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Abstract: Let G/H be a reductive symmetric space of split rank one and let K be amaximal compact subgroup
of G. In a previous article the first two authors introduced a notion of cusp forms for G/H. We show that the
space of cusp forms coincides with the closure of the space of K-finite generalized matrix coefficients of dis-
crete series representations if and only if there exist no K-spherical discrete series representations. Moreover,
we prove that every K-spherical discrete series representation occurs with multiplicity one in the Plancherel
decomposition of G/H.
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1 Introduction

By refining a suggestion of M. Flensted-Jensen, the first two authors introduced a notion of cusp forms for
reductive symmetric spaces of split rank one in [4]. For reductive groups of split rank one this definition of
cusp forms coincides with Harish-Chandra’s definition. It further generalizes the definition of cusp forms
for hyperbolic spaces given in [1, 2]. The definition of cusp forms does not straightforwardly generalize to
reductive symmetric spaces of higher split rank as the cuspidal integrals are not always convergent; see [11,
Section 4].

Let G/H be a reductive symmetric space of split rank one. We write C(G/H) for the space of Harish-
Chandra–Schwartz functions on G/H. In [4] a class Ph of minimal parabolic subgroups is identified such
that the cuspidal integrals

RQϕ(g) := ∫
NQ/NQ∩H

ϕ(gn) dn (g ∈ G)

are absolutely convergent for every Q ∈ Ph and ϕ ∈ C(G/H). Here NQ is the unipotent radical of Q. A function
ϕ ∈ C(G/H) is said to be a cusp form ifRQϕ = 0 for all Q ∈ Ph. Let Ccusp(G/H) denote the space of cusp forms
and let Cds(G/H) be the closure in C(G/H) of the span of K-finite generalized matrix coefficients of discrete
series representations for G/H. It is shown in [4, Theorem 8.20] that

Ccusp(G/H) ⊆ Cds(G/H).
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Let K be amaximal compact subgroup of G so that K ∩ H is amaximal compact subgroup ofH. For a finite
set ϑ of irreducible unitary representations of K we write C(G/H)ϑ for the subspace of C(G/H) of K finite
functions with K-isotypes contained in ϑ. In [4, Theorem 8.4] it is established that

Cds(G/H)ϑ := Cds(G/H) ∩ C(G/H)ϑ

admits an L2-orthogonal decomposition

Cds(G/H)ϑ = Ccusp(G/H)ϑ ⊕ Cres(G/H)ϑ ,

where Cres(G/H)ϑ is spanned by certain residues of Eisenstein integrals defined in terms of parabolic sub-
groups in Ph.

It is a fundamental result of Harish-Chandra that for reductive Lie groups no residual discrete series
representations occur, i.e., if G is a reductive Lie group, then

Cds(G) = Ccusp(G); (1.1)

see [12], [13, Thm. 10], [14, Sections 18 and 27] and [16, Thm. 16.4.17]. In [4, Theorem 8.22] the following
criterion was given for the analogue of (1.1) for reductive symmetric spaces of split rank one:

Cres(G/H)K = {0} implies Ccusp(G/H) = Cds(G/H). (1.2)

The main result of this article is that this is actually an equivalence.

Theorem 1.1. There exist no non-zero K-invariant cusp forms, i.e.,

Ccusp(G/H)K = {0}. (1.3)

Moreover, the following assertions are equivalent:
(i) Cds(G/H) = Ccusp(G/H).
(ii) Cds(G/H)K = {0}.

Note that for the group case equality (1.3) is valid without any assumptions on the split rank of the group,
which is a result of Harish-Chandra [12, Lemma 36].

The analysis needed for the proof of Theorem 1.1 is further used to prove the following theorem, which
confirms some special cases of the multiplicity one result of [10, p. 3, Theorem 3].

Theorem 1.2. Let G/H have split rank one. Every K-spherical discrete series representation occurs with multi-
plicity one in the Plancherel decomposition of G/H.

The article is organized as follows: We start by introducing the necessary notation in Section 2. In Sections 3
and 4 we set up the machinery needed for the proof of Theorem 1.1. The proof is given in Section 5. Finally,
Theorem 1.2 is proved in Section 6.

2 Notation and preliminaries

Throughout the paper, Gwill be a reductive Lie group of the Harish-Chandra class, σ an involution of G andH
an open subgroup of the fixed point subgroup for σ. We assume that H is essentially connected as defined
in [3, p. 24]. The involution of the Lie algebra g of G obtained by deriving σ is denoted by the same symbol.
Accordingly, wewrite g = h ⊕ q for the decomposition of g into the+1- and−1-eigenspaces for σ. Thus, h is the
Lie algebra of H. Here and in the rest of the paper, we adopt the convention to denote Lie groups by Roman
capitals, and their Lie algebras by the corresponding Fraktur lower cases.

We fix a Cartan involution θ that commutes with σ and write g = k ⊕ p for the corresponding decomposi-
tion of g into the +1- and −1-eigenspaces for θ. Let K be the fixed point subgroup of θ. Then K is a σ-stable
maximal compact subgroupwith Lie algebra k. In addition, we fix amaximal abelian subspace aq of p ∩ q and
a maximal abelian subspace a of p containing aq. Then a is σ-stable and

a = aq ⊕ ah,
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where ah = a ∩ h. This decomposition allows us to identify a∗q and a∗h with the subspaces (a/h)∗ and (a/q)∗,
respectively, of a∗.

Let A be the connected Lie group with Lie algebra a. We define M to be the centralizer of A in K. The set
of minimal parabolic subgroups containing A is denoted by P(A).

If Q is a parabolic subgroup, then its nilpotent radical will be denoted by NQ. Furthermore, we agree to
write Q̄ = θQ and N̄Q = θNQ. Note that if Q ∈ P(A), then MA is a Levi subgroup of Q and Q = MANQ is the
Langlands decomposition of Q.

The root system of a in g is denoted by Σ = Σ(g, a). For Q ∈ P(A) we put

Σ(Q) := {α ∈ Σ : gα ⊆ nQ}.

Let Zg(aq) denote the centralizer of aq in g. We define the elements ρQ and ρQ,h of a∗ by

ρQ( ⋅ ) =
1
2 tr(ad( ⋅ )|nQ ) and ρQ,h( ⋅ ) =

1
2 tr(ad( ⋅ )|nQ∩Zg(aq)).

We say that Q is h-compatible if
⟨α, ρQ,h⟩ ≥ 0 for all α ∈ Σ(Q).

We write Ph(A) for the subset of P(A) consisting of all h-compatible parabolic subgroups.

3 τ-spherical cusp forms
Let (τ, Vτ) be a finite-dimensional representation of K. We write C∞(G/H : τ) for the space of smooth func-
tions ϕ : G/H → Vτ satisfying the transformation rule

ϕ(kx) = τ(k)ϕ(x) (k ∈ K, x ∈ G/H)

and we write C(G/H : τ) for the space of ϕ ∈ C∞(G/H : τ) that are Schwartz (see [4, Section 3.1]).
Let W(aq) be the Weyl group of the root system of g in aq. Then W(aq) can be realized as the quotient

W(aq) = NK(aq)/ZK(aq). LetWK∩H(aq) be the subgroup ofW(aq) of elements that can be realized inNK∩H(aq).
We choose a setW of representatives ofW(aq)/WK∩H(aq) inNK(aq) ∩NK(ah) such that e ∈W. This is possible
because of the identity

NK(aq) = (NK(aq) ∩NK(ah))ZK(aq);

see [15, top of p. 165].
Let

a0 := ⋂
α∈Σ∩a∗

h

ker(α)

and define
m0 := Zg(aq) ∩ a⊥0 .

Let m0n be the direct sum of all non-compact ideals in m0 and let M0n be the connected subgroup of G with
Lie algebram0n. We define τM to be the restriction of τ to M and write τ0M for the subrepresentation of τM on
(Vτ)M0n∩K . We further define

AM,2(τ) :=⨁
v∈W

C∞(M/M ∩ vHv−1 : τ0M).

We equipAM,2(τ) with the natural Hilbert space structure and note that it is finite-dimensional.
Given v ∈W and Q ∈ P(A), we define the parabolic subgroup Qv ∈ P(A) by

Qv := v−1Qv.

Let Q ∈ Ph(A). For ϕ ∈ C(G/H : τ) defineHQ,τϕ : Aq → AM,2(τ) to be the function given by

(HQ,τϕ(a))v(m) = aρQ−ρQ,h ∫
NQv /H∩NQv

ϕ(mavn) dn (v ∈W, m ∈ M, a ∈ Aq).
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By [4, Theorem 5.12], the integral is absolutely convergent for every ϕ ∈ C(G/H). Furthermore, the map
HQ,τ : C(G/H : τ)→ C∞(Aq) ⊗AM,2(τ) thus obtained is continuous. We call ϕ ∈ C(G/H : τ) a τ-spherical
cusp form if for every Q ∈ Ph(A),

HQ,τϕ = 0.

We will now describe the relation between the τ-spherical cusp forms and the cusp forms defined in the
previous section. Let ϑ be a finite subset of K̂. For a representation of K on a vector space V, we denote the
subspace of K-finite vectors with isotypes in ϑ by Vϑ. Consider C(K) equipped with the left-regular represen-
tation of K. Define Vτ := C(K)ϑ, i.e., let Vτ be the space of K-finite functions on K whose isotopy types for
the left regular representation are contained in ϑ. We define τ to be the unitary representation of K on Vτ
obtained from the right action. Then there is a canonical isomorphism

ς : C(G/H)ϑ → C(G/H : τ)

given by
ςϕ(x)(k) = ϕ(kx) (ϕ ∈ C(G/H)ϑ , k ∈ K, x ∈ G/H).

By [4, Remark 6.3] we now have
ς(Ccusp(G/H)ϑ) = Ccusp(G/H : τ).

4 A formula forHQ,τ

In [5] Eisenstein integrals were constructed which were then used in [4] to derive a formula for HQ,τ. This
formula is very useful to analyze the relation between cusp forms and discrete series representations. Wewill
now recall this formula and all relevant objects. For details we refer to the two mentioned articles.

We fix Q ∈ Ph(A). We further choose a minimal σθ-stable parabolic subgroup P0 containing A, with the
property that Σ(Q) ∩ σθΣ(Q) ⊆ Σ(P0). (It is easy to see that such a minimal σθ-stable parabolic subgroup
always exists.)

Given ψ ∈ AM,2(τ), λ ∈ a∗qℂ and v ∈W, we define the function ψv,Q,λ : G → Vτ by

ψv,Q,λ(kman) = aλ−ρQ−ρQ,hτ(k)ψv(m).

Letωv beanon-zerodensity onh/h ∩ Lie(v−1Qv). If−⟨Re λ, α⟩ is sufficiently large for every α ∈ Σ(Q) ∩ σθΣ(Q),
then for each x ∈ G and v ∈W the function

h → ψQ,λ(xhv−1) dlh(e)−1∗ω

defines an integrable Vτ-valued density on H/H ∩ v−1Qv (see [5, Proposition 8.2]). For these λ we define the
Eisenstein integral Eτ(Q : ψ : λ) ∈ C∞(G/H : τ) by

Eτ(Q : ψ : λ)(x) := ∑
v∈W

∫
H/H∩v−1Qv ψv,Q,λ(xhv

−1) dlh(e)−1∗ωv (x ∈ G).

The function λ → Eτ(Q : ψ : λ) extends to a meromorphic C∞(G/H : τ)-valued function on a∗qℂ. This defini-
tion of Eisenstein integrals coincides with the definition in [5, Section 8]. We write Eτ(Q : ⋅ ) for the map

AM,2(τ) ∋ ψ → Eτ(Q : ψ : ⋅ ).

We define
a∗+q = a

∗+
q (P0) := {λ ∈ a∗q : ⟨λ, α⟩ > 0 for all α ∈ Σ(P0)}.

Let SQ,τ be the set of λ ∈ a∗+q + ia∗q such that Eτ(Q : − ⋅ ) is singular at λ. By [4, Lemma 5.4], this set is finite
and contained in a∗+q . It follows from [4, Theorem 8.10 (b)] that all poles of Eτ(Q : − ⋅ ) are simple.

Let ξ be the unique vector in a∗+q of unit length with respect to the Killing form. For a meromorphic
function φ : a∗qℂ → ℂ and a point μ ∈ a

∗
qℂ we define the residue

Res
λ=μ

φ(λ) := Res
z=0

φ(μ + zξ).
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Here, z is a variable in the complex plane, and the residue on the right-hand side is the usual residue from
complex analysis, i.e., the coefficient of z−1 in the Laurent expansion of z → φ(μ + zξ) around z = 0. For
μ ∈ SQ,τ we define Resτ(Q : μ) = Resτ(Q : μ : ⋅ ) to be the function G/H → Hom(AM,2(τ), Vτ) given by

Resτ(Q : μ : x)(ψ) = − Res
λ=−μ

E(Q : ψ : λ)(x).

By [4, Theorem 8.10 (a)],

Resτ(Q : μ)(ψ) ∈ Cds(G/H : τ) (μ ∈ SQ,τ , ψ ∈ AM,2(τ)). (4.1)

Following [4, Section 4.1], we define forϕ ∈ C∞c (G/H : τ) the smooth function IQ,τϕ : Aq → AM,2(τ) that
is determined by the equation

⟨IQ,τϕ(a), ψ⟩ = lim
ϵ↓0
∫

ϵν+ia∗
q

∫
G/H

⟨ϕ(x), Eτ(Q : ψ : −λ̄)(x)⟩aλ dx dλ

for every ψ ∈ AM,2(τ) and a ∈ Aq. Here ν is any choice of element of a∗+q ; the definition is independent of this
choice. The map IQ,τ : C∞c (G/H : τ)→ C∞(Aq) ⊗AM,2(τ) extends to a continuous map

IQ,τ : C(G/H : τ)→ C∞(Aq) ⊗AM,2(τ);

see [5, Proposition 7.2]. The image of IQ,τ is contained in the tempered AM,2(τ)-valued functions on Aq and
is called the tempered term of the Harish-Chandra transform. This map has the following properties.

Proposition 4.1 ([4, Corollaries 8.2 and 8.11]). (i) Assume ϕ ∈ C(G/H : τ). Then for every ψ ∈ AM,2(τ) and
a ∈ Aq one has

⟨HQ,τϕ(a) − IQ,τϕ(a), ψ⟩ = ∑
μ∈SQ,τ

aμ ∫
G/H

⟨ϕ(x), Resτ(Q : μ : x)(ψ)⟩ dx. (4.2)

(ii) Cds(G/H : τ) = ker(IQ,τ).

5 Proof of Theorem 1.1

From (1.2) it follows that (ii) implies (i) in Theorem1.1.Moreover, if (1.3) holds, then (i) implies (ii). It remains
to prove (1.3).

Let Q ∈ Ph(A). Let further 1K be the trivial representation of K and let ϕ ∈ Cds(G/H : 1K) = Cds(G/H)K .
Then IQ,1Kϕ = 0. HenceHQ,1Kϕ = 0 if and only if the right-hand side of (4.2) vanishes for all a ∈ Aq and all
ψ ∈ AM,2(1K). The latter is true if and only if

∫
G/H

⟨ϕ(x), Res1K (Q : μ : x)(ψ)⟩ dx = 0 (μ ∈ SQ,1K , ψ ∈ AM,2(1K)),

i.e.,HQ,1Kϕ = 0 if and only if ϕ is perpendicular to

VQ := span{Res1K (Q : μ)(ψ) : μ ∈ SQ,1K , ψ ∈ AM,2(1K)}.

To show (1.3) it thus suffices to prove the following proposition.

Proposition 5.1. VQ = Cds(G/H)K .

To prove the proposition we will study the orthogonal projection (with respect to the inner product on
L2(G/H : 1K))

Tds : C∞c (G/H : 1K)→ Cds(G/H : 1K).

To this end we first recall a formula for Tds.
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Let the minimal σθ-stable parabolic P0 be as before (see Section 4). For λ ∈ a∗qℂ and ψ ∈ AM,2(1K) we
define the Eisenstein integral E1K (P̄0 : ψ : λ) = E(P0 : ψ : λ) like Eτ(Q : ψ : λ) in the previous section, but
with τ and Q replaced by 1K and P̄0 = θP0, respectively. Note that in order to replace Q by P0 in this construc-
tion, we need to replace the spaceAM,2(τ) by

AM0 ,2(τ) :=⨁
v∈W

C∞(M0/M0 ∩ vHv−1 : τM0 ),

where τM0 is the restriction of τ to M0 ∩ K. However, in view of [4, Lemma 8.1] applied with vHv−1 in place
of H, for v ∈W we have

AM,2(τ) ≃ AM0 ,2(τ).

Wenormalize these Eisenstein integrals as in [7, Section 5], and thusweobtain the normalized Eisenstein
integral

E∘(P̄0 : ψ : λ) ∈ C∞(G/H : 1K)

for ψ ∈ AM,2(1K) and generic λ ∈ a∗qℂ.
We define

A−q := {a ∈ A : aα < 1 for all α ∈ Σ(P0)}.

For w ∈W let δw ∈ AM,2(1K) be the element satisfying

⟨ψ, δw⟩ = ψw(e) (ψ ∈ AM,2(1K)).

Observe thatAM,2(1K) is spanned by {δw : w ∈W}. For w ∈W and generic λ ∈ a∗qℂ we write

Φw(λ : ⋅ ) = ΦP̄0 ,w(λ : ⋅ ) : A
−
q → End(ℂ) = ℂ

for the function introduced in [6, Section 10]. From [6, (53) and Remark 6.2] it follows thatΦw(λ, a) depends
holomorphically on λ for λ ∈ a∗+q + ia∗q. Moreover, it can be seen from [6, (15) and Proposition 5.2] that
Φw(λ : a) is real for λ ∈ a∗+q .

Let ∆ = {−α} be the set of simple roots in Σ(P̄0). From [9, Theorem 21.2 (c)] (see also [9, Definition 12.1])
it follows that Tds coincides with the operator T∆ defined in [8, (5.5)]. In our setting it is straightforward
to rewrite this equation and thus obtain the following formula for Tds: For ϕ ∈ C∞c (G/H : 1K), w ∈W and
a ∈ A−q,

Tdsϕ(w−1aw) = ∫
G/H

ϕ(x)∑
μ∈S

Res
λ=μ
(Φw(λ : a)E∘(P̄0 : δw : −λ)(x)) dx. (5.1)

Note that Tdsϕ is completely determined by this formula as KA−qWH is a dense open subset of G.
We now compare the residues occurring in (5.1) to the residues Res1K (Q : μ). This is done in the following

lemma.

Lemma 5.2. The set S := SQ,1K is equal to the set of λ ∈ a∗+q + ia∗q such that

λ → Φw(λ : a)E∘(P̄0 : δw : −λ)

is singular at λ for some w ∈W and a ∈ A−q. The poles which occur are simple. Moreover, for every μ ∈ S there
exists a constant cμ > 0 so that for every w ∈W and a ∈ A−q,

Res
λ=μ
(Φw(λ : a)E∘(P̄0 : δw : −λ)) = cμΦw(μ : a)Res1K (Q : μ)(δw). (5.2)

Proof. Let P ∈ P(A) be the unique minimal parabolic subgroup contained in P0 with Σ(P) ∩ a∗h = Σ(Q) ∩ a
∗
h.

For generic λ ∈ a∗ℂ the standard intertwining operator A(σ(P) : Q : 1M : λ) maps the space C∞(Q : 1M : λ)K

to the space C∞(σ(P) : 1M : λ)K . Both of these spaces are 1-dimensional. Let 1Q,λ ∈ C∞(Q : 1M : λ)K and
1σ(P),λ ∈ C∞(σ(P) : 1M : λ)K be determined by

1Q,λ(e) = 1σ(P),λ(e) = 1.
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Then the action of A(σ(P) : Q : 1M : λ) on C∞(Q : 1M : λ)K is determined by the identity

A(σ(P) : Q : 1M : λ)1Q,λ = c(σ(P), Q : λ)1Q,λ .

Here c := c(σ(P), Q : ⋅) is the partial c-function which for λ in the set

{λ ∈ a∗ℂ : Re⟨λ, α⟩ > 0 for all α ∈ Σ(P0) ∩ Σ(Q)}

is given by the integral
c(λ) = ∫

θNP0∩θNQ

1Q,λ(n) dn, (5.3)

and for other λ ∈ a∗ℂ by meromorphic continuation. It follows from [4, Proposition 4.4] that for generic
λ ∈ a∗qℂ,

E1K (Q : ψ : −λ) = c(λ + ρQ,h)E∘(P̄0 : ψ : −λ) (ψ ∈ AM,2(1K)).

By assumption, Q ∈ Ph(A), and hence ⟨ρQ,h, α⟩ ≥ 0 for all α ∈ Σ(Q). Therefore, ⟨λ + ρQ,h, α⟩ > 0 for all
α ∈ Σ(P0) ∩ Σ(Q) if λ ∈ a∗+q + ia∗q, and thus λ → c(λ + ρQ,h) is holomorphic on a∗+q + ia∗q and given by the inte-
gral representation (5.3). Note that for λ ∈ a∗+q (P) the integrand is strictly positive, and hence c(λ + ρQ,h) > 0.

Let μ ∈ S. Since the pole of E1K (Q : ψ : −λ) at λ = −μ is simple and the function

λ → Φw(λ : a)
c(λ + ρQ,h)

is holomorphic on a∗+q + ia∗q, it follows that

Res
λ=μ
(Φw(λ : a)E∘(P̄0 : δw : −λ)) = Φw(μ : a)

c(μ + ρQ,h)
Res1K (Q : μ)(δw),

and hence (5.2) follows with cμ = 1
c(μ+ρQ,h) .

Proof of Proposition 5.1. Since Tds is the restriction to C∞c (G/H)K of the orthogonal projection

C(G/H)K → Cds(G/H)K

(with respect to the L2-inner product), it follows from the formula (5.1) for Tds and Lemma 5.2 that

Cds(G/H)K = span { ∑
μ∈S

Res
λ=μ
(Φw(λ : a)E∘(P̄0 : δw : −λ)) : a ∈ A−q , w ∈W}

= span { ∑
μ∈S

cμΦw(μ : a)Res1K (Q : μ)(δw) : a ∈ A−q , w ∈W}

⊆ VQ .

The other inclusion VQ ⊆ Cds(G/H)K is a consequence of (4.1).

6 Multiplicity of K-spherical discrete series representations
In this final sectionwe use the analysis that has been used for the proof of Theorem 1.1 to prove Theorem 1.2.

We begin with a lemma. If π is a discrete series representation for G/H, then we write Cπ(G/H) for the
closure of the span of the K-finite generalized matrix coefficients of π in C(G/H). Note that the closure of
Cπ(G/H) in L2(G/H) decomposes into a direct sum of representations equivalent to π.

Lemma 6.1. For every K-spherical discrete series representation π of G/H there exists a unique μ ∈ SQ,1K so
that

Cπ(G/H)K ⊆ span{Res1K (Q : μ)(ψ) : ψ ∈ AM,2(1K)}. (6.1)
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Moreover, if μ, ν ∈ S and μ ̸= ν, then for every ψ, χ ∈ AM,2(1K),

∫
G/H

Res1K (Q : μ : x)(ψ)Res1K (Q : ν : x)(χ) dx = 0. (6.2)

Proof. Let π beaK-spherical discrete series representation forG/H. ThenCπ(G/H)K is non-zero andCπ(G/H)K

is canonically identified with a subspace Cπ(G/H : 1K) of C(G/H : 1K). Let ϕ ∈ Cπ(G/H : 1K). Let ∆G/H
and ∆Aq be the Laplacian on G/H and Aq, respectively. Since ϕ is a joint-eigenfunction of 𝔻(G/H), there
exists a c ∈ ℂ such that

∆G/Hϕ = cϕ.

The constant c depends only on π, not on the particular choice of ϕ. By [4, Lemma 8.4], the functionHQ,1Kϕ
satisfies

∆AqHQ,1Kϕ = (c + ⟨ρP0 , ρP0⟩)HQ,1Kϕ. (6.3)

It follows from Proposition 4.1 that HQ,1Kϕ is a finite sum of exponential functions, all with non-zero
real exponents μ in the set SQ,1K . Together with (6.3) this implies that there exists a unique μ ∈ SQ,1K (only
depending on π, not on the function ϕ) with ⟨μ, μ⟩ = c + ⟨ρP0 , ρP0⟩, and a ψ0 ∈ AM,2(1K) such that

HQ,1Kϕ(a) = aμψ0.

In view of (4.2) it follows that ϕ is orthogonal to Res1K (Q : ν)(ψ) for every ν ∈ Swith ν ̸= μ and ψ ∈ AM,2(1K).
We conclude that for every K-spherical discrete series representation π there exists a unique μ ∈ S such that

Cπ(G/H)K ⊆ ( ⨁
ν∈S\{μ}

span{Res1K (Q : ν)(ψ) : ψ ∈ AM,2(1K)})
⊥
.

For μ ∈ S let Dμ be the set of discrete series representations π such that ∆G/H acts on Cπ(G/H) by the
scalar ⟨μ, μ⟩ − ⟨ρP0 , ρP0⟩. It follows from Proposition 5.1 that

⨁
π∈Dμ

Cπ(G/H)K = ( ⨁
ν∈S\{μ}

span{Res1K (Q : ν)(ψ) : ψ ∈ AM,2(1K)})
⊥
,

and hence for every μ ∈ S,

⨁
π∈Dμ

Cπ(G/H)K = ( ⨁
ν∈S\{μ}
⨁
π∈Dν

Cπ(G/H))
⊥

= ⋂
ν∈S\{μ}
⨁
χ∈S\{ν}

span{Res1K (Q : χ)(ψ) : ψ ∈ AM,2(1K)}

= span{Res1K (Q : μ)(ψ) : ψ ∈ AM,2(1K)}.

This proves the assertions in the proposition.

Proof of Theorem 1.2. Let π be a K-spherical discrete series representation. If |W| = 1, then the right-hand
side of (6.1) is 1-dimensional, and hence dimCπ(G/H)K = 1 and the multiplicity with which π occurs in the
Plancherel decomposition is equal to 1.

Now assume that |W| = 2. In view of Lemma 5.2 we may rewrite (5.1) as

Tdsϕ(w−1aw) = ∑
μ∈S

cμΦw(μ : a) ∫
G/H

ϕ(x)Res1K (Q : μ : x)(δw) dx,

with a ∈ A−q and w ∈W. We used in the derivation of this formula that Φw(μ : ⋅ ) is real-valued for μ ∈ a∗+q .
Since Res1K (Q : μ)(δw) ∈ Cds(G/H)K, it follows in view of (6.2) that for v, w ∈W and a ∈ A−q,

Res1K (Q : μ : w−1aw)(δv) = cμΦw(μ : a) ∫
G/H

Res1K (Q : μ : x)(δv)Res1K (Q : μ : x)(δw) dx.
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In particular, it follows that there exist constants cv,w ∈ ℂ so that

Res1K (Q : μ : kawh)(δv) = cv,wΦw(μ : a) (k ∈ K, a ∈ A−q , h ∈ H, v, w ∈W).

Let v0 be the non-trivial element inW. Note that for every w ∈W the restricted functions

Res1K (Q : μ)(δe)|KA−
qwH and Res1K (Q : μ)(δv0 )|KA−

qwH

are linearly dependent. Since the Res1K (Q : μ)(δv) are K-fixed (hence K-finite) vectors in an irreducible sub-
representation of L2(G/H), they are analytic vectors and hence real analytic functions on G/H. It follows that
cv,w is independent of w ∈W, and thus that Res1K (Q : μ)(δe) and Res1K (Q : μ)(δv0 ) are linearly dependent.
Therefore, the right-hand side of (6.1) is1-dimensional. This implies that dimCπ(G/H)K = 1 and that π occurs
in the Plancherel decomposition of G/H with multiplicity one.

Funding: The second author was supported by Deutsche Forschungsgemeinschaft (DFG, German Research
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