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Greenland Shark (Somniosus
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Ontogenetic Dietary Shift
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John Fleng Steffensen1, Helene Overgaard Kiilerich6, Kim Præbel8 and
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1 Marine Biological Section, University of Copenhagen, Helsingør, Denmark, 2 Greenland Institute of Natural Resources,
Nuuk, Greenland, 3 Den Blå Planet, National Aquarium Denmark, Kastrup, Denmark, 4 Department of Arctic and Marine
Biology, UiT The Arctic University of Norway, Tromsø, Norway, 5 Environmental and Marine Biology, Åbo Akademi University,
Turku, Finland, 6 Department of Bioscience, Section for Aquatic Biology, Aarhus, Denmark, 7 Department of Biological
Sciences, Indiana University South Bend, South Bend, IN, United States, 8 Norwegian College of Fishery Science, UiT
The Arctic University of Norway, Tromsø, Norway

Current knowledge on the feeding ecology of the Greenland shark (Somniosus
microcephalus), a potential top predator in arctic marine ecosystems, is based on small
sample sizes as well as narrow size ranges of sharks. Therefore, potential size-related
feeding patterns remain poorly documented. Using stomach content data (N = 88)
and stable isotope values of white muscle tissue (N = 40), this study evaluates the
diet of sharks ranging in size from 81 to 474 cm (total length). The importance of
prey categories (“Fish,” “Mammal,” “Squid,” “Crustacean,” and “Other”) was evaluated
based on the reconstructed prey biomass of the stomach contents. Stable isotope
values of δ13C and δ15N ranged between −14.4 to −19.9h and 11.8 to 17.2h,
respectively. The importance of each prey category was estimated by the Index of
Relative Importance (IRI). Our findings suggest that the smallest Greenland sharks
(<200 cm) feed on lower trophic level prey, predominantly squids. Larger sharks
(>200 cm) mainly feed on higher trophic level prey such as seals, epibenthic and benthic
fishes including gadoids (Gadidae), skates (Rajidae), righteye flounders (Pleuronectidae),
lumpfish (Cyclopteridae), wolffish (Anarhichadidae), and redfish (Sebastidae). Redfish
were, however, only found to be important in the largest sharks sampled (>400 cm).
In addition to demonstrating ontogenetic shifts in their feeding preferences, this study
supports that Greenland sharks are capable of active predation on fast swimming seals
and large fishes.

Keywords: Greenland shark, diet, feeding ecology, stomach content, isotopes

INTRODUCTION

During the past 10 years, the Greenland shark (Somniosus microcephalus) has been subject to
increased scientific attention due to its role as a long-lived, highly migratory, and relatively
abundant top predator in arctic marine food webs (MacNeil et al., 2012; Campana et al., 2015;
Nielsen et al., 2016). The Greenland shark is distributed across the Arctic and in the cold temperate
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waters of the Atlantic and reaches more than 5 m in length.
(Compagno, 1984; Mecklenburg et al., 2018). Although they are
occasionally reported in shallow waters (<30 m, Harvey-Clark
et al., 2005; Eriksen, 2011), Greenland sharks predominantly
occur in deep waters (>200 m, Fisk et al., 2012; Campana et al.,
2015), where they have been recorded as deep as 2,992 m near
the mid-Atlantic Ridge (Porteiro et al., 2017). In Greenland
waters, Greenland sharks are most often encountered at depths
of 400–700 m (Nielsen et al., 2014).

Previous studies have investigated the diet and trophic
interactions of Greenland sharks by analyzing stomach contents,
stable isotopes, and fatty acids (Fisk et al., 2002; Yano et al., 2007;
McMeans et al., 2010; Leclerc et al., 2012; McMeans et al., 2013;
Nielsen et al., 2014). These studies are mostly based on relatively
few individuals (N < 50) from 200 to 400 cm in length, with
limited information on larger individuals. Ontogenetic dietary
shifts have been documented for other large predatory sharks
such as sevengill (Notorynchus cepedianus), white (Carcharodon
carcharias), and tiger sharks (Galeocerdo cuvier) (Lowe et al.,
1996; Ebert, 2002; Estrada et al., 2006), and preliminary data
suggest that small Greenland sharks have a lower trophic position
compared to larger sharks (Fisk et al., 2002). Dietary differences
across Greenland shark size thus becomes relevant to investigate.

Size distribution of Greenland sharks appears to vary spatially.
While sharks <400 cm seem to dominate in the Canadian Arctic,
northern Greenland and the Svalbard Archipelago (Norway),
larger sharks >400 cm seem to be more common off southern
Greenland, Iceland, and Newfoundland (Nielsen et al., 2014;
Campana et al., 2015; Lydersen et al., 2016; Devine et al., 2018).

This study documents the feeding ecology of the Greenland
shark, investigated across a large size range, by analyzing stable
isotopes and stomach contents. Specifically, we identified prey
in stomach contents to the lowest possible taxonomical level,
estimated their biomass, and calculated the relative importance
of prey through ontogeny. Stable isotopes levels were used to
determine whether prey composition was reflected in the 15N
signal. Elaborating on the feeding ecology of different sized
Greenland shark, currently listed as Near Threatened in the
IUCN Red List of Threatened Species and as Data Deficient in the
Norwegian Red List (Henriksen and Hilmo, 2015; IUCN, 2018),
will allow for a more complete understanding of the species’ role
as an important predator in arctic ecosystems.

MATERIALS AND METHODS

Sampling
Greenland sharks (N = 78) from Greenland waters were caught
from 2013 to 2017 as part of the international collaboration
project “Old and Cold – Biology of the Greenland shark.”
Sampling was obtained by the Greenland Institute of Natural
Resources (GINR) annual fish surveys (RV Pâmiut, RV Sanna),
the TUNU IV and V Expeditions (RV Helmer Hanssen)
(Christiansen, 2012), the commercial trawler FV Sisimiut, and
targeted Greenland shark expeditions with RV Porsild and
RV Sanna. All sampling was carried out in accordance with
laws, regulations and authorization from the Government of

Greenland (Ministry of Fisheries, Hunting and Agriculture,
document number 565466, 935119, 20179208, C-17-129, C-
15-17, and C-13-16). Overlap in both sampling area and
season (West and East Greenland, inshore and offshore, May–
September) allowed us to pool stomach content data with an
additional 30 specimens caught in 2012 [reported separately in
Nielsen et al. (2014)], increasing the total number of sharks
included in this study to 108. All sharks were measured (total
length, TL, cm) and the sex determined from the presence (males)
or absence (females) of claspers. All shark lengths in this study
are reported as TL. To evaluate possible size-related dietary
differences, sharks were grouped into six “shark size groups” (TL
bins); <200 cm, 201–250 cm, 251–300 cm, 301–350 cm, 351–
400 cm, and >400 cm. As in previous studies, data for males and
females were combined (see Yano et al., 2007; McMeans et al.,
2010; Leclerc et al., 2012; Nielsen et al., 2014). Bin ranges were
chosen as “juvenile” sharks of both sexes have previously been
defined as those <200 cm (Hussey et al., 2015). In this study (and
in general), sharks >400 cm are strictly females and further also
potentially mature [cf. Yano et al. (2007) suggesting that males
mature at ∼300 cm and females mature at >400 cm]. Shark size
groups between 200 and 400 cm are thus composed by both
immature males and females and potentially mature males.

Stomach Contents
Each stomach was removed and contents examined following
the procedure described in Nielsen et al. (2014), with each
prey item counted, measured, weighed, and identified to
the lowest possible taxonomical level. All prey items were
grouped into five prey categories: “Fish,” “Mammal,” “Squid,”
“Crustacean,” and “Other.” The “Other” category included
birds and all invertebrates except squids and crustaceans. The
remaining stomach contents were designated “Non-prey items”
and encompassed small rocks/stones, fishing gear, macro algae,
metal pieces, fragments of Porifera, small bivalves (<1 cm), and
scavenging lyssianassid amphipods. For all “Non-prey items”
only frequency of occurrence was calculated.

Reconstructed Biomass
In an attempt to reflect the initial (undigested) quantity of
prey consumed, a “reconstructed biomass” was calculated for all
prey items (except mammals, see explanation below). For each
fish prey item, the reconstructed biomass was calculated from
species or genus-specific length-weight relationship acquired
from FishBase (Froese and Pauly, 2018). Squid size (pen
length) and reconstructed biomass were calculated from beak
size according to Zumholz and Frandsen (2006). No attempt
was made to reconstruct the initial biomass of any mammal
prey items (Nielsen et al., 2014) as it would be unrealistic to
assume that an entire large marine mammal, potentially weighing
hundreds or thousands of kilograms, was consumed by the shark.
Therefore, for calculation purposes, the reconstructed biomass
for each mammal prey item was set to be the actual wet mass as
this would conservatively reflect the initial quantity consumed.
Whenever possible, body morphometrics and wet mass of intact
cnidarians (sea anemones), molluscs (gastropods), crustaceans
(amphipods and decapods), echinoderms (sea urchins, sea stars,
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brittle stars, and sea cucumbers), and birds were used to
estimate initial wet mass of digested specimens. The proportion
of reconstructed biomass for each prey category (i.e., “Fish,”
“Mammal,” “Squid,” “Crustacean,” and “Other”) was plotted as
mean values (± SE) for each of the six shark size groups.

Index of Relative Importance
The index of relative importance (IRI) for prey items was
calculated from the number of prey items (N), the reconstructed
biomass of prey items (B) and the frequency of occurrence of prey
items (F) expressed as proportions (%), as described in Nielsen
et al. (2014). For shark size groups with significantly different
15N levels (cf. size group <200 cm, see section “Results”) the
%IRI was calculated for each prey type. %IRI was also calculated
separately for each of the six shark size groups and presented as a
summarized %IRI-score for prey categories (“Fish,” “Mammal,”
“Squid,” “Crustacean,” and “Other”) as well as at family level
within these categories.

Stable Isotopes
Stable isotope analysis of Greenland shark muscle tissue poses
two challenges. Firstly, the muscle tissue is lipid rich which
demands either chemical lipid extraction or mathematical
correction to avoid bias from lipid carbon (Shipley et al.,
2017). Secondly, shark muscle contains urea and trimethylamine
N-oxide (TMAO), which tend to be depleted in 15N relative to
protein N (Carlisle et al., 2017; Shipley et al., 2017). In order to
compare data with the three main studies that present Greenland
shark isotope values (Fisk et al., 2002; Hansen et al., 2012;
and McMeans et al., 2013), we did not extract the TMAO, but
performed lipid extraction. Hence, the δ13C values presented
are from lipid extracted samples, whereas the δ15N values are
from non-lipid extracted samples, thereby circumventing both
the effect of δ13C depleted lipid on δ13C values and the potential
effects of lipid extraction on δ15N values.

White muscle tissue (5–10 g) sampled dorsal to the vertebrae
and anterior to the first dorsal fin, was dried at 60◦C for at least
48 h and split in two aliquots. One sample was lipid extracted
using 5 ml of a 2:1 chloroform/methanol mixture which was put
into a sealed vial. The sample was allowed to extract for 24 h
after which the supernatant was removed. This procedure was
repeated three times. The vial and sample was then rinsed with
another 5 ml of the chloroform/methanol mixture, and the rinsed
sample was allowed to dry for 24 h in a fume hood. Both the lipid
extracted and non-lipid extracted samples were pulverized in an
agate mortar and 0.4–1 mg replicate samples of both aliquots
were packed in tin capsules. The δ15N and δ13C values were
standardized using a Gelatine A (Gel-A) standard with known
isotopic values of δ15N = 5.4h and δ13C = −21.8h. In order to
correct for daily offsets and drift, two or three internal 0.2–0.7 mg
Gel-A standards were assayed every nine or ten tissue samples.

All the samples were analyzed at Department of Bioscience,
Center for Geomicrobiology, University of Aarhus, Aarhus,
Denmark using comparable techniques to previous stable isotope
analysis on Greenland sharks (e.g., Fisk et al., 2002). The samples
were measured by means of Isotope Ratio Mass Spectrometry
in combination with an Element Analyzer and an operational

interface (Thermo Electon Corporation Flash EA 1112 series and
Thermo Scientific Delta V Plus Isotope Ratio MS). Results are
expressed in a δ notation as the deviation from international
standards in parts per thousand (h) according to the formula:

δX =
[( Rsample

Rstandard

)
− 1

]
× 1000

where X is either 13C or 15N, Rsample is 13C/12C or 15N/14N in
the sample, and Rstandard is the ratio for the given standards.
Standards for δ15N were calibrated against atmospheric air.
Statistical analysis was carried out in the statistical computing
program R (R Development Core Team, 2017). Analysis of
variance and post hoc Tukey HSD test were used to evaluate the
variation in δ15N and δ13C values between shark size groups. The
level of significance was P < 0.05.

RESULTS

Sampling and Stomach Contents
A total of 108 Greenland sharks were sampled from May to
September 2012–2017 in inshore and offshore waters (Figure 1).
Males measured from 104 to 372 cm (N = 27) and females
from 81 to 474 cm (N = 79) (Supplementary Table S1). Due to
wounds inflicted by conspecifics during capture, the sex of two
sharks could not be determined. Stomachs were available from
102 specimens. Since fourteen stomachs were empty, 88 stomachs
from sharks ranging in size from 81 to 474 cm were included in
the stomach content analysis (Table 1 and Supplementary Table
S1). The total wet biomass of stomach contents was 462.3 kg
and ranged between 0.029 and 52.0 kg for individual stomachs
(mean ± SD:5.3 ± 9.1 kg). In total, 3.5 kg was categorized as
“Non-prey items” and of the remaining 458.8 kg of stomach
contents, 96.9 % was assigned to one of the following prey
categories: “Fish,” “Mammal,” “Squid,” “Crustacean,” or “Other.”
The remaining 3.1% was made up by non-identifiable digested
biological material. Of the 88 stomachs analyzed, a total of
697 prey items were identified representing 57 different prey
types (Table 2).

Reconstructed Prey Biomass and Index
of Relative Importance
The total reconstructed biomass was 635.3 kg, adding an
additional 176.5 kg to the observed biomass. The reconstructed
biomasses for prey categories showed that “Squid” dominated
the diet for Greenland sharks <200 cm, whereas “Fish”
and “Mammal” were of major importance for all larger size
groups (Figure 2). For these (i.e., sharks >200 cm), “Fish”
constituted approximately 70% of the reconstructed biomass,
and “Mammal” became gradually more prevalent with body
length, increasing from 10 to 20% (Figure 2). For sharks
<200 cm, armhook squid (Gonatus spp.) was present in all
stomachs as the most dominant prey item (%IRI = 93.7,
Table 2). For sharks >200 cm, Atlantic cod (Gadus morhua)
(%IRI = 26.6) and unknown teleost (%IRI = 17.6) were
the main prey followed by Greenland halibut (Reinhardtius
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FIGURE 1 | Capture locations for Greenland sharks (N = 108). Color indicates shark size (TL).

hippoglossoides), skates (Rajidae), lumpfish (Cyclopterus lumpus),
harp seal (Pagophilus groenlandicus), armhook squid, and spotted
wolffish (Anarhichas minor) with %IRIs ranging from 3.2 to
7.9 (Table 2).

The summarized %IRI for each prey category is presented in
Table 3 for the six shark size groups. Common to the four largest
shark size groups (from 251 to 300 cm and larger), was that
gadoids (dominated by Atlantic cod), Unknown teleost, and seal
(dominated by harp seal) had a %IRI > 5 (Table 3). In contrast,
righteye flounders (dominated by Greenland halibut) only had a
%IRI > 5 for the 251–300 cm and 301–351 cm shark size groups
(%IRI of 29.8 and 10.7, respectively), whereas righteye flounders
had a %IRI < 2.5 for the two largest sizes classes (Table 3). Redfish
(Sebastidae) were only important in the largest sharks >400 cm
(%IRI > 5). Skates were of least importance in the largest sharks
>400 cm (%IRI = 2.0), compared to sharks between 201 and
400 cm (%IRI range between 10.3 to 19.8, Table 3).

Stable Isotopes
Samples for stable isotope analysis were available from 40
sharks measuring between 81 and 474 cm (Supplementary
Table S1, Table 1). White muscle δ13C values ranged from
−14.4 to −19.9h and δ15N between 11.8 and 17.2h
(Supplementary Table S1, Figure 3). While there was no
significant difference in δ13C values among size groups
(ANOVA, F4,34 = 0.86, P = 0.5), δ15N values differed
significantly (ANOVA, F4,34 = 5.8, P < 0.05, Figure 4).
Sharks <200 cm had significantly lower δ15N values compared

to the three largest size groups (post hoc Tukey HSD test
P < 0.05) whereas the four largest size groups (251–300 cm,
301–350 cm, 351–400 cm, >400 cm) were not statistically
different (Figure 4). As the δ15N value for the 201–250 cm
size group was based on only one individual, it was not
included in the ANOVA.

DISCUSSION

This study investigated the ontogenetic shift of the diet of
Greenland sharks and found that the smallest sharks (<200 cm)
generally fed at a lower trophic level compared to larger sharks,
both in terms of prey items and isotopic δ15N levels. This finding

TABLE 1 | Overview of number of sharks for each analysis (stomach contents and
stable isotopes) in each of the six size bins.

Size bin Sample size, N

Stomach contents Stable isotopes

<200 8 8

201–250 2 1

251–300 17 5

301–350 25 12

351–400 18 6

>400 18 8

Total 88 40
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TABLE 2 | %F = frequency of occurrence, %N = number of prey items, %B = reconstructed biomass, and %IRI = Index of relative importance, for sharks <200 cm
(N = 8) and >200 cm (N = 80).

Family Common
name

% F % N % B % IRI

<200 cm >200 cm <200 cm >200 cm <200 cm >200 cm <200 cm >200 cm

Fish

Gadus morhua Gadidae Gadoids 26.3 20.0 19.2 26.6

Gadus spp. Gadidae Gadoids 18.8 4.3 4.3 4.2

Micromesistius
poutassou

Gadidae Gadoids 2.5 3.8 0.7 0.3

Boreogadus saida Gadidae Gadoids 2.5 2.1 0.0 0.1

Gadus ogac Gadidae Gadoids 1.3 0.3 0.4 <0.1

Unknown teleost 50.0 9.9 3.7 17.6

Rajidae Rajidae Skates 36.3 5.8 3.3 8.5

Amblyraja radiata Rajidae Skates 8.8 1.7 1.5 0.7

Amblyraja hyperborea Rajidae Skates 7.5 0.9 1.5 0.5

Rajidae, egg case Rajidae Skates 8.8 1.1 0.0 0.3

Reinhardtius
hippoglossoides

Pleuronectidae Righteye
flounders

21.3 6.0 7.0 7.1

Hippoglossoides
platessoides

Pleuronectidae Righteye
flounders

2.5 0.8 0.1 0.1

Unknown flounder Pleuronectidae Righteye
flounders

12.5 1.3 2.2 0.9 0.7 0.2 0.3 <0.1

Cyclopterus lumpus Cyclopteridae Lumpfish 22.5 4.4 7.4 6.9

Anarhichas minor Anarhichadidae Wolffish 13.8 2.7 6.2 3.2

Anarhichas lupus Anarhichadidae Wolffish 12.5 3.8 2.2 0.9 1.9 1.0 0.4 0.2

Anarhichas denticulatus Anarhichadidae Wolffish 2.5 0.3 1.8 0.1

Anarhichas spp. Anarhichadidae Wolffish 6.3 0.9 0.6 0.3

Sebastes mentella Sebastidae Redfish 7.5 2.7 1.6 0.8

Sebastes marinus Sebastidae Redfish 1.3 0.9 0.2 <0.1

Sebastes spp. Sebastidae Redfish 5.0 0.9 0.2 0.2

Lycodes spp. Zoarcidae Eelpouts 8.8 2.1 0.4 0.5

Somniosus
microcephalus

Somniosidae Sleeper shark 1.3 0.2 2.4 0.1

Cottunculus sadko Psychrolutidae Fatheads 2.5 0.3 0.1 <0.1

Cottunculus spp. Psychrolutidae Fatheads 1.3 0.2 0.1 <0.1

Myoxocephalus
scorpius

Cottidae Sculpins 2.5 0.3 0.1 <0.1

Unknown salmonid Salmonidae Salmonids 1.3 0.2 0.3 <0.1

Argentina silus Argentnidae Argentine 1.3 0.2 0.0 <0.1

Scomber scombrius Scombridae Scombrids 1.3 0.2 0.0 <0.1

Macrourus berglax Macrouridae Grenadier 1.3 0.2 0.2 <0.1

Myxine glutinosa Myxinidae Hagfish 1.3 0.3 0.0 <0.1

Mammal

Pagophilus
groenlandicus

Pinnipeds Seal 16.3 2.2 14.4 7.0

Unknown seal Pinnipeds Seal 25.0 25.0 4.4 3.3 0.1 9.1 0.8 5.9

Erignathus barbatus Pinnipeds Seal 12.5 3.8 2.2 0.5 3.7 2.0 0.5 0.2

Pusa hispida Pinnipeds Seal 3.8 0.5 1.5 0.2

Cystophora cristata Pinnipeds Seal 1.3 0.2 0 <0.1

Unknown whale
(blubber)

Cetacea Whale 2.5 0.3 6.3 0.4

Ursus maritimus Ursidae Bear 1.3 0.2 0.1 <0.1

Squid

Gonatus spp. Gonatidae Armhook squid 100 22.5 80.0 10.4 53.3 1,2 93.7 6.8

Histioteuthis spp. Histioteuthidae 12.5 4.4 40.3 3.9

(Continued)
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TABLE 2 | Continued

Family Common
name

% F % N % B % IRI

<200 cm >200 cm <200 cm >200 cm <200 cm >200 cm <200 cm >200 cm

Crustacean

Infraorder

Eurythenes gryllus Lysianassida Amphipod 2.5 2.8 0.0 0.2

Hyas spp. Brachyura Crab 10.0 2.4 0.1 0.6

Chionoecetes opilio Brachyura Crab 2.5 0.3 0.1 <0.01

Lithodes maja Brachyura Crab 1.3 0.2 0.0 <0.01

Pandalus borealis Caridea Shrimp 1.3 0.2 0.0 <0.01

Pandalus spp. Caridea Shrimp 12.5 1.3 2.2 0.2 <0.1 0.0 0.2 <0.01

Sclerocrangon boreas Caridea Shrimp 1.3 0.2 0.0 <0.01

Pasiphaea spp. Caridea Shrimp 1.3 0.5 0.0 <0.01

Colossendeis proboscida Colossendeidae Marine sea spider 12.5 2.2 <0.1 0.2

Other

Unknown auk Auk 2.5 0.3 0.2 <0.01

Ophiuroidea Brittle star 8.8 0.1 0.1 <0.01

Holothuroidea Sea cucumber 2.5 0.3 6.3 <0.01

Arctinaria Sea anemone 1.3 0.1 2.0 <0.01

Echinoidae Sea urchin 1.3 0.2 1.5 <0.01

Solasteridae Sun star 1.3 0.2 0.2 <0.01

Asteroidea Starfish 3.8 0.2 0.2 <0.01

Gastropoda Snail 17.5 0.1 0.0 <0.01

Non-prey items (%F): <200 cm: Amphipods 25; >200 cm: Macro algea 11,3, Bivalvia 5.0, Porifera 3.8, amphipod 26.3, rock 21.3, fishing equipment 8.8, metal 2.5 For
sharks <200 cm, reconstructed biomass is 10.8 kg for 45 prey items. For sharks >200 cm, reconstructed biomass is 624.5 kg for 652 prey items.

FIGURE 2 | Proportional composition of reconstructed biomass of prey
categories (“Fish,” “Mammal,” “Squid,” “Crustacean,” and “Other”) in the
different shark size categories, for the 88 sharks with non-empty stomachs.
Reconstructed biomass of each prey category is plotted as mean ± SE and
the sample size (N) is given for each shark size category.

mirrors observations by Fisk et al. (2002), who reported lower
δ15N values in two 135 cm sharks compared to fifteen specimens
>250 cm. We also observed that the stomach contents of the
<200 cm sharks were mainly armhook squid and the δ15N
values were similar to that of other squid-feeding predators of

the North Atlantic (Hooker et al., 2001; Mendes et al., 2007).
The δ15N values of larger sharks >200 cm indicated a diet
consisting of higher trophic level prey such as large piscivorous
fishes and seals corresponding with stomach content results
for these size classes, which primarily consisted of Atlantic
cod, Greenland halibut and seals (see stable isotope values for
Greenlandic marine food webs in Hansen et al., 2012). Taken
together, the stomach contents and δ15N analyses suggests an
ontogenetic shift from small (<200 cm), primarily squid-eating
sharks, to larger (>200 cm), fish and mammal-eating sharks.
However, sample size was limited for sharks from 201 to 250 cm,
making it challenging to determine at which exact size the
ontogenetic shift occurs.

When investigating the feeding ecology of a species, it is
important to combine data of stomach contents and stable
isotopes because stable isotopes provide an integrated and
long-term estimate of trophic position that cannot be inferred
from stomach content (Hobson and Welch, 1992; Christiansen
et al., 2012). Although, stomach content analysis enables prey
species identification and provides a detailed snapshot of recently
ingested prey, regurgitation during capture and varying rates
of digestion can skew the stomach content results leading
to spurious conclusions, especially when sample size is small
(Wetherbee et al., 2012). In this study, armhook squid was the
single most important prey for the smallest sharks (<200 cm,
%IRI = 97.6, Table 2), and was also relatively important in
sharks >200 cm (%IRI = 6.8, Table 2), and more specifically,
for 351–400 cm sharks (%IRI = 27.1, Table 3). For the
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reasons described below, we are not convinced that IRI-levels
accurately reflect the importance of squids for larger sharks
>200 cm. Firstly, one Greenland shark of 351 cm (GS17,
Table 1) contained 32 squid beaks making this single observation
accountable for 29% of all armhook squid observations in
sharks >200 cm. Secondly, the contribution of the reconstructed
biomass to the squid IRI-score is minimal but driven by a
high frequency of occurrence (F) and numerical abundance
(N) which is different from sharks <200 cm where all IRI
parameters (F, N, and B) were high for squids. Thirdly, squids
were much smaller (pen length mean ± SD: 16.8 ± 6.88 cm,
N = 88) than prey items of >200 cm Greenland sharks
typically measuring 21.3–68.8 cm in length (Nielsen et al.,
2014). Lastly, the vast majority of squid observations were
based on hard-to-digest chitin beaks, which for large sharks,
especially, are prone to be derived from secondary stomach
contents of large fully swallowed and digested prey like seal,
Greenland halibut and Atlantic cod (a “matrijoska effect”).
Based on the arguments outlined above, we believe that the
importance of squids for sharks >200 cm is overestimated by
our IRI calculations. In contrast, however, we believe that squids
are very important for <200 cm sharks as indicated by their
numerical abundance, frequency of occurrence, reconstructed
biomass, and by δ15N values. The prominence of Atlantic
cod (%IRI = 26.6) in the diet of sharks >200 cm was to
some extent, also driven by observations from only few sharks,
with 69% of all cod observations (87 of 127 specimens) being
present in only two stomachs. However, Atlantic cod were
recorded in 26% of all stomachs and are (in contrast to
squids) very unlikely to be consumed secondarily. Thus the
generally high importance of Atlantic cod seems a reasonable
conclusion, which together with skates, seals, Greenland halibut,
lumpfish, and wolffish are the most important prey for
sharks >200 cm.

Our findings also show that prey fishes differ between shark
size groups. For example, righteye flounder (mainly Greenland
halibut, Table 3) were among the most important prey for
sharks between 251 and 350 cm, but of limited importance
to larger sharks (i.e., 351–400 and >400 cm). Furthermore,
despite redfish being abundant across the Greenland continental
shelf (ICES, 2017), they were only an important part of the
diet among the largest sharks (>400 cm). Females this size
from Iceland shelf waters have also been reported to feed
predominantly on redfish (McMeans et al., 2010) suggesting
some degree of prey selectivity. For sharks >400 cm, the scarcity
or complete lack of deep sea fishes such as Greenland halibut,
grenadiers and slickheads (Alepocephalidae) in the stomachs is
noteworthy and is supported by depth records from a recent
tagging study in Greenland waters (Nielsen, 2018), which found
that >400 cm females do not spend much time at depths
>800 m. Instead, females this size seem to mainly occupy
and forage on the continental shelf and the upper part of the
continental slope.

The apparent shift in diet between small and large sharks
was corroborated by significantly lower δ15N values in sharks
of <200 cm compared to sharks >200 cm. As noted in the
Section “Materials and Methods” we did not attempt to extract
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TMAO and urea from the samples, though these compounds
have been shown to lower the δ15N values to a variable
extent (Carlisle et al., 2017). As we primarily used the isotopic
values to compare between shark size groups, we believe any
TMAO and urea produced bias in δ15N would be expected to
have a similar effect across size groups. Hansen et al. (2012)
analyzed Greenland shark samples from the same areas around
Greenland (lengths 270 to 473 cm) and found average δ15N
values of 16.7h which is similar to our values. Greenland
sharks from Svalbard (lengths 245 to 404 cm) were reported

FIGURE 3 | Bi-plot of δ13C and δ15N values for the 40 sharks ranging in size
from 81 to 474 cm. The diameter of circles are proportional to the TL (cm) of
the individual shark.

by McMeans et al. (2013) to have average values of 15.9
(δ15N) and −18.6 (δ13C), which are also very similar to the
ones reported here. In contrast, the δ13C values found by
Hansen et al. (2012) were approximately 2h higher (−15.6h
compared to −17.6h in our study). While the reason for the
discrepancy between the two values is not clear, it could be
due to varying isotopic baselines in different areas of Greenland

FIGURE 4 | Boxplot [10th percentile, first quartile, median (dashed line), mean
(full line) third quartile, and 90th percentile, dots represent outliers] of δ15N
plotted against shark size categories. Different letters show significant
differences between size categories.

FIGURE 5 | (a) The characteristic circular gape shape of a Greenland shark (Photo: J. Nielsen). (b) Harp seals of 14 kg (top) and 19 kg (bottom) found in stomach of
a 470 cm Greenland shark (Photo: J. Nielsen). (c) Circular bite marks on a freely swimming beluga whale (from MacNeil et al., 2012). (d) Seal chunks of skin,
blubber, meat and ribs from shark stomach (Photo: J. Nielsen).
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(Hansen et al., 2012), as well as differences in the average size of
the sharks examined in the different studies. Fisk et al. (2002)
found δ15N values similar to this study, but had more depleted
δ13C values, which may be attributed to their use of toluene as
solvent to remove lipids.

For decades, scientists have noted the discrepancy between the
lethargic appearance of the Greenland shark and the potentially
faster moving prey species found in their stomachs (Jensen,
1914; Bigelow and Schroeder, 1948; Hansen, 1963; Watanabe
et al., 2012) which has raised the question as to whether
Greenland sharks are capable of active hunting or mainly feed
as scavengers (Leclerc et al., 2012; Nielsen et al., 2014; Edwards
et al., in press). Greenland shark scavenging events have been
documented (Leclerc et al., 2011) but observations made in
our study provide supporting evidence that Greenland sharks
also are capable of active predation on fast swimming seals
and large epibenthic fishes such as Atlantic cod and Greenland
halibut. For example, we have observed circular bite wounds on
large prey (Figures 5a,d) matching wounds observed on free
swimming marine mammals (Figure 5c, Idrobo and Berkes, 2012
and MacNeil et al., 2012). Furthermore, two intact and freshly
ingested seals were found without any scavenging fauna common
for carcasses (Figure 5b) suggesting that the seals had been
swallowed during a recent hunting event (Leclerc et al., 2012).
How Greenland shark catch fast swimming prey such as seals
remains to be resolved (Edwards et al., in press), but is has been
suggested that predation occurs on seals sleeping in the water
column (Leclerc et al., 2012).

In conclusion, Greenland shark display a marked ontogenetic
shift in trophic relationships from a squid diet in small sharks
(<200 cm) to a diet dominated by fishes and seals in larger
sharks (>200 cm). As the diet reflects available prey for given
geographic areas and depths, how may we define Greenland
shark in terms of feeding behavior? The squid diet for juvenile
Greenland sharks is interesting and suggests a specialized feeding
behavior where younger animals actively select squid, whereas
larger animals appear generalists mainly feeding on demersal
fishes and seals in addition to a minor proportion of benthic
invertebrates. Clearly better information on the distribution,
behavior and environments occupied by Greenland shark of

different size and age is needed to clarify the understanding of the
trophic relationships for this migratory and long-lived species.
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