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Abstract
Objective
A rare cause of familial frontotemporal dementia (FTD) is a mutation in the CHMP2B gene on
chromosome 3 (FTD-3), described in a Danish family. Here we examine whether CSF bio-
markers change in the preclinical phase of the disease.

Methods
In this cross-sectional explorative study, we analyzed CSF samples from 16 mutation carriers
and 14 noncarriers from the Danish FTD-3 family. CSF biomarkers included total tau (t-tau)
and neurofilament light chain (NfL) as a marker for neurodegeneration, phosphorylated tau
(p-tau) as a marker for tau pathology, β-amyloid (Aβ) 38, 40, and 42 (Aβ38, Aβ40, and Aβ42) to
monitor Aβ metabolism, and YKL-40 as a marker of neuroinflammation. Aβ isoform con-
centrations were measured using a multiplexed immunoassay; t-tau, p-tau, NfL, and YKL-40
concentrations were measured using sandwich ELISAs.

Results
CSF NfL concentration was significantly increased in mutation carriers vs noncarriers. Further,
CSF NfL concentration was significantly higher in symptomatic mutation carriers compared to
presymptomatic carriers, and also significantly higher in presymptomatic carriers compared to
noncarriers. No differences in t-tau and p-tau and YKL-40 concentrations between controls and
mutation carriers were observed. CSF concentrations of the Aβ peptides Aβ38 and Aβ40 but not
Aβ42 were significantly lower in mutation carriers compared to noncarriers.

Conclusions
Increased NfL levels in presymptomatic individuals and in symptomatic patients with FTD-3
indicate a continuous process of neurodegeneration from the presymptomatic to symptomatic
state. Although not specific for FTD-3 pathology, our data suggest that CSF NfL could serve as
a valuable biomarker to detect onset of neurodegeneration in FTD-3 mutation carriers.
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Glossary
AAO = age at onset; Aβ42 = β-amyloid 42; AD = Alzheimer disease; FTD = frontotemporal dementia; FTD-3 = chromosome
3–linked frontotemporal dementia; GLM = general linear modeling; NfL = neurofilament light; p-tau = phosphorylated tau;
t-tau = total tau; TMB = tetramethyl benzidine.

A truncating mutation in the CHMP2B gene (c.532-1G>C)
on chromosome 3 results in early-onset frontotemporal de-
mentia (FTD) (chromosome 3–linked FTD [FTD-3] or
CHMP2B-FTD).1 This rare cause of FTD was first described
in a large Danish family2 and later a different CHMP2B mu-
tation was identified in an unrelated Belgian patient with fa-
milial FTD.3 The disease is mapped through 6 generations
from the first known case in 1876 and the family now counts
more than 500 individuals. FTD-3 is characterized by pro-
gressive cognitive deficits with behavioral changes. FTD-3
brains present primarily with frontal degeneration as well as
temporal and dominant parietal lobe dysfunction.2

The histopathologic hallmarks of CHMP2B-FTD include
ubiquitin-positive inclusions, autofluorescent aggregates, and
p62-positive inclusions, while there is no tau, TAR DNA-
binding protein 43, or fused in sarcoma pathology.4

The core CSF biomarkers used for dementia diagnosis are
β-amyloid 42 (Aβ42), total tau (t-tau), and phosphorylated tau
(p-tau).5 A large subset of FTD cases have pathologic tau
changes with robust increases in CSF t-tau and p-tau levels but
normal levels of Aβ42.

6 CSF biomarkers in familial FTD have
been investigated in individuals with mutations in MAPT,
GRN, or theC9ORF79 repeat expansion7 but not inCHMP2B
mutation carriers.

In this cross-sectional explorative study, we analyzed the CSF
biomarkers Aβ42, t-tau, and p-tau181 in 30 individuals from
the Danish FTD-3 family. We further included neurofilament
light (NfL) as a marker of neuronal injury and YKL-40 as
a marker of neuroinflammation in our analysis.

Methods
Study population
The FTD-3 family has been subject to extensive studies over
more than 20 years within the Frontotemporal Dementia
Research in Jutland Association (FReJA) collaboration, and
biological material has been collected during the years for
linkage analyses, gene identification, and functional studies.2

The disease has been tracked through 6 generations, and
clinical characteristics have been recorded in 45 cases of dis-
ease, providing information about natural history, clinical
characteristics, and age at onset (AAO).

Samples from a total of 30 individuals were included: 10
affected CHMP2B mutation carriers, 6 presymptomatic
CHMP2B mutation carriers, and 14 noncarrier family

members (table). In the affected FTD-3 patients, the mean
AAO was 60.5 years (SD 4.8 years).

Standard protocol approvals, registrations,
and patient consents
The study was approved by the Ethics Committee of the
Capital Region of Denmark (H-1-2012-041), and written
informed consent was obtained from each participant before
enrollment. Subject age was recorded as the age of the in-
dividual on the day of lumbar puncture.

Collection of CSF
In brief, CSF samples were obtained by lumbar puncture and
collected in polypropylene tubes, centrifuged at 2,000 g for 10
minutes, aliquoted into cryo tubes, and stored at −80°C until
further use.8

Immunoassays
Aβ triplex
CSF concentrations of Aβ38, Aβ40, and Aβ42 were measured
using V-plex Peptide Panel 1 Kits Aβ38, Aβ40, and Aβ42 (Meso
Scale Discovery system, Rockville, MD) according to the
manufacturer’s protocol: 60 μL of CSF was diluted 2-fold in
diluent provided with the kit. Calibrator samples and controls
were prepared according to manufacturer’s protocol. On 96-
well MSD plates precoated with capture antibodies, 25 μL of
sample, calibrator, or controls were added to each well fol-
lowed by addition of 25 μL of detection antibody and in-
cubation at room temperature for 2 hours. Finally, the plate
was washed in kit washing buffer and read in a Meso Scale
Discovery imager at appropriate wavelength.

Total tau
CSF t-tau concentration was measured by the hTAU Ag
ELISA assay (INNOTEST, Fujirebio, Japan) according to the
manufacturer’s protocol: on a 96-well microtiter plate pre-
coated with anti-human tau antibody, 25-μL samples, con-
trols, and standards ranging from 50 to 2,500 pg/mL were
added followed by incubation with a biotinylated detection
antibody to tau and addition of peroxidase-conjugated
streptavidin. The reaction was developed with tetramethyl
benzidine (TMB) chromogen solution and subsequently
stopped with 0.9 M sulfuric acid and quantified at 450 nm in
a microplate reader.

Phosphorylated tau
The CSF concentration of tau phosphorylated at amino acid
181 (p-tau) was measured by the p-tau (181p) ELISA assay
(INNOTEST, Fujirebio, Japan) according to the manu-
facturer’s protocol: on a 96-well microtiter plate precoated
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with anti-human p-tau antibody, 75-μL samples, controls, and
standards ranging from 15.6 to 1,000 pg/mL were added
followed by incubation with a biotinylated detection antibody
to p-tau and addition of peroxidase-conjugated streptavidin.
The reaction was developed with TMB chromogen solution
and subsequently stopped with 0.9 M sulfuric acid and
quantified at 450 nm in a microplate reader.

Neurofilament light chain
CSF NfL concentration was measured by sandwich ELISA
with the antibody NfL21 used for coating the plates (mono-
clonal mouse antibody against NfL [in-house]). The coating
concentration was 0.5 μg/mL in carbonate buffer (pH 9.6).

Briefly, 50 μLCSF (1:2 dilution), 100 μL calibrator, and 50 μL
PBST (0.05% tween) were added to the coated plates and
incubated 1 hour while shaking at room temperature followed
by overnight incubation at +4°C. For detection, a biotinylated
NfL23 mouse monoclonal antibody against NfL (in-house)
was used together with streptavidin–horseradish peroxidase
diluted 1:20,000 (100 μL/well).

Following wash, 100 μL TMB substrate (TMB One ready-
to-use substrate, Kem En Tec Diagnostic, Taastrup,
Denmark) was added to each well and plates were in-
cubated for 20 minutes in the dark at room temperature.
The reaction was stopped with 100 μL/well of 0.2 MH2SO4

and absorbance was quantified at 450/650 nm in a micro-
plate reader.

YKL-40
CSF YKL-40 concentration was measured using a solid-phase
sandwich ELISA (Human Chitinase 3-like 1 Quantikine
ELISA kit, R&D Systems, Oxon, UK) according to the
manufacturer’s protocol: 50 μL of CSF was diluted 2-fold in
diluent provided with the kit. Calibrators and controls were
prepared according to protocol.

On a capture-antibody precoated 96-well microtiter plate,
50 μL of CSF sample, calibrator, or controls were added fol-
lowed by addition of 200 μL of conjugate and incubation at
room temperature for 2 hours. Finally, each well was washed
in the provided washing buffer, followed by addition of 200 μL
substrate solution, and subsequently stopped with 50 μL of
the provided stop solution. Quantification was carried out at
540/570 nm in a microplate reader.

All biochemical measurements were performed by board-
certified laboratory technicians who were blinded to clinical
information. The measurements were performed in one
round of experiments using one batch of reagents. Intra-assay
coefficients of variation were below 10%.

Statistical methods
Data were analyzed using SAS software (Enterprise Guide 7.1,
2014, SAS Institute Inc, Cary, NC). Concentrations of each
biomarker were compared between controls and CHMP2B
mutation carriers, and between affected individuals and pre-
symptomatic mutation carriers. As some biomarkers were

Table Levels of CSF biomarkers

Mutation carriers Noncarriers

p ValueMean 95% CL, mean Mean 95% CL, mean

Age, y, mean (min-max) 57.8 (32.7– 73.3) — 59.7 (38.1– 71.1) — 0.92

Sex, F/M 7/9 — 7/7 — 0.59

Aβ38, pg/mL 1,868.5 1,528.0–2,208.9 2,405.6 2,103.3–2,707.8 0.019

Aβ40, pg/mL 4,874.1 4,109.1–5,639.2 5,849.5 5,319.6–6,379.4 0.038

Aβ42, pg/mL 422.8 332.3–513.2 504.6 414.7–594.6 0.18

YKL-40, pg/mL 132,618.4 108,464–156,772 119,549.9 100,558–138,542 0.38

t-tau, pg/mL 258.7 216.6–301.2 273.4 209.6–337.3 0.68

p-tau, pg/mL 31.3 26.6–36.1 40.1 31.9–48.2 0.049

NfL, pg/mL 2,473.0 1,933.9–3,012.0 686.5 456.6–916.3 <0.0001

Aβ42/Aβ38 0.23 0.20–0.26 0.21 0.18–0.25 0.53

Aβ42/Aβ40 0.09 0.08–0.10 0.09 0.07–0.10 0.87

t-tau/Aβ42 0.69 0.51–0.87 0.63 0.36–0.90 0.68

p-tau/Aβ42 0.09 0.06–0.11 0.09 0.06–0.13 0.77

Abbreviations: Aβ = β-amyloid; CL = confidence level; NfL = neurofilament light; p-tau = phosphorylated tau; t-tau = total tau.
CSF concentrations of Aβ38, Aβ40, Aβ42, t-tau, p-tau, YKL-40, and NfL were measured with immunoassays in 30 individuals from the Danish chromosome
3–linked frontotemporal dementia family. Results are given as mean and 95% CL.
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found to be age-dependent, participant age was included in
a subsequent analysis using general linear modeling (GLM).
Where it was necessary, logarithmic transformation was per-
formed to obtain normal distribution.

Results
CSF data for all measured markers are shown in the table.

Participant age and sex distribution did not differ significantly
between mutation carriers and noncarriers (t[29] = −0.63, p =
0.53 and χ2[1] = 0.28, p = 0.59, respectively).

In our dataset, t-tau, p-tau, and YKL-40 levels were found to
be age-dependent (GLM, F1,28 = 6.68, p = 0.0153; F1,28 =
5.14, p = 0.0314; F1,28 = 6.37, p = 0.0176, respectively) while
Aβ38, Aβ40, Aβ42, and NfL were not (GLM, F1,28 = 2.45, p =
0.1288; F1,28 = 1.80, p = 0.1906; F1,28 = 0.22, p = 0.6450;
F1,27 = 0.38, p = 0.4935, respectively).

When adjusted for age-dependency, statistical analysis
showed no difference in t-tau and p-tau levels between
controls and mutation carriers (GLM, F3,26 = 3.29, p =
0.5173, and F3,26 = 3.86, p = 0.69, respectively). Levels of
Aβ38 and Aβ40 but not Aβ42 were significantly decreased in
mutation carriers compared to noncarriers (GLM, F1,28 =
6.23, p = 0.02; F1,28 = 4.75, p = 0.04; and F1,28 = 1.87, p = 0.18,
respectively) (figure 1). Aβ42/Aβ38, Aβ42/Aβ40, t-tau/Aβ42, and
p-tau/Aβ42 ratios were not found to be significantly different
between the 2 groups (GLM, F1,28 = 0.23, p = 0.63; F1,28 =
0.05, p = 0.83; F3,25 = 2.37, p = 0.68; and F3,25 = 1.96, p = 0.73,
respectively).

YKL-40 CSF levels did not differ significantly between mu-
tation carriers and noncarriers after adjustment for age (GLM,
F3,26 = 2.64, p = 0.57) (figure 1).

CSF levels of NfL were significantly higher in mutation car-
riers compared to noncarriers (GLM, F1,28 = 53.92, p ≤
0.0001) (figure 2). When adjusting for participant age, this
difference persisted (GLM, F3,26 = 29.44, p = 0.021). Symp-
tomatic mutation carriers had significantly higher NfL levels
than presymptomatic mutation carriers (GLM, F1,14 = 8.61,
p = 0.0109), while presymptomatic carriers had significantly
increased NfL levels compared to noncarriers (GLM, F1,17 =
10.97, p = 0.004).

In the age-corrected model, levels of NfL were found to be
significantly increased in symptomatic mutation carriers when
compared to presymptomatic carriers (GLM, F3,12 = 7.02, p =
0.0064), while the significant difference between pre-
symptomatic mutation carriers and noncarriers disappeared
(GLM, F3,15 = 9.94, p = 26.22).

As illustrated (figure 2), NfL levels were high in mutation
carriers years prior to the expected clinical onset of 58 years.9

Even when adjusting for participant age, this elevation was
significant (GLM, F3,26 = 29.44, p = 0.021).

Discussion
In this explorative study, we analyzed CSF samples from 10
affected CHMP2B mutation carriers, 6 presymptomatic
CHMP2B mutation carriers, and 14 noncarriers from the
Danish FTD-3 family. Further investigations on the di-
agnostic performance of the markers are needed to clarify the
influence of age on the levels of the investigated biomarkers.

In our FTD-3 cohort, mutation carriers had significantly in-
creased levels of CSFNfL compared to controls. Interestingly,
this increase could be detected in presymptomatic individuals
several years prior to expected AAO. Even the youngest
presymptomatic mutation carrier (participant age 32, which is
26 years prior to expected clinical onset) had higher CSF NfL
levels than some of the oldest noncarriers (figure 2). This
suggests that the neurodegenerative process is ongoing in
mutation carriers several decades before onset of symptoms,
as was also reported in individuals with autosomal inherited
Alzheimer disease (AD) in the Dominantly Inherited Alz-
heimer Network (DIAN) cohort.10

In contrast to our findings, a recent publication from the
GENFI consortium found that CSF NfL levels were signifi-
cantly increased in symptomatic carriers of mutations in other
FTD-causing risk genes, GRN, MAPT, or C9ORF27, when
compared to presymptomatic carriers and that pre-
symptomatic carriers and control participants had similar NfL
levels.11 In that study, the symptomatic mutation carriers’NfL
levels correlated with disease severity, brain atrophy, and
survival.11 In recent years, neurofilaments have been in-
vestigated in several neurodegenerative diseases12 and a meta-
analysis has concluded that both NfL and neurofilament
heavy are increased overall in patients with sporadic AD,
FTD, and vascular dementia.13 Other studies have shown that
CSF NfL levels were increased in sporadic FTD when com-
pared to other dementia groups or healthy controls.14–19 Our
results and the results from the studies of sporadic FTD cases
suggest that NfL may be applied as biomarker of neurode-
generative progression and disease severity.

We detected a significant decrease in CSF Aβ38 and Aβ40
levels, but not in Aβ42 levels, in mutation carriers compared to
noncarriers. The Aβ42/Aβ38 and Aβ42/Aβ40 ratios, however,
did not differ between mutation carriers and controls. These
results concur with the hypothesis that FTD-3 is not an am-
yloid disease, as no amyloid pathology has been identified.2,20

Substantiating this further, amyloid ligand PET scans in 4
affected patients with FTD-3 have shown no accumulation of
amyloid (unpublished material). Lower Aβ38 and Aβ40 con-
centrations in CSF have been noted in PSEN1 mutation
carriers and may indicate impaired γ-secretase processing of
APP.21 Lower Aβ38 and Aβ40 have also been seen in
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neuroinflammatory conditions.22 Finally, there are some
indications that reduced neuronal/synaptic activity may lead
to less Aβ production in general.23,24

In MAPT, GRN, and C9ORF72 mutation carriers, levels of
Aβ42 are generally found to be within normal range while
levels of t-tau and p-tau are not well-characterized due to lack
of consistent CSF profile for these patients.7

We did not observe a difference in CSF p-tau levels in mu-
tation carriers compared to noncarriers in the current study.
This finding is not surprising as patients with FTD-3 do not
display the hyperphosphorylated tau pathology that is oth-
erwise observed in other FTDs.2,20 Also, we found no

significant increase in CSF t-tau levels. This was surprising as
t-tau is known to be a general marker of neurodegeneration
and it is well-described that patients with FTD-3 have brain
atrophy even early in disease.20,25,26

The CSF level of the inflammation marker YLK-40 was found
to increase with age in both mutation carriers and noncarriers
in our FTD-3 cohort. This finding concurs with another study
showing that CSF YKL-40 levels did not differ between
patients with FTD and controls.27 YKL-40 is a secreted
40-kDa glycoprotein belonging to the member of the human
chitinase activity family.28 YKL-40 is expressed in several tis-
sues including astrocytes and microglia in the brain. It has
been shown that YKL-40 plays an important role in astrocyte

Figure 1 CSF biomarkers in CHMP2B mutation carriers compared to noncarriers

Box plots show CSF concentrations of β-amyloid 42 (Aβ)38, Aβ40, Aβ42, total tau (t-tau), phosphorylated tau (p-tau), and YKL-40 analyzed by immunoassays.
Levels of the Aβ peptides Aβ38 (A) and Aβ40 (C) were significantly decreased inmutation carriers compared to noncarriers (p = 0.02 and p = 0.04, respectively).
Levels of Aβ42, t-tau, p-tau, and YKL-40 (B, D–F) were not found to differ significantly between the 2 groups.
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and microglial response to neuroinflammation.29,30 Our
finding suggests that the observed increase is a consequence
of age rather than mutation status and therefore YKL-40 may
not be a valuable marker of disease in FTD-3. However, in
some studies, CSF levels of YKL-40 have been shown to be
increased in patients with AD and FTD when compared to
cognitively healthy controls.31,32 Other studies have found
that CSF YKL-40 levels in patients with FTD are increased
compared to patients with AD.33,34 Since FTD is a clinically
and pathologically heterogeneous disease, differences in the
individual cohorts analyzed could explain why CSF YKL-40
concentrations vary among different studies (for review, see
reference 35).

To our knowledge, all studies of YKL-40 as a CSF biomarker
in patients with FTD have reported on sporadic cases and
therefore might not reflect the pathology of genetic FTD. In
spite of our finding that YKL-40 cannot be used as a marker to
differentiate mutation carriers from controls, these results do
not necessarily imply that neuroinflammation is not an im-
portant aspect of FTD-3 pathology. Recently, microglial ac-
tivation was studied thoroughly in a FTD-3 mouse model.
Early microglial proliferation and a clear proinflammatory
phenotype was observed in the CHMP2B mutant mice
compared to wild-types, which is similar to the inflammatory
profile found in FTD-3 brains.4,36 These data suggest that
neuroinflammation could be a pathologic driver of FTD-3
disease and that it might be valuable to measure CSF bio-
markers of neuroinflammation in patients with FTD-3.
However, in order to differentiate between disease de-
velopment and normal aging, a more specific CSF marker
than YLK-40 should be used.

Taken together, our results suggest that the unchanged levels
of tau in CSF corroborate the absence of tau pathology in

these patients. The decreased levels of Aβ38 and Aβ40 may be
due to a general downregulation of APP processing; however,
this needs to be further investigated. Our observations of
increase in NfL levels in presymptomatic individuals and even
further increase of NfL levels in affected patients with FTD-3
indicate a continuous process of neurodegeneration during
the presymptomatic to symptomatic state. Furthermore, our
study implies that NfL is a sensitive marker of the widespread
neurodegeneration occurring in patients with FTD-3, even
decades before symptom onset.
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Study question
Can a biomarker predict the onset of neurodegeneration and
clinical symptoms in patients with chromosome-3-linked
frontotemporal dementia (FTD-3)?

Summary answer
CSF neurofilament light chain (NfL) was elevated in
patients with FTD-3 (CHMPB2B mutation carriers) before
the age at clinical onset and further increased in symptomatic
carriers.

What is known and what this article adds
Several studies of familial FTD have described predictive
changes in core CSF biomarkers of dementia, including total
and phosphorylated tau. This is the first study to examine CSF
biomarkers in FTD-3, a rare form of early-onset FTD caused
by a truncating mutation in the gene CHMPB2B on chro-
mosome 3.

Participants and setting
CSF samples were collected from FTD-3 family members
including 10 symptomatic carriers, 6 presymptomatic carriers,
and 14 noncarriers.

Design, size, and duration
The study used an exploratory cross-sectional design that
evaluated CSF biomarkers of FTD pathology among indi-
viduals with CHMPB2B mutation.

Primary outcomes
Primary outcomes were CSFmarkers including total tau andNfL
(indicators of neurodegeneration), phosphorylated tau (indicator
of tau pathology), β-amyloid 38, 40, and 42 (indicators of amyloid
processing), and YKL-40 (a neuroinflammatory marker).

Main results and the role of chance
After adjustment of the generalized linear model for age-
dependency, Aβ38 and Aβ40 but not Aβ42 were significantly
decreased in mutation carriers compared to noncarriers. In
both the unadjusted and adjusted models, NfL was higher in
mutation carriers compared to noncarriers (F3,26 = 29.44,
p = 0.021) and higher in symptomatic carriers compared to
presymptomatic carriers (F3,12 = 7.02, p = 0.0064). NfL levels
were elevated in carrier individuals prior to the age of expected
clinical onset, 58 years (F3,26 = 29.44, p = 0.021), supporting
the utility of NfL as a biomarker for neurodegeneration.

Bias, confounding, andother reasons for caution
The study was inherently limited by the characteristics and
size of the target population and a small sample size.

Generalizability to other populations
The findings are generalizable to individuals with FTD-3.

Study funding/potential competing interests
The study was funded by several government and foundation
grants. Go to Neurology.org/N for full disclosures.
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