponse. Furthermore, Porta-Etessam and colleagues [70]
showed the beneficial effects of GON injection in an 84-
year-old woman with SUNCT, and presented it as a useful
alternative treatment considering the potential risks of intra-
venous lidocaine in her case. More recently, Weng and col-
leagues [21] reported GON injections were beneficial in
50% (6 out of 12 cases) of SUNCT patients and 75% (3
out of 4 cases) of SUNA patients. In chronic PH, one case
series of 6 patients did not observe any beneficial effect
from lidocaine GON injections [71]. In a further case series,
out of the 3 patients with chronic PH, 1 had a complete
response to the GON injection [64]. Rossi and colleagues
[72] reported a patient with indomethacin-responsive episod-
ic PH, who responded to repeated lidocaine and

Fig. 1 Overview of the
therapeutic targets for trigeminal
autonomic cephalalgia
conditions, identifying both
molecular targets as well as the
structural targets for
neurostimulation and
neuromodulation as outlined in
this review. TG = trigeminal
ganglion; CGRP = calcitonin
gene-related peptide; SPG =
sphenopalatine ganglion; PACAP
= pituitary adenylate cyclase
polypeptide; TRPV1 = transient
receptor vanilloid
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methylprednisolone GON injections; interestingly, there was
no clinical response when the patient was injected with a
GON injection containing only lidocaine. In a case series of
7 HC patients, GON injections containing lidocaine were
not helpful, but they found that there was some response
to supraorbital injections [71]. In a separate case series of
7 HC patients, 1 had a complete response and 5 had partial
responses [64].

Occipital nerve stimulation (ONS) was first used in medi-
cally refractory occipital neuralgia by Weiner and Reed [73],
the pioneers of ONS, in 1991. Given the benefit from occipital
nerve block using steroid and local anesthetic in cluster head-
ache patients and the use of occipital nerve stimulators in
migraine patients [74], ONS was used in medically refractory
chronic cluster headache patients. It was tried in 2 TAC pa-
tients in 2006, 1 chronic cluster headache patient, and 1
hemicrania continua patient [75], with beneficial effects on
headache frequency, duration, and intensity and an interesting
observation that both patients still noted episodes of cranial
autonomic features in the absence of the pain. Following on
from this, there was a prospective pilot study of ONS in 8
medically refractory chronic cluster headache patients, with
encouraging results [76]. They observed a delay of 2 months
or more between implantation and significant clinical
improvement.

Burns and colleagues [77] presented data from an open-
label study of ONS in 8 cluster headache patients and showed
that ONS was well tolerated with a lesser side effect profile
than the more invasive deep brain stimulation. In the initial
cases with unilateral stimulation inserted, the patients noticed
side-swapping of their attacks, so the subsequent stimulators
inserted were bilateral. They observed an interesting feature
noted by patients with positive clinical effect, namely there
was a pleasant paresthesia when the stimulators were turned
on. The complications of ONS in this study included exces-
sive pain following the operation and shock-like sensations
from kinking of wires, although 8 surgical interventions were
required in this cohort; these included 3 for lead migration (all
in 1 patient) and 5 for battery replacement (2 battery deple-
tions in 1 patient). The efficacy in reducing a cluster headache
attack was less than deep brain stimulation. In a further open-
label study [78] with follow-up postsurgery (mean follow-up,
14.6 months), the mean attack frequency and intensity de-
creased by 68% and 49%, respectively.

In a French prospective observational study with 1-year
follow-up, they evaluated the efficacy of ONS in drug-
resistant chronic cluster headache patients as well as the emo-
tional impact [79]. In their study, about 70% of the patients
responded to ONS and 40% of the patients were able to de-
crease their prophylactic treatments.

An open-label study looking into the efficacy of ONS of 35
drug-resistant chronic cluster headache patients, after a medi-
an follow-up of 6.1 years (range, 1.6-10.7), showed 66.7%

were responders. In this study, they defined responders as
50% reduction in headache attack number per day [80].

The ICON study (NCT01151631) [81] is a prospective,
randomized, double-blind, clinical study comparing high-
amplitude (100%) and low-amplitude (30%) ONS in medical-
ly intractable, chronic cluster headache patients. This study is
anticipated to complete in December 2018.

The ONS device has a subcutaneous battery placed in the
chest wall or abdomen and leads that are tunneled to join the
occipital nerves. From a follow-up study of 35 chronic drug-
resistant cluster headache patients, the most common compli-
cations were battery depletion (66%) and lead migration
(19%) [80]. In a German cost-effectiveness study with ONS
for intractable chronic cluster headache and chronic migraine,
25 of 27 patients (93%) responded to treatment. However, 21
complications in 14 patients were identified, necessitating re-
operation in 13 cases [82]. With the advancement of ONS
stimulation, the Bion microstimulator was developed; this
has the benefit of being smaller in size and a transcutaneous
rechargeable lithium ion battery [83].

Given the use of occipital nerve injections in cluster head-
ache management, studies have been performed looking into
the predictive value of a positive occipital nerve injection prior
to ONS insertion. This has not been conclusive, two studies
showed no predictive outcome [84, 85], but a recent prospec-
tive study found that a previous positive response to a GON
injection is associated with a higher likelihood of a positive
ONS outcome [86].

The clinical neuromodulation effect from ONS is noticed
after months of stimulation, and this is in keeping with the
functional neuroimaging findings [87]. Magis and colleagues
used FDG–PET to look at the pain matrix, hypothalamus, and
brainstem. They found that there were no significant changes
between the PET scans when the ONS stimulator was turned
on or off within a 72-h delay. Whereas, in the long term (>
6 months), there were reductions in the initial areas of hyper-
metabolism in chronic cluster headache patients compared to
healthy volunteers. The areas of reductions were the anterior
cingulate cortex, left pulnivar, left visual cortex, left lower
pons, cerebellum, and midbrain. The ipsilateral hypothalamus
activation was not reduced, suggesting that the hypothalamic
activation is related to the chronic nature of the condition and
that ONS is a symptomatic treatment. It should be noted that it
is not certain whether the findings from neuroimaging are due
to a direct effect from the ONS or from a reduction in frequen-
cy of attacks.

Occipital nerve stimulation, including the use of the Bion
microstimulator, has been used in cluster headache [76, 77,
80, 88–90]; in addition to this, it has been used in other
TACs. In hemicrania continua [75, 90, 91] and more recent-
ly in a prospective open-label case series of 16 HC patients,
50% (8/16) of the patients had a favorable response, defined
as a more than 50% reduction in monthly moderate to severe
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headache days [92]. There are 2 case series involving
SUNCT/SUNA [93, 94], in the latter, the authors reported
77% of their 31 medically refractory patients had a more
than 50% reduction in daily attack frequency with ONS
[94]. The use of ONS has thus far only been reported in 1
medically refractory chronic PH case [95]; with follow-up of
over 10 years, the patient reported a sustained efficacy of
more than 50% reduction in attack frequency and she was
able to stop indomethacin completely and was pain free at
final follow-up.

Sphenopalatine Ganglion

The sphenopalatine ganglion (SPG) has an important role in
the pathway of TACs and the presentation of parasympathetic
features. It has been a historic target for refractory headaches
since 1909, when Sluder [96] described treatment of a case
series of Merkel’s ganglion neuralgia, where the SPG was
targeted using formaldehyde, alcohol injection, or cocaine,
as an intranasal spray or as an application of saturated cocaine
solution. Later, the SPG was targeted with cocaine in
nitroglycerin-triggered cluster headache attacks in 1982 [97],
alcohol injection [96, 98], lidocaine injection [99, 100], and
radiofrequency ablations, with varying success rates and tran-
sient benefit [101].

Comparably, implantation of an SPG stimulator
(Pulsante®) in drug-resistant chronic cluster headache has
had more sustained results. Following the proof-of-concept
study [102], there has been a randomized, blinded, multicenter
study, Pathway CH-1 [103], with extended open-label out-
come at 24 months [104]. The main findings from these stud-
ies were that SPG stimulation can be used for acute treatment
of attacks as well as for its neuromodulatory effects. Acute
pain relief from SPG stimulation was observed in 55% of
patients within 15 min compared to only in 6% and 7% with
sham and subthreshold stimulation respectively; this is a net
effect that is comparable to that of injectable sumatriptan. In
CH-1, there was also an unexpected dramatic reduction in
attack frequency noted with repetitive attack stimulation.
This therapeutic effect was maintained through the 24-month
follow-up, with 45% being acute responders and 33% being
frequency responders, and in total, 61% had either or both
therapeutic effect [104]. Likewise, the use of both acute and
preventive medication was markedly reduced and conversely
the quality of life of the patients improved significantly [104].
The main side effects noted from implanting the SPG stimu-
lator were sensory disturbances and pain and swelling in the
weeks after the implant procedure. There were 3 patients that
required SPG lead revisions and 2 SPG stimulators were re-
moved, so the overall tolerability was favorable [103]. A new
large-scale open-label study enrolled 97 medically refractory
cluster headache patients (88 chronic and 9 episodic); of the
85 patients who completed the study, they confirmed the

initial study results with a response rate of 68% [105].
Thirty-two percent of all patients were acute responders
and 55% of the chronic patients were frequency responders
[105]. Pathway CH-2 (NCT02168764), is a study based in
the USA, assessing the efficacy of SPG as acute treatment in
chronic cluster headache. It is estimated to complete in
January 2019.

Vagus Nerve

The vagus nerve is the 10th cranial nerve; it is a mixed sensory
and motor nerve with a long course. Vagal nerve stimulation
(VNS) has been used as treatment for epilepsy [106] and de-
pression [107] for many years. Two chronic cluster headache
patients with coexistent depression had a beneficial response
to their cluster headache following VNS implantation; in par-
ticular, 1 patient had improvement within 2 months of implan-
tation and there was a reduction in his attack frequency in a
year [108].

With technological advancement, a portable and noninva-
sive vagus nerve stimulation (nVNS) device (gammaCore)
was designed and developed. It produces a low-voltage elec-
trical signal comprising a 5-kHz sine wave burst, with 1 stim-
ulation lasting 2 min. The first large pilot open-label single-
arm study with nVNS was aimed to investigate its efficacy as
an acute treatment for migraine [109]; subsequently, the effi-
cacy of nVNS was studied in cluster headache. In an open-
label observational study, nVNS treatment was assessed in 19
cluster headache patients (11 chronic and 8 episodic) [110]. In
this study, Nesbitt and colleagues first reported the potential of
the nVNS as an acute and preventive therapy for cluster head-
ache patients. There were no serious adverse events from the
use of nVNS; the main side effects reported were local dis-
comfort associated with its use and mild skin reactions to the
conductive gel. One patient had increase in side-shifting of
attacks. Following on from this, the PREVention and Acute
Treatment of Chronic Cluster Headache (PREVA) study was
the first randomized, prospective, controlled study to investi-
gate nVNS treatment in chronic cluster headache patients,
showing that daily use of three 2-min stimulations 5 min apart,
administered twice a day, had a beneficial effect on the fre-
quency of attacks per week [111]. After 4 weeks, the weekly
attack frequency was 41% lower in the patients receiving pro-
phylactic nVNS and standard of care compared to patients
receiving only standard of care [112].

The ACT1 study, a randomized double-blind, sham-
controlled prospective study [113], was aimed at assessing
the use of nVNS as an acute treatment for cluster headache.
The nVNS did provide significant and clinically meaningful
benefits over sham treatment in the episodic cluster headache
subgroup, providing pain control within 15minwith sustained
treatment response. These results were not present in the
chronic cluster headache group. The results from the ACT2
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study showed that nVNS was superior to sham therapy for
acute treatment of attacks in the episodic cluster headache
subgroup but not in the chronic cluster headache group or in
the total population [114].

The use of nVNS has been explored in other TACs with
promising results. Nesbitt and colleagues reported the use in 2
hemicrania continua patients, previously treated with the Bion
occipital nerve stimulator. The first patient used the nVNS
acutely and prophylactically, with 30% improvement in back-
ground pain and 20% improvement in the acute worsenings,
aborting the worsenings within 15 min. In the second patient,
the device was used purely as a prophylactic treatment; there
was a 75% improvement in the background pain and acute
worsenings [115]. A hemicrania continua patient intolerant of
indomethacin reported beneficial effects from nVNS; it con-
sistently reduced the level of pain during exacerbations from
8/10 to 5/10 in severity [116]. In a clinical audit of nVNS use
in indomethacin-sensitive headaches, 9 patients had
hemicrania continua and 6 had paroxysmal hemicrania; the
authors reported a 78% improvement in HC patients in their
baseline pain, and 67% of PH patients reported a reduction in
both attack frequency and severity [117]. nVNS is a particu-
larly helpful alternative for HC and PH patients who are in-
tolerant of indomethacin.

Molecular Targets

Calcitonin Gene-Related Peptide

Calcitonin gene-related peptide is a 37-amino-acid protein that
comes in 2 forms, α and β isoforms. It is found in trigeminal
afferents and plays a key role in the trigeminal–autonomic
reflex. This is supported by the key study by Goadsby and
colleagues [118], whereby they showed there was an increase
in plasma calcitonin gene-related peptide (CGRP) levels when
the trigeminal ganglion was electrically stimulated.
Furthermore, in vivo studies measuring plasma CGRP from
the external jugular vein showed it is elevated during cluster
headache attacks, both during spontaneous [119] and
nitroglycerin-triggered attacks [120, 121]. With the plasma
CGRP levels normalizing after treatment of attacks with su-
matriptan or oxygen, the normalization did not occur if the
attacks were treated with opioids [119], implying attenuation
of neuropeptides plays an important role in treatment of
attack.

There are currently 4 randomized control trials investigat-
ing the use of CGRP monoclonal antibodies in cluster head-
aches, Galcanezumab (LY2951742) and Fremanezumab
(TEV-48125), in participants with episodic cluster headache
and chronic cluster headache. Furthermore, CGRP has been
used to trigger cluster headache attacks successfully in chronic
and episodic cluster headache patients Bin bout,^ but not in

patients Boutside bout.^ These results are from a late-breaking
abstract [122] and may cautiously suggest efficacy of CGRP
antagonists in cluster headache treatment.

At present, the CGRP monoclonal antibodies have not yet
been tried in the other TACs; however, it may be useful in
CPH. The role of CGRP in CPH is not clear; however, similar
to cluster headache, it has been noted that the plasma CGRP
level and VIP rises during a CPH attack and normalizes fol-
lowing treatment with indomethacin [123].

Somatostatin

Somatostatin is an endogenous 14-amino-acid peptide, which
plays a pivotal role in the regulation of the neuroendocrine
system and in pain modulation. Somatostatin receptors are
found throughout the brain, including sites that are involved
in nociceptive processing and the hypothalamus [124]. This is
supported by an animal study, whereby the authors showed
that blocking somatostatin receptors in the posterior hypothal-
amus with cyclosomatostatin caused an antinociceptive effect
on dural and facial input, while injection of somatostatin to the
posterior hypothalamus did not have an effect on either dural
or facial afferent input to trigeminal neurons [125].
Furthermore, somatostatin is involved in modulating neuro-
peptides; in particular, somatostatin can reduce CGRP levels
[126]. In cluster headache patients, it has been shown that they
have lower levels of plasma somatostatin during both attacks
and attack-free periods, when compared to normal healthy
individuals [127].

A double-blind study aimed at assessing the efficacy of
intravenous somatostatin infusion (25 μg/min for 20 min) in
the acute treatment of cluster headache attacks, when com-
pared with treatment with intramuscular ergotamine (250 μg)
and with placebo [128], showed that somatostatin reduced the
maximal pain intensity significantly compared with placebo
and almost comparable to ergotamine. However, logistically,
it is not practical for patients to use intravenous infusion as
acute treatment for recurrent and multiple daily attacks.
Therefore, in a further study, subcutaneous somatostatin was
compared with ergotamine and it was shown that it was as
beneficial as ergotamine in reducing pain but less effective in
reducing the duration of cluster headache attacks [129]. This
may be explained by the short half-life of somatostatin, where-
as somatostatin analogues such as octreotide have a longer
half-life of 1.5 h [130]. A randomized placebo-controlled dou-
ble-blind crossover study, using subcutaneous octreotide in
acute treatment of cluster headache, showed that in 52% of
the attacks treated with octreotide, patients became headache
free at 30 min compared with 36% of the attacks treated by
placebo [131]. A multicenter, placebo-controlled, single-dose
study is underway to assess the safety and effectiveness of
pasireotide (SOM230), a long-acting release somatostatin ana-
logue, in acute cluster headache treatment (NCT02619617).
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Transient Receptor Potential Vanilloid Receptor

Transient receptor potential vanilloid (TRPV-1) receptors play
a pivotal role in nociception and in particular explained the
mechanism of action of plant-derived analgesics, such as cap-
saicin [132]. Civamide is a synthetic isomer of capsaicin, a
TRPV-1 receptor modulator, and it can selectively depress
activity in type-C nociceptive fibers and causes a release and
subsequent depletion of neuropeptides, including substance P
and CGRP [133]. Civamide is not systemically absorbed; the
benefit of this treatment is that it does not produce systemic
adverse side effects and does not interact with other medica-
tions for cluster headache or concomitant medical problems.
Side effects of civamide include a localized burning sensation
at the application site [134].

In 2002, a multicenter, double-blind, randomized,
vehicle-controlled study with a 7-day treatment period in
28 episodic cluster headache patients was performed with
a 20-day follow-up comparing 100 μL of 0.025%
civamide (25 μg) in each nostril once a day with 100 μL
of vehicle. They found that civamide was modestly effec-
tive in the preventive treatment of cluster headache and
reduced the frequency of cluster headache attacks [133].
In a larger unpublished study of 112 patients, civamide
decreased the frequency of cluster headache attack per
week; however, this was not statistically significant
[134]. A phase III multicenter, double-blind, randomized,
vehicle-controlled study with 0.01% civamide nasal solu-
tion (NCT01341548) is due to start in November 2018,
with the aim to evaluate the safety and efficacy of intrana-
sal civamide solution in episodic cluster headache periods.

Nitric Oxide

Nitric oxide (NO) plays an important role in headaches, par-
ticularly in migraine and cluster headache [135, 136]. NO is
involved in regulating cerebral and extracerebral blood flow
and arterial diameter; however, it is also involved in nocicep-
tive processing. Several studies have been performed to inves-
tigate the role of NO in cluster headache pathogenesis by
measuring its plasma end products, showing enhanced plasma
nitrite levels in cluster headache patients in and out of bout
[137] and higher levels of NO oxidation and end products in
the cerebrospinal fluid in cluster headache patients in and out
of bout, when compared with healthy volunteers [138]. Other
studies did not confirm this difference; in particular, Costa and
colleagues found that the baseline plasma NO end metabolite,
nitrite level, and L-citrulline levels between cluster headache
patients and healthy controls were similar and showed that
plasma nitrite levels during nitroglycerin-triggered cluster
headache attacks during peak pain were increased, but this
increase was also increased in the healthy controls 45 min
after nitroglycerin [139]. Although the results from plasma

NO end metabolites studies have not been conclusive, nitro-
glycerin, a prodrug for nitric oxide, has been used as a sys-
tematic method to trigger cluster headache attacks since it was
described by Ekbom in 1968 [140].

Paroxysmal hemicrania and hemicrania continua are both
indomethacin-sensitive headaches. The mechanism of indo-
methacin is not clear, and although it is classified as a nonste-
roidal anti-inflammatory drug (NSAIDs), it has properties that
set it apart from the rest of the NSAIDs. From animal studies,
indomethacin seems to inhibit the NO-related mechanism,
setting it apart from the other NSAIDs that were investigated
in the study, naproxen and ibuprofen [141]. To further support
the role of NO in PH pathophysiology, nitroglycerin has been
reported to trigger PH attacks [142].

Therefore, the NO-cGMP cascade offers opportunities as a
potential therapeutic target for TAC treatment. Moncada and
Higgs [143] have described the NO therapeutic targets
throughout the whole NO cascade in their detailed review.
The results from NO synthase (NOS) inhibition in migraine
have not been encouraging. The first clinical trial using a non-
selective NOS inhibitor L-NGmethylarginine hydrochloride
(L-NMMA, 546 C88) to assess its efficacy in acute migraine
treatment [144] showed the headache response at 2 h was 67%
in the treatment arm compared with 14% in the placebo arm. A
highly selective inducible NOS (iNOS) inhibitor (GW274150)
was studied as migraine acute treatment [145] and preventive
treatment [146, 147], but the studies did not show a statistically
significant treatment advantage over placebo.

From the evidence in support of NO in TAC pathogenesis,
the NO–cGMP cascade should be a suitable therapeutic target.

Melatonin

Melatonin is an indole compound produced by the pineal
gland and is secreted when in darkness and suppressed by
light; this process involves the suprachiasmatic nucleus of
the hypothalamus [148]. Melatonin plays an important role
in regulating circadian rhythms, including sleep initiation
and sustaining sleep. There have been several studies showing
abnormal melatonin levels in cluster headache. In patients
with episodic cluster headaches, there is blunting of the noc-
turnal peak of melatonin [12–15, 38–40]. From these studies,
the role of exogenous melatonin supplementation has been
studied as treatment options for cluster headache. In a random-
ized placebo-controlled trial, 10 mg melatonin daily orally for
a fortnight was tried in predominantly episodic cluster head-
ache patients; from a total of 20 patients, 18 had episodic
cluster headache and 2 had chronic cluster headache [149].
They showed that 5 out of 10 patients in the melatonin arm
responded to melatonin; the 2 patients with chronic cluster
headache did not respond. A case report of 2 chronic cluster
headache patients responded to melatonin supplementation
9 mg [150]. A study with the aim of assessing the benefits
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of adjunctive treatment using 2 mg controlled-release melato-
nin in cluster headache management in both chronic and epi-
sodic cluster headache patients did not show there was a ther-
apeutic benefit of the additional melatonin in both chronic and
episodic cluster headache patients that were uncontrolled on
conventional therapy [151]. However, as melatonin is associ-
ated with minor or no side effects, it may be added to existing
therapy and it may still be helpful to start melatonin earlier in
the bout as suggested by Leone and colleagues [149].

Melatonin has a shared indole structure with indomethacin;
therefore, the therapeutic effect of melatonin has been tried in
indomethacin-sensitive headache, hemicrania continua in par-
ticular. A small case report of 3 patients did respond to mela-
tonin dose, 2 patients responded to 9 mg melatonin, and 1
patient required 15 mg melatonin to reduce her indomethacin
dose from 150 mg daily to 75 mg daily [152]. A subsequent
study used melatonin as a preventive therapy in 11 patients
with hemicrania continua, starting with 3 mg melatonin for 5
nights, increasing to 6 mg for 5 nights, and then 9 mg for at
least 5 nights. Unfortunately, only 20% achieved pain freedom
with melatonin; however, 45% of patients had a complete or
partial response and thereby could reduce their daily dose of
indomethacin [153].

Orexin

Orexin A and orexin B are integral to sleep and feeding, but
also play a role in nociception and can modulate the autonom-
ic nervous system. Therefore, orexin is thought to play a role
in cluster headache and a lower CSF concentration is also
demonstrated in cluster patients than in healthy controls
[154]. Orexins are synthesized in the lateral and posterior hy-
pothalamus and project widely to nociceptive areas of the
brain and spinal cord, and receptor activation can modulate
responses of the trigeminovascular system to dural stimulation
[42]. An exploratory phase II study using Filorexant (MK-
6096), an orexin receptor 1 and 2 antagonist, has been tested
in migraine prevention; however, it was not found to be effec-
tive [155]. Currently, we are not aware of any studies in cluster
headache.

Pituitary Adenylate Cyclase-Activating Polypeptide 38

PACAP-38 is a 38-amino-acid neuropeptide [156] found in
the sphenopalatine ganglion, the otic ganglion, and trigeminal
ganglion [157] and is structurally related to vasoactive intes-
tinal polypeptide (VIP). PACAP-38 is released in acute cluster
headache attacks, and episodic cluster headache patients,
when out of bout, have low plasma PACAP-38 levels com-
pared with healthy controls [158]. Furthermore, it plays a role
in the circadian rhythm and can modulate melatonin synthesis.
From animal studies, in the suprachiasmatic nucleus, PACAP-

38 can cause a phase shift in the circadian rhythm via a cAMP
signaling pathway [159].

In humans, PACAP-38 has been used to bring onmigraine-
like headache in patients with migraine without aura [160,
161] by means of PAC1 receptor activation, indicating the
PAC1 receptor as a potential future treatment target [162].
PACAP-38 has not yet been used to trigger cluster headache
attacks; however, it would be interesting to assess its role in
the pathogenesis of cluster headache attacks [163] and could
be a future therapeutic target.

AMG301 (PAC1 antibody) has been developed and is un-
dergoing a phase IIa, randomized, double-blind, placebo-
controlled study in chronic or episodic migraine
(NCT03238781), and the study is estimated to complete in
December 2018. Depending on the results, this may also be
promising in cluster headache.

Glutamate

Glutamate is an excitatory neurotransmitter that acts on
ionotropic glutamate receptors that can be divided into 3
groups: N-methyl-D-aspartate (NMDA), α-amino-3-hy-
droxy-5-methyl-4-isoazolepropionic acid (AMPA), and
kainate. Glutamate plays a key role in the induction of noci-
ceptive sensitization and in the trigeminovascular pathway
[164]. To support this, memantine, a NMDA-gated ion chan-
nel blocker, has shown efficacy in reducing CH attacks in
resistant patients [165]. This may suggest changes to the
NMDA receptor signaling or NMDA receptor activation
may be relevant to the pathophysiology of CH. Further, to
support the role of glutamate in cluster headache pathophysi-
ology, a study investigated the serum levels of kynurenine
metabolites in cluster headache [166]. The kynurenine meta-
bolic pathway of tryptophan generates neuroactive metabo-
lites that influence the activity of NMDA receptors as well
as other glutamate receptor types. The study found that cluster
headache patients have altered kynurenine metabolites when
compared with healthy controls and, in particular, reduced
levels of kynurenic acid (an NMDA receptor antagonist) sup-
port the hypothesis that NMDA receptors are overactive in
CH and a potential therapeutic target.

Conclusion

The therapeutic targets for TAC treatment have greatly ex-
panded over the years with our accumulating understanding
of the pathogenesis of TACs. Conventional TACmanagement
was limited and involved medications that have been
borrowed from other conditions and are often hampered by
intolerable side effects. This is an exciting era in TAC therapy,
with multiple and diverse therapeutic targets for better and
more effective treatment options. We will be able to expand
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the therapeutic armentarium and move away from the most
invasive treatment options to more condition-specific,
targeted, and noninvasive treatments, treatments developed
with TACs in mind.
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