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Why You Should Always

Include a Random Slope for the Lower-Level

Variable Involved in a Cross-Level Interaction∗

Jan Paul Heisig

WZB Berlin Social Science Center

Merlin Schaeffer

University of Copenhagen

Abstract

Mixed effects multilevel models are often used to investigate cross-level in-
teractions, a specific type of context effect that may be understood as an
upper-level variable moderating the association between a lower-level pre-
dictor and the outcome. We argue that multilevel models involving cross-
level interactions should always include random slopes on the lower-level
components of those interactions. Failure to do so will usually result in
severely anti-conservative statistical inference. Monte Carlo simulations and
illustrative empirical analyses highlight the practical relevance of the issue.
Using European Social Survey data, we examine a total 30 cross-level interac-
tions. Introducing a random slope term on the lower-level variable involved
in a cross-level interaction, reduces the absolute t-ratio by 31% or more in
three quarters of cases, with an average reduction of 42%. Many practitioners
seem to be unaware of these issues. Roughly half of the cross-level interac-
tion estimates published in the European Sociological Review between 2011 and
2016 are based on models that omit the crucial random slope term. Detailed
analysis of the associated test statistics suggests that many of the estimates
would not meet conventional standards of statistical significance if estimated
using the correct specification. This raises the question how much robust ev-
idence of cross-level interactions sociology has actually produced over the
past decades.

∗Parts of this paper were presented at the RC 28 Spring Meeting 2018. We thank participants
for their feedback. We are particularly indebted to Mark Wittek for thoroughly coding hundreds
of cross-level interactions. Both authors have contributed equally. Please direct correspondence
to Merlin Schaeffer, University of Copenhagen, Department of Sociology, Øster Farimagsgade 5,
Building 16, DK-1353 København K.
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One of the enduring questions of sociology is how human attitudes and behavior

are shaped by the social environment and how vice versa the social environment

emerges from human action. The investigation of context effects, where an en-

vironmental feature (e.g., a characteristic of a neighborhood or country) affects

processes at a lower level (e.g., that of the individual), is therefore central to the

discipline, and one should think that sociologists are highly proficient in model-

ing them statistically.

Quantitative sociologists typically use mixed effects models, which are also

known as ‘hierarchical models’ or simply ‘multilevel models’, to deal with the

statistical challenges that arise in the estimation of context effects (see the ‘Mixed

Effects Models with Cross-Level Interactions’ section and Equations 1 to 4 below).

A crucial issue in the specification of these models is the choice of a random ef-

fects structure (i.e., random intercept and slopes), which can have important con-

sequences both for the precision of parameter estimates (Heisig et al., 2017) and

for statistical inference (Barr et al., 2013; Bell et al., 2016; Berkhof and Kampen,

2004; Bryan and Jenkins, 2016; Schmidt-Catran and Fairbrother, 2016).

The random effects structure is also a crucial issue in the estimation of cross-

level interactions, which are a special type of context effect where a contextual

characteristic moderates the strength of a lower-level relationship (see Equation

4 below). To fix ideas, consider the following example, which also serves as one

of the illustrative empirical examples presented later on: the (individual-level)

relationship between fear of crime (as the outcome) and education (as the pre-

dictor) might be weaker in less developed countries (as indicated by the human

development index; HDI) where the generally poor living conditions put every-

one in danger of crime. Or to put it another way, the better-educated tend to

benefit the most from improving societal conditions, whereas the less educated

remain relatively vulnerable to crime. Researchers who study cross-level interac-

tions are interested in variation of lower-level relationships across contexts. One
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might therefore expect their models to include so-called random slope terms that

capture unexplained contextual variation in these relationships (see Equation 3

below for a formal representation). In our example, one would include a random

slope to account for cross-country differences in the relationship between edu-

cation and fear of crime that are not explained by country differences in human

development.

A review of published research, however, reveals that in many analyses of

cross-level interactions the corresponding random slope is missing. Between 2011

and 2016 the European Sociological Review (ESR) published 28 studies that inves-

tigated cross-level interactions using (two-level) mixed effects multilevel models

(24 of these studies were country comparisons). More than half of these studies

(17/28 or 61%) only specified random intercept models without any random slopes

(for details, see the ‘Cross-level Interactions in the ESR’ section).

Given that empirical practice is so inconsistent, one may wonder whether the

inclusion of random slope terms on the lower-level components of cross-level in-

teractions is a matter of taste or whether one approach will usually be preferable

to the other. A review of prominent textbooks on multilevel modeling does not

provide a clear answer. In one widely-read book, Snijders and Bosker (2012) note

that ‘tested fixed effects’ should be accompanied by ‘an appropriate error term

[...] For cross-level interactions, it is the random slope of the level-one [i.e., lower-

level] variable involved in the interaction’ (p.104). Other authors take a more

ambiguous position. For example, Raudenbush and Bryk’s (2002) book includes

a section on ‘A Model with Nonrandomly Varying Slopes’ where they suggest

that a model with a cross-level interaction may omit the corresponding random

slope if ‘little or no variance in the slopes remains to be explained’ (p.28). They

provide no precise definition of ‘little or no variance’, however. In their chapter

on ‘Random-coefficient models’, Rabe-Hesketh and Skrondal (2012) generally in-

clude random slope terms alongside cross-level interactions, but they also note
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that the decision whether to do so often seems to be driven by technicalities of

the software used: ‘Papers using HLM tend to include more cross-level interac-

tions and more random coefficients in the models (because the level-2 [i.e., upper-

level] models look odd without residuals) than papers using, for instance, Stata’

(p.212f.). This certainly does not sound like an emphatic recommendation to in-

clude the random slope for statistical reasons.

In this article, we argue that such a recommendation should be given. We

explain and demonstrate that the omission of random slopes in the analysis of

cross-level interactions constitutes a specification error that will often have se-

vere consequences for statistical inference about the coefficient of the cross-level

interaction term (i.e., in our running example the interaction between education

and HDI) and about the main effect of the lower-level predictor involved in the

interaction (i.e., the main effect of education). Only the main effect of the upper-

level predictor remains unaffected (provided that the model includes a random

intercept, as is generally the case in applied research).

In the next section, we briefly introduce mixed effects models with cross-level

interactions. In the ‘Why Always a Random Slope?’ section, we then explain that

random slopes capture cluster-driven heteroskedasticity and autocorrelation re-

lated to the lower-level component of the cross-level interaction (and hence to the

cross-level interaction term itself). As in standard linear regression, ignoring het-

eroskedasticity and autocorrelation by failing to specify the appropriate random

slope term will typically lead to downward bias in standard error estimates.

The two subsequent sections present Monte Carlo simulations and illustrative

empirical analyses that support our claims. The simulations show that (correctly

specified) mixed effects models with a random intercept and a random slope on

the lower-level component of a cross-level interaction generally achieve accurate

statistical inference for all coefficients of interest. By contrast, random intercept

models that omit the random slope term produce severely anti-conservative in-
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ference for the cross-level interaction term and the main effect of its lower-level

component. The proportion of 95% confidence intervals that do not cover the true

effect size (i.e., the actual coverage rate) is generally smaller than the nominal

rate, and often by a substantial margin. We find that the extent of undercoverage

increases with the extent of variation in the (unmodeled) random slope, the vari-

ance of the lower-level component, and the number of lower-level observations

per cluster. Illustrative empirical analyses of European Social Survey (ESS) data

for 28 countries indicate that the consequences of omitting the random slope on

the lower-level component are severe in real-life settings. We examine a total of 30

cross-level interactions and find that inclusion of the random slope term deflates

the t-ratio on the cross-level interaction term by 31% or more in three quarters of

cases, with an average reduction of 42%.

We then review studies of cross-level interactions published in the ESR be-

tween 2011 and 2016. Unsurprisingly, we find that authors were more likely to

report statistically significant cross-level interactions when they used a misspec-

ified model that omitted the corresponding random slope. Consistent with ‘p-

hacking’ (Simonsohn et al., 2014), the distribution of absolute t-ratios for models

estimated without a random slope exhibits a marked peak just above the critical

value of 1.96 whereas the t-ratios for models that include a random slope do not.

In combination with the results of our Monte Carlo simulations and empirical

illustrations, our review therefore suggests that most estimates based on models

omitting the random slope would not have reached conventional levels of statis-

tical significance in a correctly specified model.

The subsequent and penultimate section presents a further result of our anal-

ysis: the omission of a relevant random slope also leads to anti-conservative in-

ference for a corresponding ‘pure’ lower-level effect. That is, even if the model

does not contain any cross-level interactions involving education, accurate infer-

ence for the average effect of education on fear of crime across the 28 ESS coun-
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tries would require the inclusion of a random slope on education—provided that

such a slope is present in the process that gave rise to the data. While this result

is troubling, there are two reasons to be less concerned than in the cross-level

interaction case. First, most sociologists who use multilevel models are primar-

ily interested in context effects rather than pure lower-level effects, as we con-

firm through a systematic analysis of the titles, abstracts, and formal hypothe-

ses of research published in the ESR. Second, lower-level effects can typically be

estimated with much greater precision (and correspondingly higher absolute t-

statistics) than cross-level interactions. As a consequence, estimated lower-level

effects should often stay statistically highly significant even if the associated t-

ratio declines by 50% or more. In the cross-level interaction case, such a decrease

will often mean the difference between moderately strong and no statistically

meaningful evidence against the null hypothesis.

The concluding section discusses the primary implications of our study. Look-

ing backward, our findings suggest that the empirical basis for many seemingly

well-established findings in (country-)comparative research may be much shakier

than previously thought. Looking forward, a minimum requirement for future

studies that examine cross-level interactions using multilevel models is that they

include a random slope on the corresponding lower-level variable. However, our

findings suggest that fully accurate statistical inference for all coefficients, includ-

ing pure lower-level effects, requires the inclusion of additional random slopes

or alternative methods of inference, an important issue that should be addressed

in future work.
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Mixed Effects Models with Cross-Level Interac-

tions

In a first step, we briefly review the general logic of mixed effects models with

cross-level interactions (for comprehensive introductions, see, for example, Rabe-

Hesketh and Skrondal, 2012; Raudenbush and Bryk, 2002; Snijders and Bosker,

2012). We begin with the following lower-level equation for the (lower-level)

outcome Yij (e.g., fear of crime):

Yij = β
(c)
j + β

(x)
j xij + εij , (1)

where i indexes lower-level observations (e.g., individuals) and j indexes

upper-level observations or clusters (e.g., countries). β(c)
j is the constant (i.e., in-

tercept) and β(x)
j is the coefficient of lower-level predictor xij (e.g., education). The

subscript j on the two parameters, β(c)
j and β(x)

j , indicates that both are considered

as potentially varying across clusters. In terms of our example, the j on β(x)
j thus

means that the degree to which better-educated people are less afraid of crime

might vary across countries. The model could be extended to include additional

lower-level predictors x2ij to xkij , but for our analysis this is not necessary. εij is

a lower-level error often assumed to follow εij ∼ N (0, σ2), that is, to be normally

distributed with a mean of zero and constant variance σ2 (homoskedasticity).

In a cross-level interaction model, β(x)
j is specified as dependent on at least

one cluster-level (i.e., contextual) variable zj (e.g., the HDI). Typically, the model

will (and should) also allow for a relationship between the constant β(c)
j and zj .

One way to formalize this is to write β(c)
j and β(x)

j as the outcome variables in two

cluster-level equations:

β
(c)
j = γ(c) + γ(cz)zj + u

(c)
j (2)
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and

β
(x)
j = γ(x) + γ(xz)zj + u

(x)
j . (3)

Here, u(c)
j and u

(x)
j are cluster-level error terms or ‘random effects’, with the

former often referred to as a ‘random intercept’ and the latter as a ‘random slope’

term. It is natural to think of these terms as capturing the effects of unmodeled

cluster-level variables on β(c)
j and β

(x)
j . Typically, u(c)

j and u
(x)
j are assumed to fol-

low a multivariate normal distribution. Equation 2 is sometimes referred to as an

‘intercept-as-outcome’ equation and Equation 3 as a ‘slope-as-outcome’ equation.

Equations 1 to 3 highlight the multilevel nature of the model. An alternative

formulation is the ‘expanded form’ of the model, derived by substituting Equa-

tions 2 and 3 into 1. After rearranging terms we end up with:

Yij = γ(c) + γ(cz)zj + γ(x)xij + γ(xz)zjxij︸ ︷︷ ︸
fixed part

+u
(c)
j + u

(x)
j xij + εij︸ ︷︷ ︸

random part (=vij)

. (4)

Equation 4 shows why γ(xz) is referred to as a ‘cross-level interaction effect’:

it is the coefficient on a multiplicative interaction term between the lower-level

predictor xij and the cluster-level predictor zj ; in our running example, it is the

interaction between the individual characteristic education and the country at-

tribute HDI. The first part of the right-hand expression, consisting of the linear

combination of the constant and the lower- and upper-level predictors, multi-

plied by their respective coefficients (or ‘fixed effects’), is also referred to as the

fixed part of the model. Crucially, the second part shows that the model has a

complex error term vij that consists of three components: the random intercept

term u
(c)
j , the lower-level residual error εij , and the product of the random slope

term with the lower-level predictor u(x)
j xij .
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Why Always a Random Slope?

The formal exposition of the multilevel model in the previous section provides

an intuitive reason for why one should always include the random slope term

u
(x)
j : Equation 3 clarifies that omitting u

(x)
j is equivalent to assuming that β(x)

j is

perfectly determined by zj , in other words that R2(β
(x)
j ), the R2 of the (implicit)

cluster-level regression for β(x)
j , equals 1. As noted above, Raudenbush and Bryk

(2002) do indeed discuss the possibility that ‘little or no variance in the slopes

remains to be explained’ (p.28) after accounting for the cluster-level predictor zj .

Yet we would argue that this is an unlikely scenario in the vast majority of so-

cial science applications. This is confirmed by the empirical examples presented

in section ‘Illustrative Empirical Analyses’ and in the Online Supplement (see,

in particular, the final columns of Table D1 to D6). More importantly, our Monte

Carlo simulations will show that omitting the random slope term can have severe

consequences even when there is very little variation in β
(x)
j . We find that infer-

ence can be substantially overoptimistic even whenR2(β
(x)
j ) of the implicit cluster

regression is as high as .95 or when standard model selection criteria such as like-

lihood ratio tests or information criteria indicate that the remaining variation is

negligible and favor the model that drops the random slope (the results on model

selection strategies can be found in Appendix C in the Online Supplement).

The two-stage formulation of the model in Equations 1 to 3 also suggests that

omission of u(x)
j should primarily affect inference about γ(x) and γ(xz)zj because

these terms are implicitly defined in the potentially misspecified Equation 3. Sta-

tistical inference for estimates of γ(cz) and γ(c) should remain unaffected—as it

should for any other terms that do not appear in Equation 3, including the coeffi-

cients of additional lower-level predictors.

We now further clarify the importance of including random slope terms on

the lower-level components of cross-level interactions. Equation 4 shows that the

presence of the random slope term u
(x)
j in the true data-generating process adds
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the component u(x)
j xij to the complex error term. This component has important

consequences for the conditional variance of the overall error vij and for the co-

variance of the error terms for lower-level observations belonging to the same

cluster. In particular, the variance of vij given xij will be (Snijders and Bosker,

2012, Equation 5.5):1

Var(vij|xij) = Var(u(c)
j ) + 2Cov(u

(c)
j , u

(x)
j )xij + Var(u(x)

j )x2
ij + Var(εij). (5)

The covariance of the error terms for two different individuals (say, i and i′)

belonging to the same cluster will be (Snijders and Bosker, 2012, Equation 5.6):

Cov(vij, vi′j|xij, xi′j) = Var(u(c)
j ) + Cov(u

(c)
j , u

(x)
j )(xij + xi′j) + Var(u(x)

j )xijxi′j . (6)

These equations highlight that vij will be heteroskedastic even if u(c)
j , u(x)

j , and

εij are all homoskedastic and that errors will be correlated within clusters. More

specifically, if the true model includes the random slope term u
(x)
j , but the es-

timated model does not, there will be: a) unmodeled heteroskedasticity in the

error term (due to the second and third term on the right hand side in Equation

5) and b) unmodeled covariation among the errors for lower-level observations

belonging to the same cluster (due to the second and third term on the right hand

side in Equation 6).

Figure 1 illustrates the problem graphically. To construct the figure, we first

simulated a data set according to Equations 1 to 3, assuming substantial cross-

cluster variation in the slope of xij . We set the number of clusters to 25 and the

number of lower-level observations per cluster to 100 (see the notes to Figure 1 for

further information on how the data were generated). We then fitted a multilevel
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Figure 1: Lower-level Residuals for Models with and without Random Slope
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Note: Residuals are from linear mixed effects models. The data are are simulated according to
Equations 1 to 3 with 25 clusters and 100 lower-level observations per cluster. The cluster- and
lower-level predictors, zj and xij , are both normally distributed with means of 0 and standard

deviations of 1 and their coefficients are being set to 1; u
(c)
j and u

(x)
j are multivariate normal

with means of 0, standard deviations of .6 and 2, respectively, and with a correlation of .3; the
lower-level error εij is normally distributed with a standard deviation of 2.
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model with and a multilevel model without a random slope on xij to the simu-

lated data and obtained the lower-level residuals for each. The figure plots these

residuals against xij and zjxij , after partialing out the cluster-level predictor zj .

We focus on three representative clusters, one with a slope for β(x)
j that deviates

strongly positive from the average slope, one with a slope for β(x)
j that is close to

the average, and one with a slope for β(x)
j that deviates strongly negative from the

average slope. Regression lines have been added to approximate the conditional

mean of the residuals for each of the three clusters.

The graphs in the left-column of Figure 1 show that the lower-level residuals

from the correctly specified model conform to the assumptions of the model: the

cluster-specific means of the residuals are unrelated to either predictor and their

variance is constant. The picture looks very different for the residuals from the

misspecified model (i.e., the one omitting the random slope) in the right column.

Consistent with the above discussion, the variance of the residuals is markedly

higher for extreme values of xij (heteroskedasticity). Moreover, the residuals

for lower-level observations belonging to the same cluster are highly positively

(auto-)correlated when they have similar values on xij and zjxij .

Omitting a random slope that actually belongs in the model thus leads to

unmodeled heteroskedasticity and autocorrelation. This will typically lead to

the underestimation of standard errors and thereby to anti-conservative infer-

ence. This is well-known not only from the multilevel modeling literature, but

also from the literature on cluster-robust inference in econometrics (for a recent

overview, see Cameron and Miller, 2015).2 In fact, the goal to achieve accurate in-

ference in the presence of cluster-induced heteroskedasticity and autocorrelation

is a common motivation for both multilevel modeling and cluster-robust meth-

ods. The former approach seeks to address the interdependencies among obser-

vations belonging to the same cluster through the inclusion of random intercept

and slope terms (see Equations 1 to 6 above). The latter uses special ‘sandwich-
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type’ estimators of the coefficient covariance matrix that remain consistent even

in the presence of heteroskedasticity and (within-cluster) autocorrelation.

When will omitting the random slope term be particularly consequential? In-

spection of Equations 5 and 6 (as well as Figure 1) suggests two relevant factors.

First, the consequences of omitting the random slope should become more severe

as the variance of u(x)
j increases. This is because both the conditional variance

(Equation 5) and the within-cluster covariance (Equation 6) depend on V ar(u(x)
j ).

The second factor is the extent of variation in the lower-level predictor, that is,

Var(x(x)
j ). As Var(x(x)

j ) increases, so will the extent of (unmodeled) variation in

the conditional error variance across observations. In terms of our running ex-

ample, failure to model cross-cluster differences in the coefficient of education

will be more consequential when individuals differ a lot in terms of their level of

education.

The parallels to the literature on cluster-robust inference suggest a third factor

that does not immediately follow from the above equations. The consequences of

erroneously omitting the random slope term should also be related to the num-

ber of observations per cluster, that is, to the (average) cluster size. For the case of

linear regression with clustered data, it is well-known that the conventional (un-

corrected) ordinary least squares variance estimate for a regressor x understates

the true variance approximately by a factor of (Cameron and Miller, 2015, 322):

τ ' 1 + ρ(x)ρ(u)(N̄g − 1), (7)

where ρ(x) is the within-cluster correlation of x, ρ(u) is the within-cluster error

correlation, and N̄g is the average cluster size. Intuitively, the underlying reason is

that the actual number of cases available for estimating the cross-level interaction

is the number of clusters because the cross-level interaction is about a cluster-level

relationship. This is immediately clear from the ‘slope-as-outcome’ formulation

of the model (see Equation 3 above). By omitting the random slope term, this
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cluster-level nature of the cross-level interaction is ignored and observations from

the same cluster are treated as contributing independent information about the

moderating effect of zj on the slope of xij . This illusionary increase in the number

of cases available for estimating the cross-level interaction is larger when clusters

are large.

Another way to understand why the average cluster size matters is to consider

how it affects the overall prevalence of autocorrelation in the data (see Cameron

and Miller, 2015, 319ff.). Both the multilevel and the cluster-robust approach as-

sume that errors are correlated within, but not across clusters. Thus off-diagonal

elements of the error covariance matrix will be zero for pairs of observations that

belong to different clusters and will generally be non-zero for pairs of observa-

tions that belong to the same cluster. For a given lower-level sample size, this

means that the number of non-zero off-diagonal elements increases with the av-

erage cluster size (and decreases with the number of clusters).3

In summary, the above discussion suggests that practitioners should always

specify a random slope for the lower-level variable of a cross-level interaction in

mixed effects models. Failure to include a random slope is to disregard cluster-

driven heteroskedasticity and autocorrelation, violating fundamental model as-

sumptions. Omitting the random slope term associated with a cross-level interac-

tion will not, in general, introduce systematic bias into coefficient estimates.4 But

it will lead to overly optimistic statistical inference for the cross-level interaction

term and the coefficient (i.e., the ‘main effect’) of the lower-level variable involved

in the interaction. All other coefficient estimates and their standard errors, includ-

ing the main effect of the contextual predictor involved in the cross-level interac-

tion as well as any additional lower- and upper-level predictors, should largely

remain unaffected.5 The consequences of omitting the random slope term should

become more severe a) as the unaccounted variation in the cluster-specific slopes

grows, b) as the variance of the involved lower-level variable increases, and c) as
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the average cluster size becomes larger.

Inference For ‘Pure’ Lower-Level Effects

Against the background of the preceding discussion, one may wonder if the in-

corporation of random slopes is also important for achieving correct inference

on the coefficients of lower-level variables that are not involved in a cross-level

interaction term, that is, on ‘pure’ lower-level effects (cf., Barr et al., 2013; Bell

et al., 2016). In terms of our running example, this means: does it remain crucial

to include the random slope if we are interested in the overall (average) effect

of education on fear of crime rather than the interaction between human devel-

opment and education? After all, it is the presence of an unmodeled random

slope term u
(x)
j —and not the interaction between a cluster-level and a lower-level

predictor—that introduces heteroskedasticity (Equation 5) and autocorrelation

(Equation 6) into the overall error term vij . To foreshadow our results, we do in-

deed find that the omission of a relevant random slope leads to anti-conservative

inference also for pure lower-level effects.

That being said, we maintain and demonstrate below that there are at least

two important reasons why the cross-level interaction case deserves special at-

tention. The first is that, at least in sociology, the overwhelming majority of stud-

ies that use mixed effects models with multilevel data are primarily interested in

context effects, including cross-level interactions. The second reason is that the

erroneous omission of a random slope term tends to be less consequential in the

pure lower-level effect than in the cross-level interaction case. The crucial reason

for this is that, compared to a lower-level effect, much more data will usually be

needed to achieve the same level of statistical power for identifying a cross-level

interaction (Gelman and Hill, 2007, Ch. 20). As a consequence, the same rela-

tive increase in the standard error (due to omitting a random slope term) will

often make the difference between moderately strong and no meaningful evi-
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dence against the null hypothesis in the cross-level interaction case (say, between

p < .05 and p > .1). In the case of pure lower-level effects, the difference is more

likely to be between different degrees of strong evidence (say, between p < .001

and p < .01). We explore these issues in detail in the ‘Random Slopes and ‘Pure’

Lower-level Effects’ section. In a first step, we now focus on the cross-level inter-

action case.

Simulation Evidence

Simulation Set-up

We now present Monte Carlo simulations to illustrate the importance of including

random slopes alongside cross-level interaction terms. In Monte Carlo analysis,

the statistical properties of competing estimators are evaluated under controlled

conditions by repeatedly sampling data from a known data-generating process

(DGP) and applying the estimators to each simulated dataset. By modifying key

aspects of the DGP (e.g., the number of clusters) one can investigate how they

shape the relative performance of the competing estimators.

The general form of the DGP for the simulations is given in Equations 1, 2,

and 3 above. That is, we consider a simple case with one lower-level predictor xij

and one upper-level predictor zj , with the latter affecting both the constant and

the slope of xij . In our running example, xij would be education, zj would be

human develompment, and the dependent variably yij would be fear of crime.

We examine several variants of this DGP which, in keeping with standard ter-

minology, we also refer to as ‘experimental conditions’. In particular, we vary

the number of clusters, the number of (lower-level) observations per cluster, the

standard deviation of u(x)
j (the random slope term in Equation 3), and the extent

of variability in the lower-level predictor xij . Table 1 lists the dimensions that we

manipulate, along with the different values that we consider. In total, we analyze
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Table 1: Dimensions Manipulated in the Monte Carlo experiments

Dimension Levels
m 5

Number of clusters 15
25

ng 100
Number of observations 500

per cluster 1000

SD(u
(x)
j ) and R2(β

(x)
j ) .1005 (.99)

Standard deviation of .1429 (.98)
random slope term u

(x)
j .2294 (.95)

(implied cluster-level R2(β
(x)
j ) .3333 (.90)

for cluster-level 1.0000 (.50)
regression in parentheses) 3.0000 (.10)

SD(xij) .50
Standard deviation of 1.00

lower-level predictor xij 2.00

162 (= 3 × 3 × 6 × 3) experimental conditions. The coefficients on all predictors

(i.e., γ(cz), γ(x), and γ(xz)) are set to 1 and the overall constant γ(c) is set to 0.

We obtain 10,000 replications (i.e., 10,000 simulated datasets) per experimental

condition and fit two mixed effects models to each simulated data set. Consistent

with the DGP, both models include the cluster-level predictor zj , the lower-level

predictor xij , and their cross-level interaction zjxij . Both also include a random

intercept term corresponding to u(c)
j in Equation 2. The only difference between

the two models is that the first further includes a random slope term correspond-

ing to u
(c)
j in Equation 3. The second model omits this term. As noted above,

somewhat more than half of all cross-level interaction estimates published in the

ESR between 2011 and 2016 are based on models that omit the random slope on

the lower-level component of the cross-level interaction (see also the ‘Cross-level

Interactions in the ESR’ section below).

We focus on statistical inference. There is no reason to expect that the omis-

sion versus inclusion of the random slope term affects parameter bias.6 To assess

inferential accuracy, we examine the actual coverage rates of two-sided 95% con-
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fidence intervals. Accurate inference (for an unbiased estimator) requires that

the actual coverage rate equals the nominal rate. We therefore examine whether

two-sided 95% confidence intervals cover the true parameter in more or less than

95% of the 10,000 Monte Carlo replications. Let C95(r) = 1 if the two-sided 95%

confidence interval for the rth replication includes the true value of the parameter

of interest and zero otherwise. Then coverage is defined as

Coverage =
1

R

R∑
r=1

C95(r).

If coverage is greater than 95%, confidence intervals are too large and over-

conservative; hypothesis tests will retain the null hypothesis of no effect too often.

By contrast, if coverage is below 95%, confidence intervals are too narrow and

null hypotheses rejected too frequently.

An alternative to the actual coverage rate would be to compare the average

estimated standard error to the actual standard deviation of the corresponding

point estimates across the Monte Carlo replicates (see, e.g., Schmidt-Catran and

Fairbrother, 2016, who refer to this as ‘optimism of the standard errors’). The

reason why we prefer to measure accuracy in terms of the coverage rate is that

the standard error is a (downward) biased estimator of the sampling distribution

standard deviation in small samples. Since the work of William Gossett (1908),

the established way of correcting for this downward bias is to base confidence

intervals and hypothesis tests on an appropriate t-distribution rather than the

standard normal distribution (as detailed below, we use the m − l − 1 rule ad-

vocated by Elff et al., 2016, to select the appropriate t-distribution). We further

explore these issues and present results on standard error optimisim in Online

Supplement Appendix A.

In practice, Monte Carlo estimates of actual coverage rates will typically differ

from the ideal value even for accurate estimators because we use a finite number

of Monte Carlo replications. In our case, 10,000 replications imply a simulation
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error of≈ .00218 (=
√
.95× .05/10000) or .218 percentage points. Thus, the actual

coverage rate of an estimator (for a given experimental condition) is significantly

different (at the five percent level) from the nominal level of 95% if it deviates

from that level by more than .427 (= 1.96 × .218) percentage points. The null

tested here is the hypothesis that the actual coverage rate is equal to the nominal

rate.

We conducted all simulations in R (R Core Team, 2017), using the lmer func-

tion of the lme4 package (Bates et al., 2017) to estimate the mixed effects models.

Following the recommendations of Elff et al. (2016), we use restricted maximum

likelihood estimation throughout and construct confidence intervals based on a

t-distribution with m− l− 1 degrees of freedom (where m represents the number

of clusters and l generally equals 1 because we have only one cluster-level pre-

dictor). Replication files are available as part of the online supporting material.

Simulation Results

Table 2 shows actual coverage rates for models that omit versus models that in-

clude a random slope term on the lower-level component of the cross-level inter-

action. Results are displayed along two dimensions: the amount of unexplained

variation in the cluster-specific slope β(x)
j and the extent of variation in xij . The

number of clusters is 15 and the number of lower-level observations per cluster is

500 throughout the table. We explore the impact of varying these factors below.

The central result in Table 2 is that coverage rates of confidence intervals based

on models that omit the random slope term are inaccurate. As expected, this does

not apply to inference for the main effect of the contextual predictor zj where cov-

erage rates fall within the range of 95 ± 0.427% for all experimental conditions.

But the coverage rates of confidence intervals for the cross-level interaction term

and for the main effect of the lower-level predictor are too low and the extent of

undercoverage is generally substantial. To understand the implications, note that
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Table 2: Actual Coverage Rates of Nominal 95% Confidence Interval by Variance of
Lower-level Predictor and Random Slope Term

γ(x) γ(xz) γ(cz)

Random Slope Random Slope Random Slope
SD(xij) Included Omitted Included Omitted Included Omitted

R2(β
(x)
j ) = 0.95 (i.e., SD(u

(x)
j ) ≈ 0.23)

0.5 96.44 92.82 96.46 93.07 95.17 95.21
1.0 95.21 81.74 95.12 81.69 94.79 95.07
2.0 95.00 57.38 94.60 56.95 94.85 95.20

R2(β
(x)
j ) = 0.90 (i.e., SD(u

(x)
j ) ≈ 0.33)

0.5 95.54 88.55 95.64 88.33 94.74 94.75
1.0 95.34 70.06 95.12 68.55 94.89 95.20
2.0 95.04 42.11 95.23 43.34 94.51 95.03

R2(β
(x)
j ) = 0.50 (i.e., SD(u

(x)
j ) = 1.00)

0.5 95.14 53.94 95.32 54.28 94.74 95.10
1.0 94.90 30.55 94.84 30.51 94.80 95.19
2.0 95.00 17.14 94.74 17.15 94.95 95.03

R2(β
(x)
j ) = 0.10 (i.e., SD(u

(x)
j ) = 3.00)

0.5 94.74 21.87 94.84 21.16 94.95 94.82
1.0 95.03 12.54 95.12 12.87 95.20 95.13
2.0 94.78 8.85 95.21 8.78 94.98 95.38

Note: Results are based on 10,000 Monte Carlo replications. Because of Monte Carlo sampling
error, the test interval is 95± 0.427. Values smaller or larger than that are statistically significant
deviations and indicate biased inference. The number of observations per cluster is 500 with overall
15 clusters.
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an actual coverage rate of 90% means that nominal significance on the 5% level

would actually only mean ‘marginal’ significance on the 10% level.7 Yet, most ac-

tual coverage rates displayed in Table 2 are even substantially smaller than 90%.

Our simulation results therefore suggest that omitting the random slope term

can easily turn coefficient estimates that are actually far from any conventional

level of statistical significance into ones that seemingly surpass the correspond-

ing thresholds.

By contrast, coverage rates of confidence intervals based on models that in-

clude a random slope term are by and large accurate for all three coefficients and

across all displayed experimental conditions. Only when variation is low for both

the lower-level predictor (i.e., SD(xij)) and the random slope term (i.e., SD(u
(x)
j ))

do the results show a tendency for overly conservative inference, meaning that

confidence intervals might be somewhat too wide. We return to this unexpected

result at the end of this section.

The next important question is: what drives the extent of miscoverage? As ex-

pected, the extent of undercoverage grows with the unaccounted cluster-specific

variation of β(x)
j in the true model (i.e., with SD(u

(x)
j )) and also with the extent of

variation in xij (i.e., with SD(xij)). The reason is that the extent of heteroskedas-

ticity and autocorrelation that remains unmodeled in the specification that omits

the random slope is a function of the product of these two factors (see Equations

5 and 6 above), which is also why each dimension on its own can drive the extent

of undercoverage to completely unacceptable levels.

We further argued that the (average) size of the upper-level units or ‘clusters’

should exacerbate the consequences of omitting a random slope term because

models without a random slope term assume too much independence among

observations (see discussion of Equation 7 above). We explore this issue in Table

3, which shows actual coverage rates by the number of clusters and number of

observations per cluster. SD(xij) is set to 1 and the implicit cluster-level R2(β
(x)
j )
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Table 3: Actual Coverage Rates (%) of Nominal 95% Confidence Interval by Number
of Clusters and Lower-level Observations

γ(x) γ(xz) γ(cz)

Random Slope Random Slope Random Slope
nj ntotal Included Omitted Included Omitted Included Omitted

m = 5 Clusters
100 500 96.20 77.16 96.18 77.45 97.35 97.82
500 2500 95.09 43.23 95.07 43.68 93.64 95.34

1000 5000 95.07 31.39 94.58 31.70 93.95 95.11

m = 15 Clusters
100 1500 95.19 58.57 94.75 58.62 93.65 95.51
500 7500 94.90 30.55 94.84 30.51 94.80 95.19

1000 15000 94.93 21.46 94.95 22.37 95.10 95.25

m = 25 Clusters
100 2500 94.79 56.87 95.24 56.22 93.23 95.03
500 12500 94.93 29.71 94.98 29.29 95.13 95.14

1000 25000 94.85 21.43 95.23 21.32 94.90 94.74

Note: Results are based on 10,000 Monte Carlo replications. Because of Monte Carlo sampling
error, the test interval is 95± 0.427. Values smaller or larger than that are statistically significant
deviations and indicate biased inference. These results are based on experimental conditions for

which R2(β
(x)
j ) = 0.50 (i.e., SD(u

(x)
j ) = 1), and SD(xij) = 1.

to .5 (i.e., SD(u
(x)
j ) = 1.00); that is, we hold both factors at the intermediate levels

considered in Table 2 above.

Table 3 confirms that inference based on models that include a random slope

is generally accurate. As befoe, we also see that omitting the random slope term

does not, in general, compromises inference for γ(cz). As expected, the problem

gets worse as the cluster size (i.e., the number of lower-level observations per

cluster) increases. For every given number of clusters, undercoverage is most

severe for 1000 observations per cluster as compared to 500 and especially 100

observations per cluster.

The upshot of our Monte Carlo simulations thus is that omitting the random

slope term on the lower-level component of a cross-level interaction can lead to

dramatically anti-conservative statistical inference for the interaction term and

the main effect of the lower-level variable. In line with our expectations, under-

coverage increases with the extent of variation in the lower-level variable, the
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extent of variation in the unmodeled random slope term, and with the (average)

size of the clusters.

Before we investigate the severity of the problem using real-life data from the

European Social Survey, we summarize the main results of two additional sets of

simulations.

In Online Supplement Appendix B we further investigate the unexpected re-

sult that the (correctly specified) model including the random slope term yields

overconservative statistical inference in some situations. We present additional

simulations that consider even lower values of .14 and .10 for the standard devia-

tion of the random slope term, implying values of .98 and .99 for the cluster-level

R2(β
(x)
j ). The additional simulations confirm that very low variation in the ran-

dom slope term can lead to substantial overcoverage, especially when the number

of clusters is also very low. While these results do warrant a note of caution, their

practical relevance is limited. In the vast majority of applications the number of

clusters is at least in the tens, and cross-cluster variation in random slopes is typi-

cally substantial, at least in country-comparative setting. This is confirmed by the

empirical examples presented in the next section and in the Online Supplement

(see, in particular, the final columns of Table D1 to D6). Moreover, practition-

ers can easily verify if they are dealing with a situation where the random slope

variation is close to zero.

In a second set of supplementary analyses, presented in Online Supplement

Appendix C, we investigate the performance of a data-driven approach to model

selection. As noted in the introduction, Raudenbush and Bryk (2002, p.28) sug-

gest that it might be appropriate to omit the random slope if its variance is ‘very

close to zero’. For want of an exact definition of ‘very close’, one might turn to

standard model selection criteria for determining whether a given slope is small

enough to warrant omission. Our supplementary analyses consider four selec-

tion criteria: Akaike’s Information Criterion, the Bayesian Information Criterion,
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and two variants of a Likelihood Ratio Test. The main result is unambiguous:

when the goal is to achieve correct statistical inference for a cross-level interaction

effect, it is not advisable to rely on model selection criteria in deciding whether

to include a random slope on the lower-level predictor. For all four selection cri-

teria, we find settings where reliance on the criterion results in noteworthy levels

of undercoverage.

Illustrative Empirical Analyses

The simulation results are clear cut: omitting random slopes on the lower-level

components of cross-level interaction terms compromises statistical inference about

those terms and about the main effects of their lower-level components. To get

a better sense of how serious the problem is in real-world applications, we now

present a series of illustrative analyses based on European Social Survey data

(ESS Round 6, 2016).

We adopt Heisig et al.’s (2017) illustrative analyses of cross-level interactions.8

The overall 30 empirical examples study how the relationships between six lower-

level predictors (having a high education, age, gender, unemployment, being

married, and having a medium education) and five standard outcome variables

(generalized trust, homophobia, xenophobia, fear of crime, and occupational sta-

tus) are moderated by the Human Development Index (HDI).

For each of the 30 cross-level interactions (5 dependent variables × 6 lower-

level predictors) we estimate two specifications, resulting in a total of 60 linear

mixed effects models. The first specification is a random intercept and slope

model that assigns a random effect to the coefficient of the lower-level variable

involved in the particular cross-level interaction. According to our simulation ev-

idence this model is correctly specified. The second is a random intercept model

without any random slopes. This model is widespread in applied research, but
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the above analysis shows that it is misspecified and provides anticonservative in-

ference for the cross-level interaction term and the main effect of its lower-level

component. In addition to the lower-level predictor of interest, the HDI, and their

cross-level interaction, the models always contain the other lower-level predictors

as control variables. Appendix D in the Online Supplement gives a brief descrip-

tion of the coding of the variables and provides exact results for the coefficients

of interest in Tables D1 to D6. For brevity, we focus on statistical inference for

the cross-level interaction term in the main article. In line with our Monte Carlo

simulation results, Tables D1 to D6 suggest similar conclusions for the main effect

of the lower-level predictor and no consequences of omitting the random slope

term for the main effect of the upper-level moderator.

Figure 2 illustrates the main results. It shows, for each of the 30 cross-level

interactions, by how much the absolute t-ratio changes when a random slope

is included. Changes are shown as directed arrows on a logged scale, with the

origin of the arrow denoting the t-statistic for the model omitting and the head

denoting the t-statistic for the model including the random slope.

Nearly all arrows point downwards, indicating that absolute t-ratios for the

models including the random slope term are lower, and often very substantially

so. Take our running example, for instance, which is expressed by the second

arrow from the right. The model which does not contain a random slope on high

education yields an absolute t-ratio of 9.7 for the cross-level interaction between

having high education and the HDI on fear of crime. The corresponding value

for the model omitting the random slope is only 5.1, a reduction of 46.8% (see

Online Supplement D1 for these values and the associated point estimates). Fig-

ure 2 shows that reductions of such alarming magnitude are not the exception.

Note that the y-scale is logged, so arrows of similar length indicate similar rela-

tive changes. Over the 30 different models, the reduction in the absolute t-ratio

for the cross-level interaction effect due to including the random slope is 42.4%
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Figure 2: Changes in absolute t-ratios for 30 prototypical cross-level interactions
after inclusion of random slopes expressed as directed arrows
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Note: The triangled arrow heads shows the absolute t-ratio from the specification including a
random slope for the lower-level predictor of a cross-level interaction. The point start of the arrows
indicate the absolute t-ratio from the specification omitting the random slope. The labels name the
outcome (e.g., fear of crime) and lower-level predictor involved in the cross-level interaction (e.g.,
unemployed). The country-level moderator is always the human development index. The overall
60 for cross-level interactions are estimated by linear mixed effects models which are displayed
in Tables D1 to D5. The dashed horizontal line demarcates 2.056, the threshold for statistical
significance at the five percent level (two-tailed test). The threshold is based on a t-distribution
with 26 (=28-2) degrees of freedom, as suggested by Elff et al. (2016).
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on average. The median reduction is 48.3% and the 25th and 75th percentiles are

31.3 and 60.9%, respectively.

The final columns of Online Supplement Tables D1 to D6 convey another im-

portant result. They display the remaining variation of the random slope in the

model including the cross-level interaction, expressed as the ratio of the random

slope standard deviation to the corresponding main effect. Thus, the values are

directly comparable to the values of SD(u
(x)
j ) in our Monte Carlo simulations.

Remaining variation in the random slope term is substantial for most of our 30

illustrative analyses (mean = 2.03; median = 0.78, p25 = 0.38, p75 = 1.61). Hence,

the model including the random slope is unlikely to suffer from overcoverage

(see the discussion in the previous section and in Online Supplement Appendix

B).

Against these results, we conclude that not specifying random slopes on the

lower-level components leads to invalid statistical inference about cross-level

interactions—and that the magnitude of the problem will be considerable in many

sociological applications.

Cross-level Interactions in the ESR

Given our findings one may wonder whether current multilevel modeling prac-

tice meets the requirements for correct inference by including random slopes on

the lower-level components of cross-level interactions. To answer this question,

we reviewed all articles that investigate a cross-level interaction and that were

published in the ESR between 2011 and 2016. For simplicity, we confined our-

selves to studies using simple two-level models where lower-level observations

are nested in exactly one type of upper-level unit. Overall we identified 28 stud-

ies, the vast majority of which (24 or 86%) were country comparisons (one of

the remaining studies treated individuals as nested in combinations of countries
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Figure 3: Proportion of articles that include a random slope on the lower-level
components of cross-level interaction terms
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Note: Results are based on 28 articles reporting cross-level interaction terms from two-level mixed
effects models published in the ESR, 2011-2016.

and survey years). The 28 studies reported a total of 150 estimates of cross-level

interactions. When a paper provided multiple estimates of the same cross-level

interaction (e.g., for different model specifications or subsamples), we chose one

estimate at random. Note that we now disregard the main effects of the cluster-

and lower-level components because the cross-level interaction terms tend to be

of primary interest to authors.

The discomforting result of our review is that not even half of the studies

(11/28 or 39%) specify random slopes on the lower-level components of the cross-

level interactions they investigate. Figure 3 displays the percentage of studies

that include random slope terms by year of publication. It provides no evidence

that correct specifications have become more popular over time; if anything, the

contrary seems true. Since there is little reason to suspect that these problems are

confined to articles that appeared in the ESR, we conclude that a large number of

published sociological studies fail to meet the requirements for correct statistical

inference about cross-level interactions.
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Table 4: Percent of cross-level interaction terms by surpassed significance levels

Random Slope
Included Omitted

Insignificant (p >= 0.1) 64.71 42.42
+ Marginally significant (p < 0.1) 1.96 2.02
∗ Significant (p < 0.05) 13.73 22.22
∗∗ Highly significant (p < 0.01) 19.61 33.33

100.00 100.00
Overall (n = 150) (n = 51) (n = 99)

Note: Results are based on 28 articles reporting 150 cross-level interactions from two-level mixed
effects models published in the ESR 2011-2016. Since many articles did not report levels of signifi-
cance beyond p < 0.01, we restrict our review to this threshold as the highest level of significance.

We have shown that inclusion of random slopes on the lower-level compo-

nents of cross-level interactions results in larger standard errors and smaller ab-

solute t-ratios, so studies using the correct random effects structure should be

less likely to find statistically significant effects. To investigate this implication,

we surveyed inferential statistics for the 150 cross-level interactions estimated in

the 28 ESR articles. If available, we collected the t-ratio and otherwise the p-value

or point estimate and standard error to compute the t-ratio from these statistics.9

Unfortunately, several studies only report whether the estimated cross-level in-

teractions attain a certain level of statistical significance, such as the 5% level of

significance, as commonly indicated by a single asterisk ∗.10 Another problem is

the rounding of point estimates and standard errors, especially in combination

with many leading zeros, which often result in tiny coefficients and tiny standard

errors which are then rounded and reported as ‘0.00’. In such extreme cases, it is

impossible to reliably approximate the t-statistic and we again surveyed the level

of significance of the cross-level interaction term.

Table 4 displays the percentage of estimated cross-level interaction effects that

attain a given level of statistical significance according to whether the model did

or did not include a random slope on the lower-level component. It shows a

consistent pattern of more insignificant and marginally significant, but fewer sig-

nificant and highly significant cross-level interaction terms for models with the
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correct random effects specification (i.e., models that include a random slope).

Put differently, cross-level interactions that are erroneously estimated without a

random slope on the lower-level component more often reach (higher levels of)

statistical significance. This is exactly what our arguments, Monte Carlo sim-

ulations, and illustrative empirical analyses would suggest. Nevertheless, the

pattern appears less pronounced than one might expect given the results of our

simulations and exemplary analyses. An important factor to consider in this re-

gard is potential publication bias against insignificant findings, which obviously

hits correctly specified cross-level interactions more often because their standard

errors are not deflated. In other words, a larger share of correctly estimated cross-

level interactions most likely never made it into the ESR. Proving this is difficult,

since about 60% of null-results are never written up (Franco et al., 2014). On-

line Supplement Appendix E uses p-curve analyses following Simonsohn et al.

(2014, 2015) to investigate the possibility of publication bias and ‘p-hacking’ more

systematically.

Another important question is how many findings should never have made

it into the ESR, at least not as evidence of a statistically significant cross-level

interaction?11 We cannot give a definitive answer to this question based on pub-

lished regression outputs—this would require actual reanalysis of the published

studies. But in combination with our simulation evidence and the illustrative em-

pirical analyses, Figure 4 allows us to make an informed speculation. The figure

shows the distribution of absolute t-ratios for the 86 cross-level interaction terms

where this information was provided or where we could at least obtain a good

approximation. The black solid line shows the distribution of t-ratios from mis-

specified models that omit the crucial random slope term. The gray dashed line

shows the distribution from models that include it.

Figure 4 shows a pronounced peak near the threshold for statistical signifi-

cance at the 5% (t = 1.96) level. This unnatural peak characterize the distribution
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Figure 4: Distribution of absolute t-ratios of cross-level interactions
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of t-ratios especially for the incorrectly specified models and is suggestive of p-

hacking. Online Supplement Appendix E further investigates this issue and finds

some aggregate-level evidence for p-hacking among studies that did not specify

random slopes for their cross-level interactions, but not among those that cor-

rectly included a random slope.

What matters here more immediately is another implication of the clustering

of t-ratios just above 1.96: in light of the above evidence, it seems almost cer-

tain that the solid line for cross-level interactions tested without a random slope

needs to shift substantially to the left. That is, the true t-ratios for the cross-level

interactions that were estimated using such models will often be much smaller.

If we take the illustrative empirical analyses at face value, the correct t-ratios will

be at least 31% smaller for three quarters of these estimates (cf. the percentiles of

the relative reductions in t-ratios reported above). This suggests that many of the

cross-level interaction effects based on misspecified models are not actually sta-

tistically significant at conventional levels. Thus, they should probably not have

made it into the ESR or at least should have been interpreted very cautiously.
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This conclusion is further reinforced if we take into account that critical val-

ues based on the normal distribution (i.e., t = 1.96 and t = 2.58) are questionable

when cluster-level samples are small. Elff et al. (2016) elaborate that critical values

for cross-level interaction terms should instead be derived from a t-distribution

with the appropriate degrees of freedom typically being smaller than the num-

ber of clusters. Given that many of the surveyed studies work with cluster-level

sample sizes in the 10s or 20s, this recommendation would often result in sub-

stantially larger critical values. As this problem also applies to the cross-level

interaction terms that were estimated including a random slope, one has to won-

der how much robust evidence of cross-level interactions European sociology has

generated at all.

Random Slopes and ‘Pure’ Lower-level Effects

The results so far compellingly demonstrate that inclusion of a random slope

term on the lower-level component is crucial for achieving correct statistical in-

ference about the cross-level interaction term and the main effect of the lower-

level variable. A natural follow-up question is whether the random slope term

is also important for inference on the coefficients of lower-level variables that are

not involved in a cross-level interaction, that is, for ‘pure’ lower-level effects. We

showed above that omitting a random slope that is actually present in the DGP

introduces heteroskedasticity (Equation 5) and autocorrelation (Equation 6) into

the overall error term vij ; and importantly, this fact does not hinge on the presence

of a cross-level interaction term in the DGP.

Further Monte Carlo simulations indeed show that the inclusion of random

slope terms is also essential for inference about pure lower-level effects. The basic

DGP and the experimental conditions considered in these further analyses are

identical to those presented in the ‘Simulation Evidence’ section above. There
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is only one crucial difference, namely that β(x)
j , the coefficient on the lower-level

variable xij , no longer depends on the cluster-level predictor zj (in other words,

the DGP no longer includes a cross-level interaction):

β
(x)
j = γ(x) + u

(x)
j . (8)

Table 5 shows results for the same experimental conditions as Table 2. It

yields virtually identical conclusions. When the coefficient of a lower-level vari-

able varies across clusters, statistical inference for the coefficient will be anti-

conservative unless that variation is captured by a random slope term. As in

the cross-level interaction case the problem becomes worse as the extent of cross-

cluster variation in the lower-level effect increases (i.e., the higher SD(u
(x)
j ) is).

Moreover, because the source of the problem is heteroskedasticity that correlates

with xij , more variation in xij amplifies the inaccuracy of statistical inference with

respect to γ
(x)
j . Online Supplement Table F1 further reaffirms that the average

cluster size exacerbates the problem, just as in the cross-level interaction case

(see Table 3 above). Across all experimental conditions, the extent of statistical

overconfidence, as measured by the undercoverage of two-sided 95% confidence

intervals, is generally very similar to the corresponding results for the cross-level

interaction case.

Despite these results we maintain that the cross-level interaction case is more

problematic and deserves special attention for at least two reasons. First, prac-

titioners who analyze multilevel data with mixed effects models are primarily

interested in context effects. Second, lower-level effects tend to be so precisely

estimated that inaccurate inference is less likely to lead to qualitatively different

conclusions. We now elaborate on both of these issues.

Our reading of applied research using mixed effects multilevel models is that

practitioners predominantly use these models to test hypotheses about context ef-

fects. Typically, lower-level variables are mainly included to adjust for composi-
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Table 5: Actual Coverage Rates of Nominal 95% Confidence Interval by Variance of
Lower-level Predictor and Random Slope Term

γ(x)

Random Slope
SD(xij) Included Omitted

SD(u
(x)
j ) ≈ 0.23

0.5 96.43 93.16
1.0 95.60 81.58
2.0 95.17 56.26

SD(u
(x)
j ) ≈ 0.33

0.5 95.50 88.82
1.0 95.47 69.53
2.0 94.79 41.94

SD(u
(x)
j ) = 1.00

0.5 95.17 53.88
1.0 94.89 30.52
2.0 95.01 17.19

SD(u
(x)
j ) = 3.00

0.5 95.23 21.18
1.0 95.13 12.29
2.0 95.20 8.55

Note: Results are based on 10,000 Monte Carlo replications. Because of Monte Carlo sampling
error, the test interval is 95± 0.427. Values smaller or larger than that are statistically significant
deviations and indicate biased inference. The number of observations per cluster is 500 with overall
15 clusters.
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Table 6: Percent of Articles Testing Context or Lower-Level Effects

Explicit
Hypotheses Abstract Title

Context Effects 41.07 50.00 66.67
Lower Level Effects 5.36 6.06 18.75
Both 53.57 43.94 14.58
n 56 66 48

Note: Results are based on 68 articles using two-level mixed effects models published in the ESR
2011-2016. Because of missing-values (i.e., difficulties to decisively code), the numbers (n) of coded
hypotheses, abstracts, and titles differ.

tional differences among clusters. So while inference for lower-level effects might

be overconfident, it rarely matters for the main research questions. To check the

accuracy of this impression, we extended our review of ESR articles that used

(two-level) mixed effects models and were published between 2011 and 2016.

For each article, we coded whether a) the title, b) the abstract, and (if existent) c)

explicitly formulated hypotheses stress 1) individual-level relationships, 2) con-

textual relationships (direct context effects and/or cross-level interactions), or 3)

both.

Table 6 shows the results. The number of studies differs across the columns

of the table because it was not always possible to classify a given article. For

example, an article might not include any explicit hypotheses or the title of an

article might mention neither lower-level nor contextual relationships. The first

column of Table 6 indicates that only 3 out of 56 articles (5.4%) using (two-level)

mixed effects models exclusively posit hypotheses about lower-level effects. By

contrast, 53.6% formulate hypothesis about both pure lower-level and contextual

relationships and 41.1% only present hypotheses about contextual relationships.

A similar pattern emerges if we consider the abstracts of the articles. In some

sense, these figures may even overstate the salience of pure lower-level effects in

the surveyed studies. Our impression from coding the articles is that hypotheses

about lower-level relationships are often the ones that are least novel and that au-

thors take the least interest in. This is also why, as we turn to titles, where authors
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are forced to stress the cardinal contribution of their paper, the mixed category

shrinks to ca. 15%—mostly because articles tend to highlight only context effects

in their title. Two thirds of all articles fall into this category.

A second reason why omitting the random slope tends to be much less conse-

quential for the pure lower-level effect case is the much higher overall precision

(expressed for instance in higher absolute t-ratios) with which such effects tend

to be estimated. Identification of a pure lower-level effect is about estimating

the average strength of a lower-level relationship across a set of clusters. Iden-

tification of cross-level interactions is about explaining cross-cluster variation in

the strength of a relationship. Much more data will usually be needed to gain

the statistical power for drawing firm conclusions concerning the second type

of effect (Gelman and Hill, 2007, Ch. 20). In consequence, considering random

slopes or not will rarely make a difference with respect to conventional levels of

significance in the case of pure lower-level effects.

To illustrate this point, we collected the absolute t-ratios for the 60 cross-level

interaction estimates reported in Online Supplement Tables D1 to D6 (5 depen-

dent variables× 6 lower-level predictors× 2 specifications, the one including and

the one omitting the random slope). In addition, we estimated the same models

without the cross-level interaction terms and collected the absolute t-ratios of the

60 pure lower-level effects (i.e., the absolute t-ratios pertaining to the uninteracted

coefficients of high education, intermediate education, gender, unemployment,

age, and marital status).

Figure 5 shows these absolute t-ratios, ranked by their size and differentiated

by whether the model entailed a random slope on the respective lower-level pre-

dictor or not. The t-ratios for the cross-level interaction terms, displayed in the

top graph, are mostly smaller than 5 and if a random slope was specified, the

vast majority is smaller than the critical value 2.056 (df ≈ 26, see Elff et al. 2016).

Because of these generally small t-ratios, the inclusion of the random slope term
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Figure 5: Distribution of absolute t-ratios
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test). The threshold is based on a t-distribution with 26 (=28-2) degrees of freedom, as suggested
by Elff et al. (2016).
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would often lead to qualitatively different conclusions concerning the strength of

evidence against the null hypothesis.

The picture looks very different for the absolute t-ratios of the pure lower-

level effects, displayed in the bottom graph. Including the random slope reduces

the distribution of t-ratios substantially. However, the t-ratios remain very high

and far above conventional thresholds for statistical significance in the vast ma-

jority of cases. Of the 26 lower-level effects that are significant at the five percent

level according to a model that omits the respective random slope, 24 remained

significant after its inclusion. In the cross-level interaction case, by contrast, we

observe a change from statistical significance to insignificance in 7 out of initially

15 cases (see also Figure 2 above). Thus, even though statistical inference for

lower-level effects will be overconfident when the corresponding random slope

is not included, chances are high that any given effect would remain (highly)

significant in the correctly specified model. This is the decisive difference to the

cross-level interaction case where switching to the correct specification will often

wash away any robust evidence against the null hypothesis.

Conclusions

Our study was motivated by the observation that published research using mixed

effects multilevel models is strikingly inconsistent when it comes to the inclusion

of random slopes on the lower-level components of cross-level interactions. Sev-

eral leading textbooks on multilevel modeling fail to give a clear recommendation

on this issue as well.

We have argued, and demonstrated with Monte Carlo simulations, that cross-

level interactions generally require the inclusion of the associated random slope.

Omission of the random slope term results in unmodeled cluster-driven het-

eroskedasticity and autocorrelation, thus violating fundamental model assump-
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tions and assuming too much independence among observations. The most im-

portant consequence is that statistical inference for the cross-level interaction

term and the main effect of its lower-level component becomes overly optimistic:

t-ratios will be too high, confidence intervals too narrow, and standard errors

as well as p-values too low, leading to overrejection of the null hypothesis of

no effect. The problem becomes more severe a) as unmodeled variation in the

cluster-specific slopes increases, b) as the variance of the lower-level variable in-

volved in the interaction increases, and c) as the the cluster size grows (i.e., the

more lower-level observations there are per cluster). Mixed effects models that

include a random slope term on the lower-level component of cross-level inter-

action terms generally performed very well in our simulations. Only in a few

situations did we find them to produce over-conservative inference, but these

issues arose only under conditions of little practical relevance.

A total of 30 illustrative applications based on European Social Survey data

indicate that the consequences of omitting the random slope can be dramatic in

real-life settings. In three quarters of cases, the absolute t-statistic on the cross-

level interaction term was at least 31% lower for the model including the random

slope than for the model omitting it. These results are highly discomforting since

our review of ESR articles indicates that many published cross-level interactions

estimated without the associated random slope are barely statistically significant.

It is quite likely that most of these estimates could not be considered as robust

evidence for the relationship in question if they were estimated using the correct

specification.

Looking backward, our results thus cast doubt on many findings that are po-

tentially considered well-established. We encourage researchers to take our re-

sults into account when reviewing previous studies. Results on cross-level in-

teractions that were estimated without the crucial random slope term should be

interpreted with caution and considered as preliminary. Their validity should
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be checked through replication and the results of replication attempts should be

publicly reported to promote a balanced assessment of the empirical evidence for

a given cross-level relationship.

Looking forward, our findings suggest that researchers who investigate cross-

level interactions using mixed effects multilevel models should always include

a random slope for the lower-level component of the interaction. Editors and

referees should insist that authors adhere to this rule.

That being said, our results highlight another, broader challenge faced by

those who want to analyze multilevel data with mixed effects models. We found

that random slopes are similarly required for accurate inference about ‘pure’

lower-level effects, provided—of course—that the effect truly varies across clus-

ters (see also Barr et al., 2013; Bell et al., 2016). We believe this issue to be less

troubling than the cross-level interaction case because researchers using multi-

level modeling are rarely interested in pure lower-level effects and because many

of these effects would remain highly statistically significant even if the associated

absolute t-statistic declined by 50% or more. Nevertheless, the idea that statistical

inference on lower-level predictors will typically be anti-conservative is unattrac-

tive, even if they are usually only considered as control variables.

How, then, can this issue be resolved? Simply specifying random slopes on all

lower-level predictors will rarely be a solution. Such models would typically suf-

fer from overspecification, an issue discussed in great detail by Bates et al. (2015)

and Heisig et al. (2017). The strategy of specifying additional random slopes

in the interest of accurate inference would at some point become self-defeating,

leading to the very problem it seeks to solve: anti-conservative inference (Heisig

et al., 2017). One viable, albeit not fully satisfactory, solution will be to focus on

achieveing correct inference for the coefficients of interest and take inference for

other predictors with a large grain of salt. One might also consider fitting the

same fixed effects specification (i.e., the same model in terms of the set of predic-
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tors included) with several random effects specifications, including the random

slope terms one at a time (i.e., first for x1, then for x2, and so forth) to get a sense

of the correct standard errors for the different lower-level predictors. A fully

convincing solution, however, will probably require methods such as bootstrap-

ping, profile likelihood methods, or generalizations of ‘sandwich-type’ methods

for cluster-robust inference (as implemented, for example, in the vce(cluster

clustvar ) option for Stata’s mixed command).12 There is good justification for

all of the latter methods, but further research is needed to learn about their pefor-

mance in typical sociological applications that often involve a limited number of

large clusters and many lower-level controls.
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Notes

1The careful reader might notice that Equations 5 and 6 in Snijders and Bosker (2012) refer to

the conditional variance of the outcome Yij rather than the overall error vij . However, this is fully

consistent with the formulation given here because conditional on xij variation in Yij can only

come from the random part of the model, that is, from vij .

2We do not study the performance of cluster-robust methods in this paper because mixed

effects models are by far the most widely used method for investigating context effects in so-

ciology (Heisig et al., 2017) and because the cluster-robust approach has its own set of pitfalls,

especially when the number of clusters is small or when the data are characterized by multiple

(non-hierarchical) levels of clustering (for further discussion, see Cameron and Miller, 2015).

3It also suggests that the size of τ depends on how ‘unbalanced’ the clusters sizes are, that

is, on how the number of lower-level observations differs across clusters. We do not pursue this

point further in this paper.

4This is not to say that point estimates will never differ according to whether a random slope

is included or not. This is easiest to see in the case of a ‘pure’ lower-level effect, that is, of a

coefficient of a lower-level variable that is not interacted with an upper-level predictor. In the

model that includes the random slope, the coefficient estimate on the lower-level predictor is

an estimate of the unweighted average of the cluster-specific slopes. This follows from the fact

that the random slope is assumed to be normally distributed with a mean of zero. In the model

that does not include a random slope, the coefficient will be a weighted average of the cluster-

specific coefficients. Therefore the difference will be particularly large when the magnitude of the

cluster-specific coefficients is strongly related to cluster size. It is not clear whether one would

necessarily want to describe one of these estimates as ‘biased’, however, as the two approaches

really estimate different quantities. To see that similar issues arise in the estimation of cross-level

interactions, one simply has to note that the coefficient on the cross-level interaction term can be

conceptualized as the effect of the cluster-level variable on the conditional average slope of the

lower-level variable. Equation 3 makes this very clear.

5We have conducted additional Monte Carlo simulation results which support this claim.

These results are available upon request.

6The simulation results indeed show that both types of models produce unbiased coefficient

estimates. These results can be obtained from the replication files which are part of the online sup-

porting material. As discussed in footnote 4, there may be cases when a model with and a model

without a random slope produce systematically different estimates, but the reason here would be
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that the former estimates an unweighted whereas the latter estimates a weighted average effect.

7In other words, while the nominal probability of committing a Type 1 error, that is, of rejecting

the null hypothesis of no effect although it is true, would be .05 the true probability would be .10.

8Replication code for the analyses in Heisig et al. (2017) is available at http://journals.

sagepub.com/doi/suppl/10.1177/0003122417717901. Together with the replication code for the

present article, it can be used to replicate all analyses reported in this section.

9When relying on the p-value, we assumed a normally distributed test statistics, consistent

with the approach taken by the majority of authors. Elff et al. (2016) show this assumption to

be problematic when the number of clusters is small, but we nevertheless use it here to treat the

different studies consistently.

10For a thorough review and critical discussion of reporting practices and significance testing

in the ESR, see Bernardi et al. (2017)

11We focus on statistical significance because of the important role that it continues to play in

the publication process and in the evaluation of empirical evidence. We do not mean to imply

that statistical significance is the best and/or should be the only criterion used to assess statistical

uncertainty. Our conclusions would clearly be similar for alternative measures of uncertainty

such as standard errors or confidence intervals.

12Another option might be to avoid mixed effects models altogether and use conventional re-

gression techniques with cluster-robust variance estimation or two-step approaches (Heisig et al.,

2017). However, conventional corrections for clustering are known to perform poorly with the

small cluster-level samples that sociologists often deal with. More recent methods developed

specifically for the few-clusters case show better performance—often involving a form of boot-

strapping too—but this still is an area of active research (for details, see Cameron and Miller,

2015; Esarey and Menger, 2018).
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Appendix A Standard Error Bias as an Alterna-

tive Outcome

In the main article, we focus on the actual coverage rates of two-sided 95% con-

fidence intervals in assessing the inferential accuracy of the different estimators.

An alternative approach, taken, for example, by Schmidt-Catran and Fairbrother

(2015), would be to compare the average estimated standard error with the actual

standard deviation of the corresponding point estimate across the Monte Carlo

replications. Schmidt-Catran and Fairbrother (2015) refer to this as ‘optimism of

the SEs’ (p.27).

However, reporting coverage has a considerable advantage. It is well known

that the standard error is a downward biased estimator of the sampling distri-

bution standard deviation when samples are small. Consider, for instance, the

standard error of the mean: σ(x̄) = SD(x)√
n

. This estimator of the standard error re-

lies on the sample standard deviation (SD(x)). Unfortunately, the latter is known

to be (downward) biased estimator of the population standard deviation in small

samples, even if it is based on an unbiased estimator of the population variance,

as provided by the usual estimator Σ(xi−x̄)2/(N−1) (Gurland and Tripathi, 1971).

The well-established solution to this problem, going back to the work of William

Gossett (1908) is to use a t-distribution with appropriate degrees of freedom for

statistical inference.

Similar issues arise in the context of multilevel mixed effects regression. In

particular, Elff et al. (2016) show that a t-distribution with appropriate degrees of

freedom leads to accurate statistical inference for contextual (cluster-level) vari-

ables in multilevel models with few clusters. The focus on actual coverage rates in

the main article allows us to implement this correction. If we focused on standard

error bias, we would not be able to do this. Specifically, we would find appar-

ent optimism of the standard errors and might misleadingly conclude that infer-
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ence is anti-conservative when accurate inference is actually perfectly possible—

provided that the appropriate t-distribution is used. This concern is obviously

most serious for experimental conditions with few clusters.

A comparison of Tables A1 and A2 with the corresponding tables in the main

article (Tables 2 and Table 3) illustrates this point. Tables A1 and A2 report rel-

ative standard error bias, that is, the difference between the average standard

error estimate ŜE(γ̂) and the actual standard deviation of the coefficient estimates

SD(γ̂) across theRMonte Carlo replications, expressed in % of SD(γ̂), or formally:

ΣŜE(γ̂)
R
− SD(γ̂)

SD(γ̂)
× 100.

Results concerning the relative performance of the two models do not differ

from the main article: standard error estimates for the cross-level interaction and

the main effect of the lower-level variable generally show stronger negative bias

for the model excluding the random slope than for the model including the ran-

dom slope associated with the cross-level interaction. However, even the stan-

dard errors for the latter model appear to suffer from substantial negative bias,

especially in the experimental conditions with only five clusters in Table A2. This

contrasts very markedly with the corresponding results in the main article where

we find confidence interval coverage to be largely accurate (and even slightly

over-conservative in some of the more extreme experimental conditions; see Ap-

pendix B above). As discussed above, the reason for these difference is that the

use of the t-distribution corrects for the substantial downward bias of the stan-

dard errors in small (cluster-level) samples.
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Table A1: Standard Error Bias (%) by Variance of Lower-level Predictor and Ran-
dom Slope Term

γ(x) γ(xz) γ(cz)

Random Slope Random Slope Random Slope
SD(xij) Included Omitted Included Omitted Included Omitted

R2(β
(x)
j ) = 0.95 (i.e., SD(u

(x)
j ) ≈ 0.23)

0.5 0.76 -16.72 -0.77 -17.98 -3.91 -3.88
1.0 -2.39 -39.03 -3.67 -39.89 -5.27 -5.06
2.0 -1.44 -63.37 -4.32 -64.42 -3.79 -3.42

R2(β
(x)
j ) = 0.90 (i.e., SD(u

(x)
j ) ≈ 0.33)

0.5 -0.74 -27.12 -2.65 -28.44 -3.64 -3.56
1.0 -1.43 -52.43 -4.67 -53.94 -2.52 -2.19
2.0 -2.02 -73.80 -3.38 -74.17 -3.74 -3.23

R2(β
(x)
j ) = 0.50 (i.e., SD(u

(x)
j ) = 1.00)

0.5 -1.39 -65.97 -2.69 -66.42 -4.32 -4.14
1.0 -2.46 -81.97 -3.77 -82.20 -4.57 -4.21
2.0 -1.11 -90.10 -4.83 -90.47 -4.48 -4.01

R2(β
(x)
j ) = 0.10 (i.e., SD(u

(x)
j ) = 3.00)

0.5 -2.81 -87.57 -4.43 -87.77 -4.68 -4.47
1.0 -0.96 -92.71 -3.41 -92.88 -3.74 -3.15
2.0 -1.83 -94.92 -2.27 -94.95 -5.06 -3.74

Note: Results are based on 10,000 Monte Carlo replications. Note that for reasons of brevity, this
table does not express Monte Carlo error. The number of observations per cluster is 500 with
overall 15 clusters.

Table A2: Standard Error Bias (%) by Number of Clusters and Lower-level Obser-
vations

γ(x) γ(xz) γ(cz)

Random Slope Random Slope Random Slope
nj ntotal Included Omitted Included Omitted Included Omitted

m = 5 Clusters
100 500 -8.93 -63.16 -22.94 -68.69 -16.97 -16.24
500 2500 -9.82 -82.54 -15.12 -83.55 -19.93 -18.65

1000 5000 -13.48 -87.93 -21.46 -89.08 -19.03 -18.36
m = 15 Clusters

100 1500 -2.26 -62.20 -4.71 -63.04 -7.90 -3.96
500 7500 -2.46 -81.97 -3.77 -82.20 -4.57 -4.21

1000 15000 -2.30 -87.16 -3.81 -87.36 -3.79 -3.72
m = 25 Clusters

100 2500 -1.73 -62.30 -2.95 -62.69 -5.02 -1.90
500 12500 -1.00 -81.92 -2.33 -82.16 -1.36 -1.33

1000 25000 -1.19 -87.12 -1.66 -87.19 -1.68 -1.68

Note: Results are based on 10,000 Monte Carlo replications. Note that for reasons of brevity, this
table does not express Monte Carlo error. These results are based on experimental conditions for

which R2(β
(x)
j ) = 0.50 (i.e., SD(u

(x)
j ) = 1), and SD(xij) = 1.
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Appendix B At the Limit: When R2(β
(x)
j ) is Large

and the Cluster Sample Small

The simulation results in the main article clearly show that models with cross-

level interactions should generally include a random slope on the corresponding

lower-level components. However, Tables 2 and 3 in the main article also suggest

that such models may produce overconservative inference in extreme situations

when a) the number of clusters is very small (m = 5 in our simulations) or when

b) the random slope exhibits very little unexplained variability (SD(u
(x)
j ) ≈ 0.33,

corresponding to an upper-level R2(β
(x)
j ) of 0.95). In these situations the actual

coverage rates of two-sided 95% confidence intervals exceed their nominal level.

With respect to significance testing, this means that a true null hypothesis will be

rejected less frequently than the nominal level of the test suggests.

Do these results warrant a qualification of the recommendation to always in-

clude a random slope on the lower-level component of a cross-level interaction?

We would argue that the answer is almost always no because overcoverage only

arises under extreme conditions that have little practical relevance. This reas-

suring result notwithstanding, this appendix presents additional analyses that

reduce the variability of the random slope even further, pushing R2(β
(x)
j ) beyond

0.95 and very close to 1. These are situations where the error in the upper-level

model for β(x)
j exhibits very little variation, so there remains very little ‘cluster-

ing’ in the sense of correlated errors for lower-level units belonging to the same

cluster. At least, that is, to the extent that such correlation is due to unobserved

cluster-specific differences in the relationship between yij and xij ; there may still

be cluster-correlated errors due to a random intercept term or to random slope

terms on other lower-level variables. When clustering becomes negligible in this

way, the m − l − 1 rule for approximating the degrees of freedom for confidence

intervals and t-tests may no longer work well because it is based on the idea
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that m − l − 1 would be the correct degrees of freedom in the implicit cluster-

/aggregate-level regression (Elff et al., 2016). Therefore, we also consider an

alternative, computationally more intensive approximation, a generalization of

the Satterthwaite (1946) method that was first proposed by Giesbrecht and Burns

(1985; for an overview of degree of freedom approximations in the mixed effects

context, see Schaalje et al. 2002). Elff et al. (2016) find the Satterthwaite method to

perform very similarly to the m− l− 1 rule, but they do not consider the kinds of

extreme situations where the above analysis shows the latter approach to produce

overconservative inference.13

Figure B1 plots the actual coverage rates of confidence intervals for the cross-

level interaction term and the main effect of its lower-level component. Solid lines

show coverage rates for confidence intervals based on the m− l − 1 rule; dashed

lines show coverage rates for intervals based on the Satterthwaite approximation.

Whereas the most extreme case considered so far was that of an implied upper-

level R2(β
(x)
j ) of 0.95, we now consider two additional cases with R2(β

(x)
j ) values

of .98 and .99, respectively. In these situations, there is almost no unexplained

cross-cluster variation in β
(x)
j and arguably much less than one could expect to

encounter in most social science applications.

Figure B1 confirms the one qualification of our recommendation to always in-

clude a random slope on the lower-level components of cross-level interaction

terms: in cases where the variance of the random slope term is extremely small,

following this recommendation can result in overconservative inference, espe-

cially if the number of clusters is also very low. The problems seems to at least

partly stem from the inaccuracy of the m − l − 1 approximation to the degrees

of freedom, as confidence intervals based on the Satterthwaite method perform

much better under extreme conditions. However, even the Satterthwaite method

fails in the most extreme scenarios.

One might alternatively suspect that convergence problems are responsible
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for the overcoverage because estimation of a near-zero variance component can

create problems for the optimization process. Yet, disaggregated analysis of Monte

Carlo trials with and without convergence warnings provides no support for this

explanation. These results can be obtained from the replication files which are

part of the online supporting material.

While the findings of this section warrant a note of caution, we would like

to emphasize again that both methods yield accurate statistical inference under

practically relevant conditions (15 or more clusters and R2(β
(x)
j ) ≤ 0.9), whereas

the results presented in the main article show models that omit the crucial ran-

dom slope term to produce overly optimistic results in such situations.
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Appendix C Model Selection Criteria are no Rem-

edy

The simulation results in the main article suggest that practitioners who analyze

cross-level interactions using mixed effects models are well-advised to always in-

clude a random slope on the lower-level component. However, instead of opting

for a random slope on a priori grounds, one might take a more data-driven ap-

proach and rely on standard model selection criteria such as likelihood ratio tests

or information measures such as AIC and BIC in choosing a random effects spec-

ification. For example, as noted in the introduction, Raudenbush and Bryk (2002,

p.28) suggest that it might be appropriate to omit the random slope if its variance

is ‘very close to zero’. For want of an exact definition of ‘very close’, established

model selection criteria are obvious candidates when it comes to determining

whether a given slope is small enough to warrant omission.

Perhaps unsurprisingly, we would not recommend to rely on model selec-

tion criteria in determining whether to include the random slope associated with

a cross-level interaction. For reasons given in Section ‘Why Always a Random

Slope?’ in the main article, we would argue these random slopes should always

be included in all practically relevant situations. To support this claim, this ap-

pendix summarizes additional Monte Carlo evidence demonstrating that data-

driven approaches based on model selection criteria will lead to substantial un-

dercoverage in at least some situations. We investigate this issue as follows: for

each simulated data set, we determine whether a given model selection criterion

favors the model with or the model without the random slope on the lower-level

component. To assess the performance of a given selection criterion, we then

calculate the actual coverage rate of the models thus selected.

We consider four model selection criteria. The first two are variants of a likeli-

hood ratio/deviance test (LRT). Both are based on the difference in the deviance
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statistic (i.e., -2 times the log likelihood) between the random intercept model

and the model that includes the random slope term as well as its covariance with

the random intercept. The first variant compares the difference in the deviance

against a Chi-Square distribution with two degrees of freedom (one for the slope

variance and one for the covariance). The null hypothesis of the test is that the

variance and covariance parameter are jointly zero, so we choose the model in-

cluding the random slope when the test result is significant (p < .05) and the

random intercept model otherwise. It is well-known that this test is overcon-

servative (i.e., underrejects the null hypothesis) because the variance parameter

cannot be smaller than zero. The second variant therefore uses the average of

the p-values obtained from Chi-square distributions with one and two degrees of

freedom (see, for example, Snijders and Bosker, 2012, 98f.). In addition to the two

variants of the LRT, we consider Akaike’s Information Criterion (AIC) and the

Bayesian Information Criterion (BIC) as alternative selection criteria. We used R’s

anova function to calculate the deviance statistics and information criteria, which

uses the likelihood from maximum likelihood rather than restricted maximum

likelihood estimation. Confidence intervals for the calculation of coverage rates

are based on restricted maximum likelihood estimates, however.

Figure C1 plots the actual coverage rates of the confidence intervals for the

cross-level interaction term and the main effect of the lower-level component be-

cause only these are affected by omitting the random slope term (see Table 2 in the

main article). We focus on a subset of the experimental conditions. In particular,

we show results for 15 clusters and a standard deviation of 1 on the lower-level

predictor. Results for the other experimental conditions do not lead to qualita-

tively different conclusions and can be obtained from the replication files which

are part of the online supporting material.

The overall message emerging from Figure C1 is clear: when the goal is to

achieve correct statistical inference for a cross-level interaction effect, it is not
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advisable to rely on model selection criteria in deciding whether to include a ran-

dom slope on the lower-level predictor. For all four selection criteria, we find

settings where reliance on the criterion results in noteworthy levels of under-

coverage. This is not surprising, as we saw above that models that include the

random slope term on the lower-level component generally lead to accurate in-

ference, whereas models that omit the term suffer from undercoverage—with the

extent of undercoverage depending on various aspects of the DGP. The model

selection criteria investigated here will sometimes favor the model including the

random slope, and sometimes the one omitting it. The coverage rate for a given

model selection strategy will thus be a weighted average of the coverage rates

for the correct model (i.e., the one with a random intercept and slope) and for the

misspecified model (i.e., the one with only a random intercept). Thus, taking a

data-driven approach to model selection will generally be better than selecting

the model without a random slope a priori, but only because it sometimes favors

the model including the random slope.

Detailed inspection of Figure C1 reveals some interesting patterns. The first

is that model selection based on BIC performs worst and model selection based

on AIC best, with the two variants of the LRT falling in between. LRTs using a

mixture of Chi-Square distributions with one and two degrees of freedom have

a slight edge over the alternative because they more often reject the random in-

tercept model. The reason why BIC performs more poorly than the other criteria

is that it penalizes additional parameters more harshly, particularly in large sam-

ples, so it more often favors the model omitting the random slope, which is more

parsimonious (BIC uses a penalty of log(n), whereas AIC uses a constant penalty

of 2; Burnham and Anderson, 2004). Another noteworthy pattern is that the per-

formance of all four model selection strategies improves as the (implicit) R2(β
(x)
j )

of the cluster-level regression for the slope of xij declines or, equivalently, as the

standard deviation of the random slope (i.e., SD(u
(x)
j )) in the DGP increases. Intu-
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itively, this is because all model selection strategies become more likely to favor

the model that includes the random slope, the more variation the latter shows.

Finally, the performance of the different model selection strategies depends on

the number of observations per cluster. Model selection based on AIC and the

two variants of the LRT tends to improve as the number of observations per clus-

ter increases (except when the random slope shows very little variation with an

implied cluster-levelR2(β
(x)
j ) of 0.95). This is because both the LRT and AIC more

often favor the model that includes the random slope in larger samples. The rea-

son why BIC performs differently from AIC again is that it penalizes additional

parameters using a factor that depends on the sample size.

Overall, the impact of the cluster-level R2(β
(x)
j ) and the lower-level sample

size on the performance of the different model selection strategies should be

taken as illustrative. Their performance in applied settings will depend on vari-

ous other (and partly unobservable) aspects of a given analysis. The main mes-

sage to take away from Figure C1 is that there are practically relevant situations

where reliance on model selection criteria will lead to anticonservative inference

for the cross-level interaction. These results make very clear that one should

not blindly rely on model selection criteria in determining whether to include

a random slope on the lower-level component of a cross-level interaction. Rather,

as we emphasize in the main article, the default should be to specify a random

slope term, so much so that we would practically recommend to always include

it. There may be a very limited role for model selection criteria in situations char-

acterized by negligible slope variaton (see Appendix B above), but the results

presented in this section show that selection criteria must not be the only factor

taken into account, as they can easily lead to severely anti-conservative inference

(in particular, the substantive magnitude of cross-cluster variation in the slope

should be considered as well). Moreover, as also emphasized in the main arti-

cle, we believe that situations where variation is so low that omitting the random
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slope might be a reasonable choice are rare exceptions in practice, at least for typ-

ical sociological application. Our empirical examples (see Appendix D below)

where we generally find substantive variation in the random slopes even after

including the cross-level interactions with HDI support this view (see the final

columns of Tables D1 to D6 below). However, while we strongly suspect that

these findings generalize to most other applications, we do not hesitate to admit

that this is ultimately an empirical question that we cannot answer within the

confines of our study.
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Appendix D Additional Illustrative Empirical Anal-

yses

To get a sense of how serious the consequences of omitting the random slope term

for a cross-level interaction are in real-world applications, we conduct a series of

illustrative analyses based on European Social Survey data (ESS Round 6, 2016).

We adopt Heisig et al.’s (2017) illustrative analyses of cross-level interactions.

Replication code for the analyses in Heisig et al. (2017) is available at http://

journals.sagepub.com/doi/suppl/10.1177/0003122417717901. Together with

the replication code for the present article, it can be used to replicate all analyses

reported in this section.

Our 30 empirical examples study how the relationships between six lower-

level predictors (having a high education, age, gender, unemployment, being

married, and having a medium education) and five standard outcome variables

(generalized trust, homophobia, xenophobia, fear of crime, and occupational sta-

tus) are moderated by the Human Development Index (HDI). For each of the

30 illustrative cross-level interactions we estimate a specification including and

one omitting the random slope term for the lower-level variable involved in the

respective cross-level interaction. Overall, this results in 60 linear mixed effects

models.

All outcome variables and age are standardized to have a mean of zero and

a standard deviation of one. Education is measured as an individual’s highest

degree, subsumed into three categories: low (highest degree below the upper

secondary level), intermediate (highest degree at the upper secondary or non-

tertiary, post-secondary level), and high (highest degree at the tertiary level). Be-

ing female, being married, and being unemployed (ILO definition) are also indi-

cator variables. Following Heisig et al. (2017), all indicator variables are weighted

effects (rather than dummy) coded. Weighted effects coding of categorical pre-
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dictors is akin to grand mean centering of continuous predictors and ensures that

the intercept corresponds to the predicted outcome for the ‘average’ individual

(Grotenhuis et al., 2016). The coefficient of the high education indicator, for in-

stance, captures the (adjusted) difference in the respective outcome variable (e.g.,

fear of crime) between high-educated individuals and individuals whose level

of education equals that of the average European. Its cross-level interaction with

the HDI indicates whether this difference changes with a society’s level of human

development. Due to the presence of the cross-level interaction term the main ef-

fect of the high education indicator must be interpreted as the conditional effect

of having high education for a country with an HDI of zero, that is, for a country

with an average level of human development. In addition to the lower-level pre-

dictor of interest, the HDI, and their cross-level interaction, the models always

contain the other lower-level predictors as control variables. These controls are

not interacted with other (lower- or upper-level) predictors. Further details are

described in Heisig et al. (2017).

Tables D1 to D6 present a summary of the main results, omitting coefficient

estimates for control variables. Results for fear of crime at the top of Table D1

show that the cross-level interaction between the HDI and having high educa-

tion is negative and statistically significant, irrespective of whether we include a

random slope term or not. The same holds for the main effect of being highly

educated. Thus, the high educated tend to be less afraid of crime than Europeans

with average education and their advantage in (perceived) security is particularly

strong in countries with a high degree of human development.

Qualitatively, this conclusion does not depend on the random effects specifi-

cation, but the model that does not contain a random slope for high education

strongly overstates the precision with which we can estimate the cross-level in-

teraction and the main effect of high education. The third column shows that

the estimated standard errors (in parentheses) for these coefficients are substan-
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tially larger in the correctly specified model that includes the random slope—by

67.4% for the main effect and by 82.3% for the cross-level interaction. Accord-

ingly, the absolute t-ratios (in brackets) are much smaller when the model is cor-

rectly specified—by 40.8% for the main effect and by 46.8% for the cross-level

interaction. Over the 30 different models (5 dependent variables × 6 lower-level

predictors), the reduction in the absolute t-ratio for the cross-level interaction ef-

fect due to including the random slope is 42.4% on average. The median reduc-

tion is 48.3% and the 25th and 75th percentiles are 31.3 and 60.9%, respectively.

Figure 2 provides a compact visual representation of the results. For all 30 cross-

level interactions, it shows how the t-ratio of the interaction term changes due to

the inclusion of associated random slope.

63



Table D1: Cross-Level Interaction of High Education and the HDI for Five Outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
High education −0.107∗∗∗ −0.108∗∗∗

(0.014) (0.008) 67.429
[7.518] [12.693] −40.775

HDI −0.256∗∗∗ −0.257∗∗∗

(0.042) (0.042) 0.316
[6.087] [6.134] −0.771

HDI*High education −0.071∗∗∗ −0.074∗∗∗

(0.014) (0.008) 82.263
[5.137] [9.657] −46.799 0.556

Generalized Trust
High education 0.209∗∗∗ 0.203∗∗∗

(0.016) (0.008) 88.940
[13.323] [24.501] −45.624

HDI 0.347∗∗∗ 0.349∗∗∗

(0.060) (0.059) 0.638
[5.796] [5.874] −1.319

HDI*High education 0.038∗ 0.033∗∗∗

(0.015) (0.007) 107.557
[2.453] [4.451] −44.894 0.334

Homophobia
High education −0.170∗∗∗ −0.160∗∗∗

(0.019) (0.008) 143.331
[8.966] [20.474] −56.206

HDI −0.453∗∗∗ −0.456∗∗∗

(0.065) (0.065) 0.366
[6.995] [7.061] −0.932

HDI*High education −0.005 −0.002
(0.019) (0.007) 170.710
[0.280] [0.331] −15.401 0.534

Occupational Status (ISEI)
High education 1.033∗∗∗ 1.028∗∗∗

(0.013) (0.007) 80.285
[78.859] [141.441] −44.246

HDI 0.110∗∗∗ 0.114∗∗∗

(0.024) (0.023) 0.769
[4.682] [4.857] −3.598

HDI*High education −0.047∗∗ −0.051∗∗∗

(0.013) (0.007) 97.488
[3.667] [7.883] −53.480 0.055

Xenophobia
High education −0.320∗∗∗ −0.314∗∗∗

(0.021) (0.008) 162.675
[15.403] [39.736] −61.237

HDI −0.126+ −0.132+

(0.069) (0.070) −1.053
[1.819] [1.880] −3.279

HDI*High education −0.072∗∗ −0.071∗∗∗

(0.021) (0.007) 193.021
[3.442] [10.022] −65.652 0.316

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D2: Cross-Level Interaction of Gender and the HDI for Five Outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Female 0.209∗∗∗ 0.209∗∗∗

(0.013) (0.005) 198.409
[15.465] [46.242] −66.556

HDI −0.259∗∗∗ −0.260∗∗∗

(0.043) (0.043) −0.109
[6.025] [6.030] −0.087

HDI*Female 0.029∗ 0.034∗∗∗

(0.014) (0.005) 185.902
[2.112] [6.987] −69.768 0.321

Generalized Trust
Female 0.020∗∗ 0.021∗∗∗

(0.007) (0.004) 50.947
[3.054] [4.780] −36.115

HDI 0.351∗∗∗ 0.350∗∗∗

(0.059) (0.059) −0.0003
[5.928] [5.919] 0.150

HDI*Female 0.005 0.005
(0.007) (0.005) 47.118
[0.660] [1.019] −35.200 1.285

Homophobia
Female −0.084∗∗∗ −0.085∗∗∗

(0.007) (0.004) 68.905
[12.061] [20.462] −41.058

HDI −0.455∗∗∗ −0.456∗∗∗

(0.065) (0.065) 0.029
[7.052] [7.062] −0.140

HDI*Female −0.012+ −0.013∗∗

(0.007) (0.004) 64.039
[1.712] [2.951] −41.974 0.349

Occupational Status (ISEI)
Female 0.009 0.011∗∗

(0.010) (0.004) 157.683
[0.855] [2.879] −70.293

HDI 0.114∗∗∗ 0.112∗∗∗

(0.023) (0.023) −0.581
[5.010] [4.912] 1.996

HDI*Female −0.015 −0.015∗∗

(0.010) (0.004) 147.440
[1.426] [3.669] −61.142 5.666

Xenophobia
Female 0.002 0.002

(0.008) (0.004) 93.748
[0.239] [0.512] −53.223

HDI −0.136+ −0.134+

(0.070) (0.070) −0.263
[1.937] [1.906] 1.632

HDI*Female −0.004 −0.003
(0.008) (0.005) 87.324
[0.488] [0.579] −15.741 18.702

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D3: Cross-Level Interaction of Age and the HDI for Five Outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Age 0.070∗∗∗ 0.072∗∗∗

(0.012) (0.005) 134.255
[5.925] [14.264] −58.460

HDI −0.259∗∗∗ −0.259∗∗∗

(0.043) (0.043) 0.290
[6.035] [6.049] −0.234

HDI*Age 0.009 0.006
(0.012) (0.005) 134.058
[0.787] [1.124] −30.026 0.800

Generalized Trust
Age 0.027∗ 0.030∗∗∗

(0.011) (0.005) 132.105
[2.379] [6.030] −60.543

HDI 0.351∗∗∗ 0.351∗∗∗

(0.059) (0.059) 0.137
[5.923] [5.939] −0.269

HDI*Age 0.022+ 0.022∗∗∗

(0.012) (0.005) 131.911
[1.864] [4.310] −56.755 1.987

Homophobia
Age 0.141∗∗∗ 0.141∗∗∗

(0.013) (0.005) 184.520
[10.705] [30.549] −64.960

HDI −0.456∗∗∗ −0.457∗∗∗

(0.064) (0.065) −0.585
[7.088] [7.053] 0.488

HDI*Age −0.032∗ −0.034∗∗∗

(0.013) (0.005) 184.332
[2.424] [7.229] −66.468 0.460

Occupational Status (ISEI)
Age 0.083∗∗∗ 0.082∗∗∗

(0.010) (0.004) 122.890
[8.601] [18.987] −54.701

HDI 0.111∗∗∗ 0.112∗∗∗

(0.023) (0.023) 0.400
[4.881] [4.946] −1.299

HDI*Age 0.003 0.005
(0.010) (0.004) 122.678
[0.265] [1.027] −74.200 0.544

Xenophobia
Age 0.087∗∗∗ 0.088∗∗∗

(0.014) (0.005) 189.628
[6.428] [18.767] −65.747

HDI −0.135+ −0.135+

(0.069) (0.070) −1.507
[1.943] [1.911] 1.656

HDI*Age −0.011 −0.013∗

(0.014) (0.005) 189.452
[0.816] [2.715] −69.936 0.768

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D4: Cross-Level Interaction of Marital Status and the HDI for Five Outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Married −0.018∗ −0.019∗∗∗

(0.008) (0.004) 68.128
[2.443] [4.247] −42.479

HDI −0.260∗∗∗ −0.259∗∗∗

(0.043) (0.043) −0.573
[6.098] [6.029] 1.132

HDI*Married −0.004 −0.007
(0.008) (0.005) 65.587
[0.566] [1.585] −64.286 1.713

Generalized Trust
Married 0.022∗∗∗ 0.023∗∗∗

(0.005) (0.004) 13.491
[4.533] [5.177] −12.434

HDI 0.350∗∗∗ 0.350∗∗∗

(0.059) (0.059) −0.082
[5.915] [5.913] 0.037

HDI*Married 0.013∗ 0.013∗∗

(0.005) (0.005) 12.963
[2.484] [2.787] −10.900 0.538

Homophobia
Married 0.016∗∗ 0.016∗∗∗

(0.005) (0.004) 23.272
[3.221] [3.991] −19.288

HDI −0.456∗∗∗ −0.456∗∗∗

(0.065) (0.065) 0.024
[7.060] [7.062] −0.018

HDI*Married 0.001 0.002
(0.005) (0.004) 22.412
[0.176] [0.358] −50.913 0.936

Occupational Status (ISEI)
Married 0.027∗∗∗ 0.026∗∗∗

(0.006) (0.004) 53.269
[4.552] [6.892] −33.954

HDI 0.112∗∗∗ 0.112∗∗∗

(0.023) (0.023) 0.085
[4.927] [4.914] 0.278

HDI*Married 0.004 0.004
(0.006) (0.004) 51.331
[0.604] [0.938] −35.540 0.863

Xenophobia
Married 0.002 0.001

(0.006) (0.004) 35.386
[0.277] [0.348] −20.481

HDI −0.133+ −0.134+

(0.070) (0.070) −0.016
[1.893] [1.898] −0.283

HDI*Married −0.007 −0.007
(0.006) (0.004) 34.175
[1.133] [1.527] −25.793 12.559

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D5: Cross-Level Interaction of Being Unemployed and the HDI for Five Out-
comes

Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Unemployed 0.064∗ 0.052∗∗

(0.025) (0.019) 32.738
[2.531] [2.700] −6.262

HDI −0.259∗∗∗ −0.259∗∗∗

(0.043) (0.043) 0.078
[6.031] [6.050] −0.311

HDI*Unemployed 0.002 −0.005
(0.026) (0.020) 32.217
[0.069] [0.247] −72.198 1.265

Generalized Trust
Unemployed −0.133∗∗∗ −0.135∗∗∗

(0.019) (0.019) 0.416
[7.105] [7.192] −1.206

HDI 0.351∗∗∗ 0.351∗∗∗

(0.059) (0.059) 0.019
[5.925] [5.926] −0.013

HDI*Unemployed −0.024 −0.023
(0.020) (0.019) 0.417
[1.220] [1.208] 0.948 0.064

Homophobia
Unemployed 0.025 0.025

(0.018) (0.018) 0.817
[1.399] [1.398] 0.103

HDI −0.456∗∗∗ −0.456∗∗∗

(0.064) (0.064) 0.001
[7.077] [7.077] −0.001

HDI*Unemployed 0.040∗ 0.040∗

(0.018) (0.018) 0.802
[2.183] [2.214] −1.364 0.415

Occupational Status (ISEI)
Unemployed −0.215∗∗∗ −0.206∗∗∗

(0.023) (0.016) 39.448
[9.400] [12.582] −25.290

HDI 0.111∗∗∗ 0.112∗∗∗

(0.023) (0.023) 0.299
[4.900] [4.943] −0.887

HDI*Unemployed −0.011 −0.006
(0.024) (0.017) 38.842
[0.462] [0.345] 33.847 0.364

Xenophobia
Unemployed 0.077∗∗ 0.080∗∗∗

(0.025) (0.018) 39.156
[3.085] [4.504] −31.516

HDI −0.135+ −0.135+

(0.070) (0.070) −0.206
[1.923] [1.915] 0.396

HDI*Unemployed 0.027 0.033+

(0.026) (0.019) 38.488
[1.041] [1.756] −40.694 1.112

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D6: Cross-Level Interaction of Intermediate Education and the HDI for Five
Outcomes

Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Intermediate education 0.011 0.010∗

(0.007) (0.005) 53.577
[1.540] [2.012] −23.440

HDI −0.261∗∗∗ −0.259∗∗∗

(0.043) (0.042) 0.187
[6.146] [6.102] 0.714

HDI*Intermediate education −0.014+ −0.018∗∗∗

(0.007) (0.004) 64.316
[1.902] [4.202] −54.731 2.560

Generalized Trust
Intermediate education −0.017+ −0.019∗∗∗

(0.008) (0.005) 79.647
[2.020] [4.147] −51.285

HDI 0.351∗∗∗ 0.350∗∗∗

(0.060) (0.059) 0.314
[5.889] [5.895] −0.114

HDI*Intermediate education 0.010 0.010∗

(0.008) (0.004) 94.332
[1.188] [2.368] −49.827 2.148

Homophobia
Intermediate education 0.008 0.009∗

(0.006) (0.004) 36.273
[1.378] [1.985] −30.562

HDI −0.455∗∗∗ −0.456∗∗∗

(0.065) (0.065) 0.215
[7.018] [7.051] −0.456

HDI*Intermediate education 0.004 0.005
(0.006) (0.004) 44.062
[0.731] [1.270] −42.450 2.546

Occupational Status (ISEI)
Intermediate education −0.135∗∗∗ −0.137∗∗∗

(0.007) (0.004) 74.316
[19.081] [33.593] −43.201

HDI 0.110∗∗∗ 0.112∗∗∗

(0.023) (0.023) 1.505
[4.700] [4.875] −3.573

HDI*Intermediate education −0.010 −0.014∗∗∗

(0.007) (0.004) 88.203
[1.473] [3.714] −60.327 0.224

Xenophobia
Intermediate education 0.037∗∗∗ 0.038∗∗∗

(0.009) (0.004) 98.740
[4.222] [8.561] −50.687

HDI −0.134+ −0.134+

(0.071) (0.070) 0.395
[1.894] [1.905] −0.610

HDI*Intermediate education −0.005 −0.005
(0.009) (0.004) 116.128
[0.619] [1.258] −50.842 1.071

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Appendix E P -Curve Analysis

In this section, we provide a more detailed analysis of the possibility that cross-

level interaction estimates published in the ESR are subject to selective reporting

due to publication bias and/or p-hacking. By publication bias we mean a ten-

dency that statistically significant results with p < .05 are more likely to be pub-

lished than ‘null results’ with p ≥ .05. Publication bias could arise because editors

and referees have a preference for publishing significant results. The findings of

Franco et al. (2014), however, suggest that the primary reason for publication

bias is that authors do not even submit insignificant results for publication, po-

tentially because they anticipate that chances of eventual acceptance are slim. By

p-hacking we mean that researchers may (consciously or unconsciously) engage

in behaviors that ‘push’ p below .05. For example, a researcher might decide to

collect additional data when findings are not (yet) significant or he/she might

change regression specifications in order to obtain significant results. Both publi-

cation bias and p-hacking can artificially inflate the apparent strength of empirical

support for a hypothesis.

Our analysis draws on work by Simonsohn et al. (2014, 2015), who propose

p-curve analysis as a method for detecting publication bias and p-hacking on the

aggregate level. The Simonsohn et al. (2014) article gives a very good overview,

which is why we only give a brief summary of the approach. The p-curve ap-

proach circumvents the problem that insignificant results remain unpublished by

assessing the evidential value of a collection of studies on the basis of statistically

significant (published) results only. The p-curve describes the relative frequency

of different p-values below the .05 threshold. On the aggregate level, a collec-

tion of studies that has evidential value (i.e., that at least partly reports results

on effects or associations that really exist) will produce a right-skewed distribu-

tion. That is, smaller p-values should be more likely to occur than higher ones.

In other words, ‘highly significant’ results with, say, p < .01 should be observed
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more often than ‘just-significant’ results with a p-value of, say, .49. By contrast,

if an effect does not really exist (i.e., if the null-hypothesis is correct), the p-curve

will be uniform. A uniform p-curve hence indicates publication bias: the pub-

lished significant studies lack evidential basis. The fact that there seems to be

positive empirical support for an effect is due to the fact that insignificant results

are rarely published.

The practice of p-hacking should have a different effect on the shape of the

p-curve: authors who have successfully broken (hacked) the .05 threshold should

not care much to further reduce the p-value (to, say, p < 0.01 or even p < 0.001).

Thus, p-hacking should introduce a clustering of p-values just below .5 and intro-

duce left skew into the p-curve.

In summary, p-curves come in three principal shapes, each of which (more

or less directly and convincingly) supports different conclusions concerning the

evidential basis as well as the research and publication processes underlying a

given collection of studies:

1. a right-skewed shape indicates evidential basis for a true effect;

2. a uniform shape indicates no evidential basis for a true effect and therefore

also indicates (the potential for) publication bias;

3. a left-skewed shape is indicative of p-hacking and the lack of evidential basis

for a true effect.

Empirical p-curves can combine these fundamental shapes. For example, a

(left-skewed) p-curve with clustering of p-values below .5 and a near-uniform

distribution otherwise would signal that both publication bias and p-hacking are

at work. We return to this issue below.

Figure E1 displays p-curves for the cross-level interactions published in the

ESR, 2011-2016. The left-hand panels show p-curves for studies that correctly

include random slope terms for cross-level interactions. The right-hand panels
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Figure E1: P -Curves for Cross-Level Interactions
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Note: Results are based on 86/150 cross-level interaction terms from two-level mixed effects models
for which the authors reported exact inference statistics. These were reported in 20/28 articles
published in the ESR 2011-2016.

focus on studies that omitted them. The top panels show the curve for studies

that allowed us to get a reasonably precise figure for the p-value, while the bot-

tom panels also include findings for which we had to derive the p-value from an

indicator, such as *. Fortunately, the shapes of the p-curves are rather robust to

the in- or exclusion of studies that did not report exact inferential statistics. We

will therefore focus on the top panels. The red dotted line indicates the (uniform)

p-curve that we would expect to find if the results of the studies were pure arti-

facts of publication bias without any underlying empirical basis; it serves as the

reference point for potentially right- and left-skewed p-curves. The black solid

line shows the p-curve for the cross-level interaction terms and the green dashed

line shows the p-curve for the main effects of the lower level variables involved

in the cross-level interactions.
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The four p-curves of the two top panels clearly show signs of right-skew, with

the majority of p-values being smaller than 0.01. This would indicate a healthy

debate based on evidential basis of truly existing associations. But the p-curves

for the cross-level interaction terms also shows some indication of inflated p-

values that just surpassed the threshold of the conventional level of significance

(p < 0.05), especially for the models that omitted the random slope term in the

top right panel. Simonsohn et al. (2014) suggest to test such patterns of right

and left skew against the null of the uniform distribution (i.e., the red dotted

line). Following their proposed method (which relies on pp-values and the Stouf-

fer method), we learn that all four p−curves of the two panels are significantly

right (and hence not uniform or left) skewed (all at p < 0.0001) and hence indicate

evidential basis for real associations. If we applied the algorithm of Simonsohn

et al. (2014) without further reflection, we would thus conclude that the reported

findings have evidential basis and that there is no evidence of p-hacking, because

all p-curves are significantly right skewed.

But in the present context such a narrow application of p-curve analysis runs

into the problem that the p-curves could be both right and left skewed, that is,

they could be u-shaped. This is for two reasons: first, as we do not review studies

on a specific debate—but rather collections of studies that use the same model-

ing approach—there could be evidential basis among some and p-hacking among

others, both at the same time. Second, and more importantly, a narrow interpre-

tation of p-curve analysis has come under attack by Bruns and Ioannidis (2016),

who argue that in observational studies omitted variable biases may create right

skewed p-curves even in the absence of an underlying causal effect. We acknowl-

edge that many of the ESR findings are not causal but associational. However,

the results presented in the main article raise another serious concern. The right-

hand side p-curves in Figure E1 may be right skewed simply because the omitted

random slopes result in deflated p-values.
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Our solution to these two problems is to exploit the following two assump-

tions: First, we assume that there is no systematic difference in power between

studies that include and studies that omit the random slope term. Power differ-

ences might arise if one type of study investigated systematically stronger effects

or worked with systematically larger samples than the other, a possibility that

seems rather implausible. Second, we assume that authors potentially try to p-

hack cross-level interaction terms but not the main effects of the lower-level vari-

ables. Studies that investigate cross-level interactions virtually always put the

primary focus on the cross-level interaction term. The main effect of the lower-

level variable, by contrast, is usually not of substantive interest. It is a conditional

effect that depends on the scaling of the upper-level predictor involved in the in-

teraction. The ‘success’ of an investigation of a cross-level interaction therefore

primarily depends on the significance of the cross-level interaction term. At the

same time, p-values for the main effects of the lower-level variable are affected

by the omission of the random slope term in exactly the same way as p-values for

the cross-level interaction terms. These two assumptions allow us to investigate

whether the p-curves of studies that omit the random slope term are significantly

more right skewed (i.e., by focusing on the lower-level main effects which are

not affected by p-hacking but are similarly affected by omitting the slope term),

and whether there is evidence of p-hacking (i.e., by comparing the p-curves of

cross-level interaction terms against those of lower-level main effects).

Looking back at Figure E1, we can see that nearly 100% of the lower-level main

effects estimated from models omitting the random slope term reach the highest

levels of significance (p < 0.01). By contrast, among studies that correctly esti-

mate random intercept and slope models, it is only 70%. To test whether the two

p-curves are indeed significantly different from another, we employ simple di-

chotomous test proposed by Simonsohn et al. (2014). We transform the p-curves

to a binary variable (p < 0.025 vs p > 0.025) and use a χ2-test to investigate
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whether there are statistically significant more p < 0.025 among studies omitting

the random slope term as compared to those that include it. In principle, we could

also conduct this comparison for the cross-level interaction effects. However, this

comparison would be complicated by the peak of p-values near .05 for the models

omitting the random slope (which is evidence of p-hacking, as discussed below).

The χ2-test comparing the p-curves for the lower-level main effects shows that the

curve for models without a random slope term is significantly more right-skewed

(upper panels: p = 0.0036; lower panels: p = 0.0218). This either means that these

studies are better powered; as noted above, this possibility that appears quite

unrealistic. An alternative—and much more likely—explanation again is that

omitting the random slope term significantly deflates p-values, thus misleadingly

amplifying the right skew of the p-curve. This second interpretation bolsters our

claim from the main article: ‘potential publication bias against insignificant find-

ings [...] hits correctly specified cross-level interactions more often because their

standard errors are not deflated’.

A final look at Figure E1 reveals another interesting comparison. In the right-

hand panel (i.e., among studies that omitted the random slope term) the differ-

ence between the black solid and the green dashed p-curves (i.e., cross-level inter-

action terms and lower-level mains effects) shows a distinct left skew and thus in-

dication of p-hacking. In the left-hand panel (i.e., among studies that include the

random slope term), by contrast, the difference between the two p-curves seems

negligible. We again use the dichotomous χ2-test to investigate, whether this pat-

tern is indeed statistically significant. The results are telling and unaffected by the

in- or exclusion of studies that did not report exact inference statistics. Among

studies that correctly specified random intercept and slope models to investigate

cross-level interactions there is no significant indication of p-hacking (top panel:

p = 0.4028; lower panel: p = 1). By contrast, among studies of authors who spec-

ify their models incorrectly by omitting the random slope term, we also observe
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a statistically significant indication of p-hacking (top panel: p = 0.0054; lower

panel: p < 0.0001). In other words: for models that omit the random slope term,

there is statistically significant evidence for a higher proportion of just-significant

p-values and a lower proportion of highly significant results in the cross-level in-

teraction case than in the lower-level main effect case. We consider this as rather

strong evidence for p-hacking because, as noted above, researchers usually have

considerable incentive to hack the p-value for the cross-level interaction but not

to hack the one for the main effect.
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Appendix F Additional Monte Carlo Simulation

Results

Table F1: Actual Coverage Rates (%) of Nominal 95% Confidence Interval by Num-
ber of Clusters and Lower-level Observations

γ(x)

Random Slope
nj ntotal Included Omitted

m = 5 Clusters
100 500 97.01 76.60
500 2500 96.64 43.60

1000 5000 96.59 31.81

m = 15 Clusters
100 1500 95.15 58.38
500 7500 94.89 30.52

1000 15000 95.09 21.58

m = 25 Clusters
100 2500 95.23 57.33
500 12500 94.93 29.52

1000 25000 95.01 21.03

Note: Results are based on 10,000 Monte Carlo replications. Because of Monte Carlo sampling
error, the test interval is 95± 0.427. Values smaller or larger than that are statistically significant
deviations and indicate biased inference. These results are based on experimental conditions for

which R2(β
(x)
j ) = 0.50 (i.e., SD(u

(x)
j ) = 1), and SD(xij) = 1.
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