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A B S T R A C T
Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are challenged by cytotoxic effects
of the conditioning regimen, resulting in tissue damage, systemic inflammation, and increased metabolic
demands for amino acids to regenerate damaged tissues, reconstitute hematopoietic cells, and establish antioxi-
dant defenses. To date, few studies have addressed the role of plasma amino acid (PAA) levels during transplanta-
tion, and it remains unknown if amino acid deficiency can aggravate treatment-related morbidity. We
determined plasma levels of the 23 human amino acids in 80 HSCT recipients (age 1.1 to 55.4 years) before condi-
tioning and on days +7 and +21 post-transplant along with C-reactive protein (CRP) and IL-6 levels on day +7. Sig-
nificant changes were observed in plasma concentrations of several human amino acids during HSCT. On day +7,
numerous amino acids were inversely correlated with both CRP and IL-6, including glutamic acid, serine, alanine,
glutamine, arginine, cysteine, glycine, histidine, lysine, tryptophan, threonine, taurine, proline, and methionine
(r = -.22 to -.66; all P < .05). Patients who developed sinusoidal obstruction syndrome (SOS) had significantly
lower mean total PAA levels compared with patients without SOS (2013 ng/L [95% confidence interval (CI), 1709
to 2318 ng/L] versus 2706 ng/L [95% CI, 2261 to 3150 ng/L]; P = .006), along with lower individual levels of gluta-
mic acid, serine, arginine, glycine, lysine, valine, tryptophan, threonine, and proline on day +7 (all P< .05). Patients
with severe acute graft-versus-host disease had a lower mean total PAA level (1922 ng/L [95% CI, 1738 to 2106 ng/L]
versus 2649 ng/L [95% CI, 2244 to 3055 ng/L]; P = .014) and lower levels of serine, glutamine, cysteine, glycine, lysine,
and threonine on day +7 (all P < .05). These results indicate a relationship between low concentrations of certain
amino acids and the risk of treatment-related complications.

© 2019 American Society for Blood andMarrow Transplantation.
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INTRODUCTION
Although allogeneic myeloablative hematopoietic stem cell

transplantation (HSCT) has improved survival in patients with
severe hematologic diseases, this treatment is challenged by
severe adverse events due to immunosuppression, acute graft-
versus-host disease (aGVHD), and direct cytotoxicity of the
conditioning regimen [1].

Cytotoxic effects of the conditioning reach a maximum dur-
ing the first 3 weeks after transplantation, and the resulting
release of antigens from necrotic tissue, bacterial translocation
from the gastrointestinal tract, and release of proinflammatory
cytokines result in a condition of metabolic stress comparable
to critical illnesses such as sepsis and trauma. This condition is
accompanied by an increased metabolic rate and accelerated
catabolism, proteolysis, and gluconeogenesis [2�6]. During
this phase, the metabolic demand for amino acids involved in
tissue repair, regeneration of the hematopoietic cells, antioxi-
dant defenses, and production of acute phase reactants is
highly elevated [5,7]. The synthesis of acute phase reactants
and antioxidants by the liver is thought to play a role in balanc-
ing proinflammatory and anti-inflammatory mechanisms by
inducing negative feedback on the inflammatory response and
limiting oxidative damage, thereby favoring regenerative
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Table 1
Patient and Transplantation Characteristics

Characteristic Value

All patients, N (%) 80 (100)

Male sex, n (%) 48 (60)

Age at transplantation, yr, median (range)

Recipients 17.0 (1.1-55.4)

Donors 30.0 (.0-60.8)

Disease at transplantation, n (%)

Acute lymphoblastic leukemia 25 (31)

Acute myelogenous leukemia 19 (24)

Other leukemia 5 (6)

Myelodysplastic syndrome 10 (13)

Non-Hodgkin lymphoma 2 (2)

Multiple myeloma 1 (1)

Severe aplastic anemia 6 (8)

Immunodeficiency 7 (9)

Other nonmalignant disease 5 (6)

Donor type, n (%)

HLA-identical siblings 18 (23)

HLA-matched unrelated donors 54 (67)

HLA-mismatched unrelated donors 8 (10)

Stem cell source, n (%)

Bone marrow stem cells 57 (71)

Peripheral blood stem cells, G-CSF-mobilized 15 (19)

Umbilical cord blood stem cells 8 (10)

Conditioning regimen, n (%)

TBI + cyclophosphamide or etoposide 45 (56)

Busulfan + cyclophosphamide 17 (22)

Cyclophosphamide + fludarabine 9 (11)

Other high-dose chemotherapy 9 (11)

Antithymocyte globulin as part of conditioning, n (%) 37 (46)

GVHD prophylaxis, n (%)

Cyclosporine +methotrexate 69 (86)

Cyclosporine + corticosteroids 3 (4)

Cyclosporine alone 8 (10)

Cytomegalovirus IgG mismatch, n (%)

Seronegative donor to seropositive recipient 24 (30)

Seropositive donor to seronegative recipient 9 (11)
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processes while limiting the degree of systemic inflammation,
which has been associated with increased treatment-related
morbidity and mortality after HSCT [4,8,9].

The majority of HSCT recipients suffer from varying degrees
of mucositis, resulting in limited food intake and malnutrition,
which is further intensified by significant catabolism of muscle
tissue to meet the increased demand for amino acids in pro-
duction of antioxidants and acute phase reactants [5,10].

It has previously been suggested that an insufficient intake
of amino acids could adversely affect the production of antioxi-
dants (e.g. glutathione), thereby compromising antioxidant
defenses and inducing an increase in the inflammatory response
[7,11�13].

To date, few studies have addressed amino acid levels dur-
ing HSCT, and whether amino acid deficiency may aggravate
treatment-related morbidity remains unknown. In the present
study, we aimed to determine free plasma amino acid (PAA)
levels before and after transplantation and to investigate asso-
ciations with systemic inflammation and treatment-related
complications. We hypothesized that low PAA levels during
HSCT could be associated with high proinflammatory activity
and related complications, including sinusoidal obstruction
syndrome (SOS) and aGVHD.

METHODS
Study Population

We prospectively recruited 80 patients (age 1.1 to 55.4 years) undergoing
their first allogeneic HSCT at Rigshospitalet in Copenhagen between June 2010
and January 2013. All patients received pretransplantation myeloablative con-
ditioning based on total body irradiation (TBI) combined with chemotherapy
(n = 45) or chemotherapy alone (n = 35). The study was approved by the local
Ethics Committee (reference H-1-2010-009) and conducted in accordance
with the Declaration of Helsinki. Written and oral informed consent was
obtained for all patients. Clinical characteristics of the patients are listed in
Table 1 and have been published previously [14,15].

Quantification of PAAs, Urea, and Creatinine
Blood samples used for amino acid analysis were collected at 3 time points

during HSCT: before initiation of the conditioning regimen (baseline) and on
days +7 and +21 post-transplantation. Blood was collected in lithium-heparin
anticoagulated tubes and centrifuged shortly after collection, after which
plasma was isolated and stored at -80 °C within 2 hours after sampling. Free
plasma concentrations of the 23 human amino acids were determined by
reverse-phase high-performance liquid chromatography of their phenyl iso-
thiocyanate derivatives (PicoTag, Waters, Woburn, MA), as reported previously
[16]. Total PAA level was calculated as the sum of all individual amino acid lev-
els. Plasma levels of urea and creatinine were measured daily during hospitali-
zation as part of the general clinical routine. An elevated urea/creatinine ratio
can be caused by various conditions, including prerenal azotemia, gastrointes-
tinal hemorrhage, and a severe catabolic state [17,18]. In our study, urea/creati-
nine ratio served as a measure of protein catabolism by calculating levels
during transplantation as percentages of pretransplantation levels. To account
for age- and sex-related differences in the normal ranges of creatinine and
urea, we used the preconditioning value (day -7) as a reference and calculated
values for the subsequent days as percent of baseline, making it possible to
pool all patients in the analyses.

Inflammatory Parameters
EDTA anticoagulated blood was collected on day +7, and plasma was iso-

lated and analyzed for IL-6 using the Human Th1/Th2/Th17 Cytometric Bead
Array Kit and a FACSCalibur flow cytometer (Becton Dickinson A/S, Albert-
slund, Denmark). This time point was selected based on previous observations
of peaking IL-6 levels at this stage [19]. The limit of detection was 2.5 pg/mL.
Levels of C-reactive protein (CRP) were measured daily during hospitalization
using the Modular P module (Roche, Basel, Switzerland).

Parenteral Nutrition and Use of Glucocorticoids
We extracted the number of days on parenteral nutrition (PN) for each

patient during the course of HSCT. Data on the administration of glucocorticoids
during HSCT were collected and converted to prednisolone equivalents/kg.

Screening for SOS
Patients were retrospectively evaluated for occurrence of SOS using the

modified Seattle criteria [20,21]. For a diagnosis of SOS, 2 of the following 3
criteria must be present within the first 20 days after transplantation: >2%
weight gain from baseline, serum bilirubin >34 mmol/L, and hepatomegaly
with right upper quadrant pain. Patients were weighed daily during hospital-
ization, and total bilirubin levels were measured using Modular P module
(Roche, Basel, Switzerland).

Statistical Analyses
Mixed-model repeated-measures analyses were used for paired compari-

sons between baseline values of PAAs and the subsequent time points, as well as
for analyses of changes in urea and creatinine levels. Correlation analyses were
performed using Spearman's rank-order correlation analysis. Nonparametric sta-
tistics were applied in analyses where the inflammatory parameters were
included, because these were not normally distributed. The Kruskal-Wallis non-
parametric univariate test was used for comparison of continuous variables
between groups owing to the small patient numbers in each subgroup. A 2-sided
P value <.05 was considered statistically significant. All statistical analyses were
performed using SAS version 9.4 (SAS Institute, Cary, NC).

RESULTS
Changes in PAA Levels During HSCT

Table 2 shows the development for each amino acid during
the period. Total PAA level remained relatively unchanged dur-
ing and after HSCT; the mean total PAA concentration was
2390 ng/L (95% confidence interval [CI], 2158 to 2622 ng/L)
before conditioning, 2548 ng/L (95% CI, 2317 to 2779 ng/L) on



Table 2
PAA Levels During HSCT

Amino Acid Preconditioning Level, ng/L,
mean (95% CI)

Level on Day +7, ng/L, mean (95% CI) P Value Level on Day +21, ng/L, mean (95% CI) P Value

Aspartate 4 (3-5) 2 (1-3) .03 2 (1-3) .03

Glutamic acid 57 (43-70) 59 (46-73) .78 66 (52-81) .31

Serine 100 (83-117) 118 (102-135) .10 87 (69-104) .28

Alanine 300 (253-347) 282 (236-329) .60 266 (218-315) .33

Glutamine 528 (498-558) 473 (444-503) .003 560 (528-590) .10

Arginine 42 (23-61) 70 (51-89) .04 51 (31-71) .51

Asparagine 38 (35-42) 24 (21-28) <.0001 32 (29-36) .005

Citrulline 14 (12-15) 3 (2-5) <.0001 8 (7-10) <.0001

Cysteine 29 (25-32) 30 (27-34) .37 43 (40-46) <.0001

Glycine 187 (153-222) 219 (184-253) .19 218 (183-254) .21

Histidine 49 (43-55) 47 (42-53) .66 42 (37-48) .07

Isoleucine 55 (46-64) 58 (49-67) .64 48 (39-57) .23

Leucine 102 (88-116) 138 (124-151) .0002 98 (84-112) .70

Lysine 132 (117-147) 138 (123-153) .56 136 (120-151) .76

Valine 180 (163-197) 252 (236-269) <.0001 185 (168-202) .63

Tryptophan 38 (35-42) 47 (44-51) .0001 40 (37-44) .39

Threonine 96 (84-108) 107 (95-119) .19 110 (98-122) .09

Taurine 34 (30-38) 38 (35-42) .07 39 (35-42) .05

Tyrosine 65 (60-70) 54 (49-59) .0002 54 (49-60) .0005

Proline 212 (180-244) 200 (169-232) .60 172 (140-205) .08

Phenylalanine 47 (38-56) 94 (85-103) <.0001 66 (57-75) .003

Ornitine 62 (56-67) 61 (56-66) .89 55 (50-60) .06

Methionine 20 (13-27) 30 (23-37) .04 26 (19-33) .22

Total 2390 (2158-2622) 2548 (2317-2779) .34 2412 (2172-2652) .90

Significant P values are in bold type.
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day +7, and 2412 ng/L (95% CI, 2172 to 2652 ng/L) on day +21.
For the individual amino acids, significant decreases from pre-
conditioning level to day +7 were found for tyrosine, aspartate,
glutamine, asparagine, and citrulline, and all values remained
low on day +21 with the exception of glutamine, which
returned to preconditioning level.

Increases were observed for leucine, valine, tryptophan,
methionine, arginine, and phenylalanine from preconditioning
to day +7, and of these, only phenylalanine remained elevated
on day +21. In addition, increases were observed for taurine and
cysteine on day +21 compared with preconditioning values.

Changes in Creatinine and Urea During HSCT
We analyzed creatine and urea levels to identify any

change in urea/creatine ratio indicating increased amino acid
metabolism. Before conditioning, 2 patients had slightly ele-
vated renal parameters, with a maximum creatinine level of
110 mmol/L.

To account for age- and sex-related differences in the nor-
mal ranges of creatinine and urea, we used the baseline value
(on day -7) as a reference and calculated values for the subse-
quent days as percentages of preconditioning levels. Changes
in creatinine and urea levels and urea/creatinine ratio from
baseline to day +21 are shown in Figure 1.

We found significant increases from preconditioning levels
in both urea and urea/creatinine ratio from day 0 onward (all
P < .05). Peak urea levels were found on day +21 (mean, 200%;
95% CI, 171% to 229%; P < .0001), whereas the peak urea/creat-
inine ratio was seen on day +11 (207%; 95% CI, 182% to 132%;
P < .0001) and remained elevated to day +21. Creatinine levels
was significantly elevated from baseline only between days
+19 and +21.
PN and Use of Glucocorticoids
During the course of transplantation, 73 patients (91%)

received PN, for a median of 16 days (interquartile range [IQR],
12 to 21), from day -7 to day +21. No associations were found
between total PAA levels on days +7 and +21 and cumulative
days on PN.

Twenty-six patients (33%) received glucocorticoids between
day -7 and day +21. All patients started treatment after day 0,
and only 4 patients were treated before day +7. The median
cumulative dosage of prednisolone during this period was
0 mg/kg (Range .0 to 27.38 mg/kg). The use of PN and glucocor-
ticoids was distributed equally in pediatric and adult patients.

Associations with Patient Characteristics
Total PAA level before conditioning were independent of

patient age, sex, and diagnosis. The mean levels were signifi-
cantly higher in children (defined as age <16 years) compared
with adult patients on day +7 (2727 ng/L [95% CI, 2343 to 3110
ng/dL] versus 2382 ng/L [95% CI, 1789 to 2975 ng/dL]; P = .002)
and on day +21 (2654 ng/L [95% CI, 2377 to 2931 ng/dL] versus
2177 ng/L [95% CI, 2043 to 2311 ng/dL]; P = .0007). No differen-
ces in PAA levels during HSCT were observed between patients
who received TBI and those who did not receive TBI or between
patients with different donor types, donor matches, stem cell
sources, or diagnoses (malignant versus benign diseases).

Systemic Inflammation
CRP levels before the start of conditioning were within the

normal range (median, 3.6 pg/mL; IQR, 1.4 to 10.0 pg/mL). CRP
peaked at approximately 1 week after transplantation, with a
median value of 55.2 pg/mL (IQR, 13.0 to 17.0 pg/mL) on day +7,
followed by a gradual decline to a median of 6.6 pg/mL (IQR, 2.0



Figure 1. Mean plasma levels of urea and creatinine and the urea/creatinine
ratio during the course of HSCT from baseline (before the start of conditioning)
to day +21 post-transplantation, reported as percentage of preconditioning
levels. Day 0 refers to the day of transplantation. The dotted line represents
95% CI.
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to 23.2 pg/mL) on day +21. In addition, the median IL-6 level on
day +7 was elevated to 35.2 pg/mL (IQR, 12.5 to 105.6)
pg/mL) (reference value,<5 pg/mL in healthy controls).

We investigated associations between PAA levels andmarkers
of inflammation and found that total PAA levels on day +7 were
negatively correlated with both CRP (r = -.52; P < .0001) and IL-6
(r = -.62; P < .0001) levels on day +7 post-transplantation. In
addition, several individual amino acids were inversely correlated
with both CRP and IL-6, with the strongest correlations for serine,
glutamine, glycine, arginine, and threonine (all P < .001)
(Figure 2), followed by glutamic acid, alanine, cysteine, histidine,
tryptophan, taurine, proline, and methionine (all P< .05). On day
+21, negative correlations were found between CRP and total
PAA as well as for serine, alanine, glutamine, asparagine, glycine,
isoleucine, leucine, lysine, and threonine, whereas a positive
association was found between phenylalanine and CRP (Table 3).

In children, but not in adults, we found a significant positive
correlation between days on PN and levels of the inflammatory
parameters IL-6 (r = .41; P = .008) and CRP (r = .49; P = .002) at
day +7.

Treatment-Related Inflammatory Complications
Eighteen patients developed SOS, with a median onset at

day +9 (IQR, days +5 to +10). These patients are described in
Supplementary Table S1. The patients who developed SOS had
a significantly lower total mean PAA level on day +7 compared
with those without SOS (2013 ng/L [95% CI, 1709 to 2318 ng/L]
versus 2706 ng/L [95% CI, 2261 to 3150 ng/L]; P = .006). No sig-
nificant associations between SOS status and total PAA levels
were found at other time points. Regarding the individual
amino acids, patients with SOS had lower levels of glutamic
acid (P = .028), serine (P = .013), arginine (P = .015), glycine (P =
.004), lysine (P = .0008), valine (P = .048), tryptophan
(P = .0007), threonine (P = .003), and proline (P = .031) on day
+7 compared with patients without SOS (Figure 3). No associa-
tions were found between SOS and the cumulative days on PN
or use of glucocorticoids.

Eleven patients developed grade III-IV aGVHD, with a median
onset on day +16 (IQR, days +11 to +29). Of these, 6 patients had
severe gastrointestinal aGVHD. Patients developing severe
aGVHD had lower mean total PAA levels on day +7 (1922 ng/L
[95% CI, 1738 to 2106 ng/dL] versus 2649 ng/L [95% CI, 2244 to
3055 ng/dL]; P = .014), as well as lower levels of serine (P = .004),
glutamine (P = .029), cysteine (P = .021), glycine (P = .034), lysine
(P = .047), and threonine (P = .010) on day +7, but these associa-
tions with aGVHD were not observed at other time points.
Patients with severe aGVHD received significantly higher doses
of glucocorticoids (mean, .0mg/kg [95% CI, .0 to 1.9 mg/kg] versus
8.9 mg/kg [95% CI, .0 to 20.0 mg/kg]; P < .0001). No association
was found between aGVHD and cumulative days on PN.

We evaluated the aforementioned significant associations in
multivariate analyses. Regarding SOS, we adjusted for recipient
age and the use of TBI, cyclophosphamide and busulfan as part of
conditioning. In these analyses, higher total PAA levels on day +7
remained associated with a decreased risk of SOS (odds ratio, .88;
95% CI, .76 to 1.00 per 100 ng/L increase in total PAA level;
P = .05). Associations also remained significant for some individual
amino acids, including lysine (P = .004), valine (P = .043), trypto-
phan (P = .004), and threonine (P = .012).

For aGVHD, we adjusted for recipient age, donor type (HLA-
matched sibling, HLA-matched unrelated, or HLA-mismatched
unrelated donor), use of antithymocyte globulin, and TBI. No
significant association was found between total PAA level and
the risk of aGVHD (odds ratio, .88; 95% CI, .74 to 1.04) per
100 ng/L increase in total PAA level (P = .13).

DISCUSSION
In this study, we investigated associations between PAA

levels and systemic inflammation and treatment-related com-
plications during the early phase after transplantation. We
found that low levels of several human amino acids are associ-
ated with elevated levels of proinflammatory markers, as well
as with the development of SOS and severe aGVHD.



Figure 2. Spearman's rank-order correlation between PAA and inflammatory parameters. Plasma levels of serine, threonine, glycine, lysine, and glutamine on day +7
post-transplantation were correlated with same-day levels of CRP (left) and IL-6 (right).
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Table 3
Spearman's Rank-Order Correlation Analyses Between PAA Levels and Same-Day Inflammatory Parameters

Amino acid CRP day +7 IL-6 day +7 CRP day +21

r P Value r P Value r P Value

Aspartate -.15 .202 -.07 .573 -.10 .412

Glutamic acid -.22 .050 -.27 .025 -.17 .166

Serine -.50 <.0001 -.41 .0004 -.36 .003

Alanine -.33 .003 -.44 .0001 -.24 .050

Glutamine -.44 <.0001 -.53 <.0001 -.53 <.0001

Arginine -.46 <.0001 -.56 <.0001 -.17 .160

Asparagine -.03 .780 -.30 .012 -.31 .010

Citrulline -.15 .204 -.12 .316 -.30 .013

Cysteine -.27 .016 -.24 .043 -.19 .131

Glycine -.53 <.0001 -.61 <.0001 -.43 .0003

Histidine -.41 .0002 -.46 <.0001 -.23 .061

Isoleucine -.09 .452 -.19 .122 -.38 .002

Leucine -.09 .444 -.11 .356 -.26 .030

Lysine -.51 <.0001 -.66 <.0001 -.38 .002

Valine -.31 .006 -.21 .079 -.21 .082

Tryptophan -.34 .002 -.30 .013 .01 .939

Threonine -.56 <.0001 -.61 <.0001 -.40 .0007

Taurine -.42 .0001 -.32 .007 -.07 .581

Tyrosine .05 .646 -.02 .897 .06 .606

Proline -.43 <.0001 -.42 .0003 -.15 .235

Phenylalanine .06 .588 .22 .060 .46 <.0001

Ornitine -.08 .470 -.05 .668 -.19 .115

Methionine -.33 .004 -.29 .013 -.17 .173

Total -.52 <.0001 -.62 <.0001 -.44 .0002

Significant P values are in bold type.
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To date, few studies have investigated amino acid levels dur-
ing HSCT, and those studies are limited by small patient samples,
of 10 and 11 patients, respectively [22,23]. To our knowledge,
associations between amino acids and systemic inflammation
and related early complications have not been investigated previ-
ously. Although these studies investigated PAA levels at different
time points (i.e. on day 0 and day +14, respectively), we can con-
firm previous findings of significant decreases in asparagine,
Figure 3. Amino acid levels according to a diagnosis of SOS. Associations between pl
acid, and proline on day +7 and occurrence of SOS.
histidine, and glutamine levels, as well as increases in leucine,
phenylalanine, valine, andmethionine early after transplantation.
Our findings of elevated arginine, taurine, cysteine, and tyrosine
levels are in contrast to these previous studies, and we were not
able to confirm the previously reported changes in plasma levels
of serine, alanine, ornithine, isoleucine, and threonine.

Myeloablative conditioning regimens expose patients to
high-dose chemotherapy with or without TBI, resulting in
asma levels of serine, glycine, arginine, tryptophan, threonine, lysine, glutamic
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severe systemic toxicity [2,24]. Antigens released from necrotic
tissue and endotoxins translocated through disrupted epithe-
lial barriers are responsible for the systemic inflammatory
response seen in the early post-transplantation period with
the release of proinflammatory cytokines such as TNF-a, IL-1,
and IL-6 [25�27]. This response stimulates the synthesis
of acute phase reactants and endogenous antioxidants, which
act as mediators of the immune system with various physio-
logical effects, including inhibition of pathogens, negative
feedback on the proinflammatory response, and regulation of
the coagulation system. This serves the purpose of eliminating
pathological actors while preventing a harmful systemic
inflammatory response [28,29]. Dissemination of the inflam-
mation and a dysregulated host response may increase mor-
bidity and mortality in a wide range of critical illnesses [30].

Diseases with inflammatory reactions result in changes in
the endogenous metabolism, with an increased metabolic
demand for amino acids due to proliferation of immune cells,
cytokine and antibody production, as well as regenerative
mechanisms and synthesis of acute phase reactants and antioxi-
dants [5,7,31]. When this demand is not met by an increase in
supply, the body may gain amino acids from its “reservoir”
through muscle catabolism [32�34]. In the short term, this
might be considered an adaptive response, but the progressive
loss of muscle may become problematic, and a high extent of
reduced muscle mass in critical illness is related to poor survival
and slow recovery. Because the composition of amino acids in
muscle tissue differs somewhat from the profile needed in the
production of proinflammatory and anti-inflammatory compo-
nents, the amino acid turnover is greatly increased [7].

In the present study, we found an overall increase in urea
level and the urea/creatinine ratio, indicating increased amino
acid turnover in our patient population. Furthermore, we
found increases in plasma leucine and valine levels, supporting
the theory of significant muscle protein breakdown. Support-
ing these findings, a previous study that investigated protein
turnover in HSCT found significant increases in leucine levels
and decreases in nitrogen balance, in line with our findings of
increased amino acid turnover [35].

Generally, metabolic stress in a critically ill patient results
in an overall catabolic state with peripheral insulin resistance
and decreased synthesis of anabolic hormones, such as insulin,
insulin-like growth factor 1, and testosterone [36�38]. This
may leave the patient in a state of anabolic resistance, in which
muscle protein synthesis may be impaired despite a sufficient
nutrient intake, contributing to the decreased muscle mass [5].
This has been demonstrated in patients with severe burns or
sepsis, in whom supplementation of amino acids did not result
in increased muscle protein synthesis or improved whole-
body net protein balance [39�41].

In the setting of HSCT, the daily recommended intake of
energy resources and proteins is rarely met. Patients suffer
from varying degrees of mucositis and its clinical manifesta-
tions of abdominal pain, anorexia, nausea and vomiting, result-
ing in limited food intake. In many cases, enteral nutrition or
PN supplementation is required [42]. These patients are further
challenged by a damaged intestinal barrier, rendering them
even more susceptible to stress metabolism and progressive
loss of muscle tissue [43].

In this study, we found associations not only between high
levels of systemic inflammation and low total PAA levels, but
also between systemic inflammation and low levels of a wide
range of individual amino acids, including serine, glutamine,
glycine, lysine, arginine, threonine, glutamic acid, alanine, cys-
teine, histidine, tryptophan, taurine, proline, and methionine.
Interestingly, many of these amino acids are involved in the
synthesis of anti-inflammatory mediators. Endogenous antiox-
idants and acute phase reactants (e.g. glutathione, glutathione
peroxidase, orosomucoid) contain large amounts of the sulfur-
containing amino acids, including methionine, cysteine, and
taurine, which all are inversely associated with CRP and IL-6
levels [7]. In addition, glycine, lysine, glutamic acid, glutamine,
and serine also account for important components in antioxi-
dant synthesis and likewise are negatively correlated with CRP
and IL-6 levels [7].

Unfortunately, our study design cannot provide insight into
the mechanisms behind these associations. It can be specu-
lated that this is due either to a protective effect against sys-
temic inflammation or significant consumption of these amino
acids in patients with a high degree of systemic inflammation.
Previous studies in rat models of systemic inflammation have
suggested that low intake of the sulfur-containing amino acids
may compromise antioxidant defenses and exert a proinflam-
matory influence, because incorporation into other proteins is
favored over synthesis of glutathione in conditions with insuf-
ficient intake [12]. Furthermore, in studies investigating
endogenous antioxidant levels in patients undergoing HSCT
[22,44] and in an experimental HSCT animal model [45],
decreased antioxidant concentrations have been found during
the early post-transplantation phase, supporting our findings
and the idea that these patients may lack sufficient anti-
inflammatory response mechanisms to counteract chemother-
apy- and radiation-induced tissue damage.

In this study, we also found associations between low
PAA levels and the development of early complications SOS
and aGVHD. The pathophysiology of these complications is
closely related to systemic inflammation, suggesting that
reduced PAA levels and the related increase in systemic
inflammation may translate into these acute toxicities of
treatment [3,24,46]. Glutamine and arginine have been sug-
gested as protective agents and mediators of epithelial
repair, and high levels of these amino acids theoretically
could protect against SOS and aGVHD, because these compli-
cations are related to disruption of epithelial barriers [47].

Owing to the observational design of this study, we
acknowledge several limitations to the study. Most impor-
tantly, we cannot definitively identify the mechanisms behind
our findings, and we cannot exclude the possibility that the
observed association between PAA levels and inflammatory
parameters is due merely to increased consumption of these
amino acids in patients with a higher degree of systemic
inflammation. Furthermore, we do not have complete informa-
tion about the patients’ nutritional status, which could be a
potential confounder by influencing PAA levels. No association
was found between cumulative days on PN and PAA levels;
however, the majority of the patients in our cohort received
PN throughout the first 3 weeks post-HSCT. Theoretically, we
speculate that patients with the most severe grade of mucositis
(and thus the greatest inflammatory response) will be those
most commonly in need of PN, and therefore, it is likely that
this would lead to underestimation of the observed association
between low PAA levels and high inflammatory parameters.
We found significant associations between days on PN and
inflammatory parameters in children, supporting this idea.
Because only one-third of our patients received glucocorti-
coids, and because treatment was generally provided after day
+7, we do not suspect that glucocorticoid treatment had any
significant influence on our results.

We acknowledge the potential challenges of including both
adult and pediatric patients in our study, and have adjusted
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accordingly for variability in baseline characteristics between
children and adults by using preconditioning levels as a refer-
ence to make, for example, the levels of urea and creatinine
comparable. In the multivariate analyses, we included age as a
parameter to compensate for potential confounding between
adult and pediatric patients. The adult patients in our cohort
were relatively young and did not suffer from any significant
comorbidities besides their hematologic diagnosis.

Future studies are needed to confirm our results and
investigate the underlying mechanisms behind our findings.
More frequent measurements of PAA levels would be of
great value, and measurements of nitrogen balance along
with quantification of muscle breakdown and amino acid
kinetics in these patients would contribute to understanding
the catabolic changes during the early post-transplantation
period. In addition, it would be ideal to standardize the con-
tent of amino acids in the diet to eliminate differences in
intake. Furthermore, it would be of great interest to quantify
levels of glutathione during transplantation to evaluate
changes in antioxidant levels and their associations with
proinflammatory markers. Investigation of PAA levels in
other transplantation regimens, such as reduced-intensity
conditioning HSCT, haploidentical HSCT, and autologous
HSCT, would be pertinent because these are becoming more
frequent.

In conclusion, our findings demonstrate significant changes in
a number of human amino acids during HSCT, along with inverse
relationships between PAA levels and systemic inflammation and
treatment-related complications. Together with previous studies,
these results suggest a complicated range of metabolic changes
during periods of critical illness. We hypothesize that increased
metabolic demands, anabolic resistance due to systemic inflam-
mation, and accelerated catabolism, along with an insufficient
supply of amino acids involved in anti-inflammatorymechanisms,
may contribute to the morbidity and mortality associated with
treatment. Further studies are needed to determine whether ana-
bolic agents along with supplementation of amino acids and/or
other nutrient resources could potentially improve outcomes in
patients undergoing HSCT.
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