
u n i ve r s i t y  o f  co pe n h ag e n  

Efficient Induction of T Cells against Conserved HIV-1 Regions by Mosaic Vaccines
Delivered as Self-Amplifying mRNA

Moyo, Nathifa; Vogel, Annette B.; Buus, Søren; Erbar, Stephanie; Wee, Edmund G.; Sahin,
Ugur; Hanke, Tomáš

Published in:
Molecular Therapy - Methods & Clinical Development

DOI:
10.1016/j.omtm.2018.10.010

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Moyo, N., Vogel, A. B., Buus, S., Erbar, S., Wee, E. G., Sahin, U., & Hanke, T. (2019). Efficient Induction of T
Cells against Conserved HIV-1 Regions by Mosaic Vaccines Delivered as Self-Amplifying mRNA. Molecular
Therapy - Methods & Clinical Development, 12, 32-46. https://doi.org/10.1016/j.omtm.2018.10.010

Download date: 09. apr.. 2020

https://doi.org/10.1016/j.omtm.2018.10.010
https://curis.ku.dk/portal/da/persons/soeren-buus(994343ae-c005-48f6-afca-d9e657570abc).html
https://curis.ku.dk/portal/da/publications/efficient-induction-of-t-cells-against-conserved-hiv1-regions-by-mosaic-vaccines-delivered-as-selfamplifying-mrna(987c0844-7d94-4cb3-8e77-bfbafbd288ac).html
https://curis.ku.dk/portal/da/publications/efficient-induction-of-t-cells-against-conserved-hiv1-regions-by-mosaic-vaccines-delivered-as-selfamplifying-mrna(987c0844-7d94-4cb3-8e77-bfbafbd288ac).html
https://doi.org/10.1016/j.omtm.2018.10.010


Original Article
Efficient Induction of T Cells against Conserved
HIV-1 Regions by Mosaic Vaccines Delivered
as Self-Amplifying mRNA
Nathifa Moyo,1 Annette B. Vogel,2 Søren Buus,3 Stephanie Erbar,2 Edmund G. Wee,1 Ugur Sahin,2
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Focusing T cell responses on the most vulnerable parts of
HIV-1, the functionally conserved regions of HIV-1 proteins,
is likely a key prerequisite for vaccine success. For a T cell vac-
cine to efficiently control HIV-1 replication, the vaccine-eli-
cited individual CD8+ T cells and as a population have to
display a number of critical traits. If any one of these traits is
suboptimal, the vaccine is likely to fail. Fine-tuning of individ-
ual protective characteristics of T cells will require iterative
stepwise improvements in clinical trials. Although the sec-
ond-generation tHIVconsvX immunogens direct CD8+

T cells to predominantly protective and conserved epitopes,
in the present work, we have used formulated self-amplifying
mRNA (saRNA) to deliver tHIVconsvX to the immune system.
We demonstrated in BALB/c and outbred mice that regimens
employing saRNA vaccines induced broadly specific, plurifunc-
tional CD8+ and CD4+ T cells, which displayed structured
memory subpopulations and were maintained at relatively
high frequencies over at least 22 weeks post-administration.
This is one of the first thorough analyses of mRNA vaccine-eli-
cited T cell responses. The combination of tHIVconsvX immu-
nogens and the highly versatile and easily manufacturable
saRNA platform may provide a long-awaited opportunity to
define and optimize induction of truly protective CD8+ T cell
parameters in human volunteers.
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INTRODUCTION
Control of the HIV-1 epidemic remains one of the leading global
health priorities. Remarkable gains have been achieved in decreasing
HIV-1 transmission and AIDS-related deaths due to development of
over 30 antiretroviral drugs.1 However, still almost half of people
who are HIV-1 positive are unaware of their status. In addition, an-
tiretroviral drugs are not available on a regular reliable basis in
many resource-poor settings, their effective administration requires
rigorous daily compliance,2,3 there are toxicities associated with their
long-term use,4–6 and viruses develop resistance. Also, there is un-
willingness to take drugs in a surprisingly large proportion of in-
fected e.g., adolescent, individuals. Thus, an effective, prophylactic
HIV-1 vaccine will always be the best solution and possibly key to
32 Molecular Therapy: Methods & Clinical Development Vol. 12 March
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any strategy for halting the AIDS epidemic.7 For the most efficient
control of HIV-1, a vaccine will likely have to induce both broadly
neutralizing antibodies and effective CD8+ T cells.8 Our aim is to un-
derstand and induce protective T cell responses, which will have a
role in control of HIV-1 following initial transmission and in
HIV-1 cure.

We have pioneered a T cell vaccine strategy, which employs highly
conserved regions of the HIV-1 proteome.9 The first-generation
immunogen HIVconsv uses 14 regions designed as a clade-alter-
nating consensus.10 HIVconsv was tested extensively in pre-clinical
settings.11–19 To date in regimens involving plasmid DNA, simian
(chimpanzee) adenovirus (ChAdV-63), and poxvirus-modified
vaccinia virus Ankara (MVA), the HIVconsv vaccines have been
tested in eight clinical trials, showed promising immunogenicity
and in vitro control of replication of four major clades of HIV-1
and, in combination with latency-reverting agent, produced a signal
of viremic control during monitored antiretroviral treatment (ART)
pause in early treated patients (Fidler et al., 2018, Intern. AIDS
Soc., abstract; Mothe et al., 2017, Intern. Antivir. Soc., abstract; B.
Mothe, C. Manzardo, A. Snachez-Bernabeau, P. Coll, S. Moron-Lo-
pez, M.C. Puertas, M. Rosas, P. Cobarsi, R. Escrig, N. Perez-Alvarez,
I. Ruiz, C. Rovira, M. Meulbroek, A. Crook, N. Bothwick, E.G. Wee,
H. Yang, J.M. Miró, L. Dorrell, B. Clotet, J. Martinez, Picado, C.
Brander, and T.H., unpublished data).20–25 Six immunogens of the
second generation, collectively designated tHIVconsvX, further
improved the first-generation conserved-region design by bioinfor-
matics-assisted definition of conserved regions, including protective
epitopes defined in patient cohorts on four continents and maxi-
mizing a perfect potential T cell epitope match of the vaccines to
the circulating global HIV-1 isolates through using a bivalent
2019 ª 2018 The Author(s).
//creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The tHIVconsvX Vaccines

(A) Curated full-protein amino-acid HIV-1 sequences pre-

sent in the LANL-HSD database (September 2013) were

used to compute bivalent mosaic and select 6 highly

conserved regions of the HIV-1 proteome.26 Mosaic 1 and

mosaic 2 (color-coded) differ in approximately 10% of

amino acids and together maximize match of the vaccines

to globally circulating HIV-1 group M isolates. Each

tHIVconsvX vaccine component of the multi-component

regimens uses a different order of the 6 conserved regions

to minimize induction of T cell responses to potential neo-

epitopes irrelevant for HIV-1 generated by two juxtaposed

regions.20 (B) Vaccines used in this work. The 6 differentially

ordered transgenes were inserted into vaccine vectors

saRNA (RNA or R), non-replicating simian adenovirus

ChAdOx1 (ChAdV or C), and non-replicating poxvirus (MVA

or M). Unless specified, for each immunization, both mo-

saics were used together.
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mosaic.26 The second-generation immunogens delivered by DNA,
ChAdOx1, MVA, and integration-defective lentivirus vectors demon-
strated good immunogenicity in animalmodels,26,27 and recombinant
ChAdOx1 and MVA are in the pipeline to enter human trials.

It is our belief that eventual development of effective vaccines
against HIV-1 is more likely to happen through iterative multiple
small but significant steps forward rather than a new “out-of-box”
idea. The most relevant developments will always be those made
in human trials, where acceleration of iterative improvements will
be greatly facilitated by easily adaptable, affordable, and quickly
manufacturable vaccine modalities. One such vector currently in
the spotlight is mRNA. The use of naked RNA molecules was
hampered for a long time by its instability, inefficient crossing of
the cell membrane, and potent induction of innate responses, which,
e.g., cease cellular translation.28,29 Over the last decade, there have
been great leaps toward solving these challenges through structural
and chemical modifications to the RNA molecule itself,30–36 formu-
lation into various nanoparticles or nanoemulsion,33,37–39 and use of
polymers and conjugation.40,41 These advances enhanced by the
excellent safety features of mRNA vaccines, and their fully synthetic
and relatively cheap, fast, and scalable GMP manufacture have
generated lots of hopes and indeed investment into this emerging
platform.42 mRNA vaccines in pre-clinical models showed protec-
tive efficacy against a number of viruses, such as influenza, rabies,
Ebola, and Zika,37,39,43 and an increasing list of preventive and ther-
Molecular Therapy: Methods
apeutic vaccine candidates have entered clinical
evaluation in humans for cancer, allergy, and in-
fectious diseases.44 Although mRNA vaccines to
date focused not exclusively but predominantly
on induction of neutralizing antibodies, in the
present work, we explore the potential of
polymer-formulated self-amplifying mRNA
(saRNA) vaccines to induce alone and in a com-
bination with other vaccine vectors CD8+ T cell
responses. The results are discussed in the context of the current
state of HIV-1 vaccine development.

RESULTS
Design and Construction of the AIR.tHIVconsv1 and

AIR.tHIVconsv2 Candidate Vaccines

Novel candidate HIV-1 vaccines were vectored by a self-amplifying
RNA-based Ribological RNA amplicon derived from Semliki
Forest virus (SFV),45 which was developed by BioNTech and
designated Amplified Immune Response (AIR). AIR.tHIVconsv1
and AIR.tHIVconsv2 mRNA vaccines express the second-genera-
tion conserved-region immunogens tHIVconsv1 and tHIVconsv2,
respectively (Figure 1). These immunogens consist of 6 highly
conserved regions of the HIV-1 Gag and Pol proteins computed
into a bivalent mutually complementing mosaic 1 and mosaic 2,26

which are two versions of the same regions differing in
approximately 10% of amino acids (Figure 1A). Mosaic 1
(tHIVconsv1&3&5) and mosaic 2 (tHIVconsv2&4&6) are always
co-administered together for each vaccine dosing, whereby any
mosaic 1 can pair with any mosaic 2 without compromising the reg-
imen’s immunogenicity. Note that the choice of tHIVconsvX immu-
nogens for vectors was arbitrary. tHIVconsv5&6 and tHIVconsv3&4
were inserted into ChAdOx1 and MVA, respectively26; thus,
tHIVconsv1&2 were used for other vaccine modalities (Figure 1B).
All genes coding for the tHIVconsvX immunogens employ human-
ized codons. After a completely cell-free in vitro transcription, the
& Clinical Development Vol. 12 March 2019 33
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Figure 2. Dose Response of Mosaic saRNA Vaccines

(A) Groups of BALB/c mice were administered increasing vaccine doses of either individual mosaic vaccines or their half-dose combination. (B) Effect of saRNA formulation.

A single saRNA dose of AIR.tHIVconsv1 + AIR.tHIVconsv2, 5 mg in total, was administered to mice with or without polymer and also polymer alone was used to assess the

immunogenicity of each vaccine component. Mice were sacrificed either 2 or 5 weeks after vaccination (Figure S1). For both panels, vaccine-elicited T cell responses in the

spleen were enumerated in an IFN-g ELISPOT assay, performed in triplicate, using two immunodominant peptide pairs VLV and AMQ; the mean of the triplicates for each

mouse was calculated. Data are shown as median ± interquartile range (IQR) of the means for n = 3 mice per group.
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saRNA was purified and polymer formulated for enhanced cellular
delivery and translation rate. The construction of the viral vaccines
was described previously.26

saRNA Vaccine Dose Optimization for T Cell Induction

All vaccine dosings were delivered by intramuscular needle injection
into the quadriceps muscle of the hind legs. BALB/c mice were in-
jected with a total of 40 ng, 200 ng, 1mg, and 5 mg of saRNA of
either AIR.tHIVconsv1 alone, AIR.tHIVconsv2 alone, or as two
half-doses of AIR.tHIVconsv1 + AIR.tHIVconsv2 together. We
took advantage of two known H-2d immunodominant epitopes
AMQ (AMQMLKD/ETI; pool P1) and VLV (VLV/IGPTPVNI;
pool P4)17,27 and used only those two peptide pairs, one from
each mosaic, in an interferon g (IFN-g) ELISPOT assay for
enumeration of vaccine-elicited responses. We found that, 1 week
after administration, the saRNA vaccines induced only weak re-
sponses below 50 spot-forming units (SFUs)/106 splenocytes (Fig-
ure S2). It was through analysis of the kinetics of the T cell response
induction shown below that we realized that, following saRNA
vaccination, T cell frequencies keep increasing beyond the first
week, which is the peak time for many viral vectors. Thus, the
same dose-response experiment was repeated, but this time, mice
were sacrificed 5 weeks post-vaccination. First, we confirmed the
immunogenicity of both AIR.tHIVconsv1 and AIR.tHIVconsv2
34 Molecular Therapy: Methods & Clinical Development Vol. 12 March
individually (Figure 2A). For the combined half-doses, the fre-
quencies of specific T cells were increasing up to 5 mg dose, and
the total of 5 mg of saRNA (2.5 mg AIR.tHIVconsv1 + 2.5 mg
AIR.tHIVconsv2) was chosen as the standard intramuscular dose.
Next, we assessed the importance of the saRNA vaccine polymer
formulation. Although complexing saRNA with polymer approxi-
mately doubled the elicited T cell frequencies relative to naked
saRNA and reached approximately 600 IFN-g SFUs/106 splenocytes
for both the VLV and AMQ epitopes at 5 weeks post-administra-
tion, the polymer without saRNA failed to induce any HIV-1-spe-
cific responses (Figure 2B).

Characterization of T Cells Induced by a Single saRNA Dose

Next, we characterized the T cell responses induced by a single saRNA
dose. Groups of BALB/c mice were immunized using 5 mg of saRNA
of the single or combined vaccines, sacrificed weekly between 1 and
5 weeks post-delivery, and the vaccine-elicited frequencies were
enumerated using the two VLV and AMQ pairs of peptides. First,
eachmosaic induced different frequencies of VLV- andAMQ-specific
CD8+ T cells depending on whether it contained immunodominant
or subdominant epitope variants. Notably for the late time points,
the mixed delivery of AIR.tHIVconsv1 + AIR.tHIVconsv2 was not
additive in respect to the T cell frequencies induced by individual
mosaics but synergized (Figure 3A). Second, the frequencies of
2019



Figure 3. Induction of tHIVconsvX-Specific T Cells by

a Single Dose of the saRNA Vaccine

Groups of BALB/c mice were immunized with 5 mg of

formulated AIR.tHIVconsv1, AIR.tHIVconsv2, or half-doses

of AIR.tHIVconsv1 + AIR.tHIVconsv2 (Figure S1), and the

vaccine-elicited responses were analyzed using the IFN-g

ELISPOT assay, performed in triplicate; the mean of the

triplicates for each mouse was calculated. (A and B) Ki-

netics of T cell responses between weeks 1 and 5 (A) and

weeks 6 and 22 (B) was examined employing two im-

munodominant peptide pairs VLV and AMQ indicated

above the graphs. The latter interval only employed the

combined vaccine. (C) Splenocytes from 5 weeks after

saRNA vaccination were tested for recognition of ten

peptide pools P1–P10 across the entire length of the

tHIVconsvX immunogen to provide the total magnitude and

initial estimation of the response breadth. All data are

shown as median ± IQR of the means for n = 5 mice

per group.
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tHIVconsvX T cells increased with time up to 5 weeks post-delivery.
This observation prompted an extended experiment, which demon-
strated sustained levels of the T cell frequencies following a single vac-
cine delivery until week 22 (Figure 3B). At week 5, we also assessed the
breath of saRNA-induced T cell responses by using 10 peptide pools
P1–P10 across the entire length of the two mosaic immunogens and
also individual peptide pairs (Figure S3). The saRNA-vaccine-elicited
T cells recognized 17 peptide pairs (Figure S4) in 8 peptide pools, con-
firming induction of broad “immunodemocratic” (broad of similar
magnitude) responses (Figure 3C). Next, we examined the evolution
of T cell functions at 2, 12, and 22 weeks after a single vaccine admin-
istration, assessing upon specific-peptide stimulation the production
of IFN-g, tumor necrosis factor a (TNF-a), interleukin 2 (IL-2), and
degranulation measured by surface expression of CD107a, which cor-
relates well with cytolytic activity46,47 in an intracellular cytokine
staining assay (ICS). All four functions were detectable for CD8+

T cells, and CD4+ T cells displayed only three functions because
they typically do not degranulate (Figure 4A). In broad agreement
with the IFN-g ELISPOT data, the functionality was the highest of
the three time points measured at week 12. Putting all these parame-
ters together for single cells, we found over two-thirds of cells to be
monofunctional and 8%–9% trifunctional CD8+ T cells detected at
Molecular Therapy: Methods
weeks 12 and 22 (Figure 4B). Both CD8+ and
CD4+ T cells showed no proliferation at 2 weeks,
peaked at 12 weeks post-vaccination, and
declined thereafter (Figure 4C). Finally, at the
same late time points, both CD8+ and CD4+

T cells showed structured memory phenotypes
with significant proportions of effector memory
(CD44hiCD62Llo) and central memory
(CD44hiCD62Lhi) T cells and, for CD8+

T cells, a smaller fraction of naive T cells
(CD44loCD62Lhi; Figure 4D). Thus, the
AIR.tHIVconsv1 + AIR.tHIVconsv2 saRNA vac-
cines induce conserved region-specific CD8+ and CD4+ T cells with
desirable phenotypic properties.

Optimal Timing for Homologous saRNA Boost

Given the unusual kinetics of induction and long persistence of the
saRNA-elicited T cell responses, we set out to carefully determine
the optimal time for a homologous saRNA boost. Groups of BALB/c
mice were immunized twice with a 2-, 4-, and 6-week gap between the
prime and boost administrations and sacrificed 4, 8, or 12 weeks later.
Using the IFN-g ELISPOT assay and the BALB/c pool of 17 pairs of
responder peptides, both splenocytes and peripheral blood mononu-
clear cells (PBMCs) gave similar results, and there was no significant
difference between the T cell frequencies among the three gaps with
the exception of week 8 post-administration, whereby the difference
between a 2- and 6-week gap reached significance (p < 0.05). For
all gaps, specific T cell frequencies declined by 12 weeks post-boost
(Figure 5A). This broadly agreed with the frequencies of IFN-g-pro-
ducing cells measured using ICS, which again did not differ among
the three prime-boost gaps. However, there were peak frequencies
of IFN-g+ cells at 4 weeks post-immunization, which declined there-
after (Figure 5B). The differences observed among gaps were in the
CD8+ T cell CD107a expression, which peaked for a 4-week gap at
& Clinical Development Vol. 12 March 2019 35
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Figure 4. Evolution of saRNA-Induced T Cell Functions and Memory Subtypes

Groups of BALB/c mice were immunized with total of 5 mg of formulated AIR.tHIVconsv1 + AIR.tHIVconsv2 (Figure S1), and the vaccine-elicited responses were analyzed

using polychromatic flow cytometry at weeks 2, 12, and 22. (A) Total frequencies of cells with indicated functions at 3 time points post-immunization are shown for vaccine-

elicited CD8+ and CD4+ T cells in graphs, and (B) the pie charts provide the plurifunctionality, whereby 1 (black)—one function; 2 (light gray)—two functions; and 3 (dark

gray)—three functions (see Figure S5 for the gating strategy). (C) Proliferative capacity assessed in a CFSE-dilution assay (see Figure S7 for the gating strategy) is shown. (D)

Memory subtypes in total CD8+ and CD4+ T cells responding to the BALB/c peptide pool by expression of CD44 and CD62-L (see Figure S6 for the gating strategy) are

shown. TCM, central memory (CD44hiCD62Lhi); TEM, effector memory (CD44hiCD62Llo); TN, naive T cells (CD44
loCD62Lhi). The expression of indicated markers was analyzed

in duplicate; the mean of the duplicates for each mouse was calculated. In (A) and (C), data are shown as median ± IQR and in (B) and (D) are shown as the median of the

means for n = 5mice per group. Results were analyzed using theMann-Whitney U test for comparison between the long-term samples versus the early time point. Significant

p values are indicated by asterisks: *p < 0.05; **p < 0.01.

Molecular Therapy: Methods & Clinical Development
8 weeks post-boost. We also noted the generally low production
of TNF-a, the promoter of inflammation, apoptosis, and immu-
nity.48–50 For CD4+ T cell IL-2 production, there was a peak for the
6-week gap at 4 weeks after saRNA boost, which was much less pro-
nounced for the shorter gaps (Figure 5B). There were not any obvious
differences among the three gaps in the number of functions dis-
played by individual CD8+ and CD4+ T cells, with the highest pluri-
functionality measured 4 weeks post-vaccination (Figure 5C). The
best proliferative capacity was observed for a 4-week gap (Figure 5D).
36 Molecular Therapy: Methods & Clinical Development Vol. 12 March
Finally, we determined the structure of memory subtypes. The highest
frequencies of T cells were detected for the 4-week gap at 8 weeks after
vaccination, reaching 6% and 4% of CD8+ and CD4+ T cells, respec-
tively, and effector memory T cells were the predominant memory
subtype (Figure 5E). Overall, homologous saRNA boosts between 2
and 6 weeks after the saRNA priming induced very similar fre-
quencies and qualities of effector CD8+ and CD4+ T cells. Possibly
the regimen of choice would deliver two saRNA doses 4 weeks apart,
and the T cells would be expected to peak between 4 and 8 weeks later.
2019
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saRNA Prime Combines Well with Heterologous Viral Vector

Boost

Heterologous prime boost combinations of non-replicating subunit
genetic vaccines are currently the leading strategies for induction of
robust anti-microbial T cell responses in humans.8,9,51 Here, single
deliveries of saRNA (RNA), ChAdOx1 (ChAdV), and MVA were
compared with homologous boost (RNA-RNA) and heterologous
boosts with MVA (RNA-MVA) and ChAdOx1 (RNA-ChAdV) deliv-
ering the same bivalent-mosaic tHIVconsvX immunogens. IFN-g
ELISPOT assay employing the ten peptide pools P1–P10, BALB/c
pool, and immunodominant peptide pairs VLV and AMQ to assess
CD8+ T cell induction, whereby the VLV/AMQ readout was from
separately immunized mice. High frequencies of tHIVconsvX-
specific T cells were detected with the RNA-RNA < RNA-ChAdV <
RNA-MVA hierarchy peaking for the last at median of 9,343
tHIVconsvX-specific SFU/106 splenocytes (Figure 6A). Thus, the
highest frequencies were induced by the RNA-MVA regimen.

The CD8+ T Cell Response Breadth and Specificity

The most efficient regimen for induction of CD8+ T cells was
AIR.tHIVconsv1 + AIR-tHIVconsv2 prime and MVA.tHIVconsv3 +
MVA.tHIVconsv4 boost, or RNA-MVA, and was used to assess the
breadth of the responses and map the stimulatory peptides in the
BALB/c mice. Overall, responses over 50 SFUs/106 splenocytes were
induced to 25 15-mer peptide pairs and one 15-mer common between
the twomosaics, which likely corresponded to at least 16 CD8+ and/or
CD4+ T cell epitopes considering the peptide overlap (Figures 6B and
S7). Although this analysis confirmed high frequencies of T cells re-
sponding to VLV and AMQ, strong responses were also detected to
other known epitopes, although many of the epitope variants used
here were not previously described (Figure 6C). We used the
NetMHCpan 4.0 software to predict optimal binder peptides for the
three major histocompatibility complex (MHC) class I H-2d alleles
and confirmed recognition of 19 out of 20 in an IFN-g ELISPOT
assay by RM-immune splenocytes (Figure S8). Refolding of stable
MHC-peptide monomers confirmed the allele restriction for
AMQMLKETI/H-2Kd, VGPTPVNII/H-2Dd, and REHLLKWGF/
H-2Ld and showed tetramer reactivity with RNA-MVA-immune
CD8+ splenocytes (Figure 6D). Overall, we demonstrated recognition
of 11 novel HIV-1-derived epitope variants in the H-2d haplotype.
Finally, two variants of the AMQ and VLV epitopes were pulsed indi-
vidually and the target cells were differentially labeled and transferred
back into RNA and RNA-MVA vaccinated animals to assess the cell
Figure 5. Optimizing Repeated saRNA Vaccine Boost

Groups of BALB/cmice were immunized with 5 mg of formulated AIR.tHIVconsv1 + AIR.t

same vaccines. At 4, 8, and 12 weeks post-boost (Figure S1), the frequencies of resp

responder peptide pairs in (A) an IFN-g ELISPOT assay performed in triplicate and (B–E)

or duplicates for each mouse was calculated and a panel of mAbs (B) used for the funct

(right panel) expressing multiple functions are shown as pie charts, whereby the expres

gray)—two functions; and 3 (dark gray)—three functions (see Figure S5 for the gating stra

memory subtypes is shown, whereby TCM, central memory (CD44hiCD62Lhi); TEM, effec

and (D) are shown as median ± IQR of the means for n = 5 mice per group, and data in (C

were compared using two-tailed Mann-Whitney U tests, and two-tailed p values were
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in vivo survival. This assay confirmed in vivo cytolytic activity of the
vaccine-elicited effectors and indicated superiority of the heterolo-
gous regimen and immunodominance of AMQMLKETI over its
AMQMLKDTI variant but similarity of the two VLV epitope variants
(Figure 6E).
High Immunogenicity of the RNA-RNA and RNA-MVA Regimens

in an Outbred Mouse Stock

Finally, we compared the performance of the RNA-RNA and
RNA-MVA regimens in outbred animals. Groups of CD1-
SWISS mice were primed with formulated AIR.tHIVconsv1 +
AIR.tHIVconsv2 and boosted with the same or MVA.tHIVconsv3 +
MVA.tHIVconsvsv4 using optimal timing for both regimens. Charac-
terizing the vaccine-elicited responses in splenocytes using the IFN-g
ELISPOT assays, the RNA-RNA and RNA-MVA regimens induced
total magnitudes (as sum of individual pool responses) of 1,868 and
5,411 SFUs/106 splenocytes, respectively. For the RNA-RNA regimen,
all 5 mice responded to 7 pools (P1, P3, P4, and P7–P10), only 1
mouse responded to 2 pools (P5 and P6), and 1 pool (P2) remained
without any responder. For the RNA-MVA regimen, all pools had
at least one responding animal, whereby all 7 mice responded to 5
pools (P1, P3, P6, P7, and P10) and varying numbers responded to
the remaining pools: 1 (P2); 3 (P4); 4 (P5); 6 (P8); and 2 (P9; Fig-
ure 7A). Although the overall magnitudes may reflect the overall po-
tency of the regimens, individual pool differences in the number of
responding animals is likely attributed to the differences in individual
animal haplotypes. All four functions IFN-g, IL-2, TNF-a, and
CD107a were detected in CD8+ T cells in blood and spleen, and
CD4+ T cells lacked degranulation (Figure 7B). The overall function-
ality of tHIVconsvX-specific CD8+ T cell responses were similar be-
tween the two regimens (Figure 7B) and so were the T cell memory
subtypes (Figure 7C). Thus, in outbred animals, the RNA-MVA
regimen induced 2.9-fold higher frequency of HIV-1 conserved re-
gion-specific T cells relative to the RNA-RNA regimen, but the
RNA-RNA responses were more plurifunctional.
DISCUSSION
In the present work, we characterized comprehensively the CD8+ and
CD4+ T cell responses elicited in regimens involving formulated AIR
saRNA-vectored subunit genetic vaccine candidates against HIV-1.
In the BALB/c mice, we found that a single 5-mg saRNA dose of a
bivalent-mosaic immunogen tHIVconsvX elicited over two thousand
HIVconsv2 (RNA or R) and boosted at 2, 4, or 6 weeks later with the same dose of the

onding PBMC and/or splenocytes were determined using one BALB/c pool of 17

multicolor flow cytometry analysis performed in duplicate; the mean of the triplicates

ional phenotypes and (C) the proportion of CD8+ T cells (left panel) and CD4+ T cells

sion of one, two, or three markers is represented as 1 (black)—one function; 2 (light

tegy); (D) CFSE proliferation assay and (E) using a panel of mAbs characterizing T cell

tor memory (CD44hiCD62Llo); and TN, naive T cells (CD44loCD62Lhi). Data in (A), (B),

) and (E) are represented as median of the means for n = 5 mice per group. Groups

used. Significant p values are indicated by asterisks: *p < 0.05.
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Figure 7. T Cell Induction in an Outbred Mouse Stock

CD1-SWISS mice were immunized with 5 mg of formulated

AIR.tHIVconsv1 + AIR.tHIVconsv2, boosted at 4 or 2 weeks

later with either the same (RR) or with a total of 5 � 106 PFUs

of MVA.tHIVconsv3 + MVA.tHIVconsv4 (RM) vaccines and

sacrificed at peak responses either at 4 or 1 week later,

respectively (Figure S1). (A) INF-g ELISPOT frequencies of

T cells responding to tHIVconsvX peptide pools P1–P10 were

measured in triplicates; the mean of the triplicates for each

mouse was calculated. The number of animals responding to

each pool is shown above bars. (B) The functionality and

proportion of CD8+ and CD4+ T cells expressing multiple

functions were assessed in an ICS assay using flow cytometry

and performed in duplicate; the mean of the duplicates for

each mouse was calculated, whereby 1 (black)—one func-

tion; 2 (light gray)—two functions; and 3 (dark gray)—three

functions (see Figure S5 for the gating strategy). (C) Memory

T cell subtypes were defined as TCM, central memory

(CD44hiCD62Lhi); TEM, effector memory (CD44hiCD62Llo);

and TN, naive T cells (CD44loCD62Lhi) and all samples were

analyzed in duplicate; the mean of the duplicates for each

mouse was calculated. Graph data in (A) and (B) are shown

as median ± IQR of the means, and pies in (B) and graphs in

(C) show median of the means only (RR: n = 5 and RM: n = 7

mice).
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broadly specific T cells per million of splenocytes in total; these fre-
quencies took at least 5 weeks to peak and were well maintained up
to week 22 after vaccination. Furthermore, elicited T cells performed
Figure 6. saRNA Vaccine in Heterologous Regimens with Viral Vectors

(A) Groups of BALB/c mice were immunized using the indicated regimens (Figure S1). An IFN-g ELISPOT assa

ten overlapping peptide pools P1–P10 and BALB/c pool (left andmiddle; n = 4mice) and two pairs of immunod

mean of the triplicates for each mouse was calculated. Data are shown as median + IQR of the means of “n” o

test with Dunn’s multiple comparison post-test. Significant p values are indicated by asterisks: *p < 0.05; **

breadth of T cell responses by using 201 individual peptide pairs of the P1–P10 pools (Figure S7). Only respon

the mean of the duplicates for each mouse was calculated and are data shown as median + IQR of the means

peptides contained minimal epitopes present already in the LANL-HSD, in tHIVconsvX mosaics, 13 of these

9-mers was confirmed. (C and D) For three minimal peptides, their H-2d class I restriction was confirmed by re

assembled into tetramers and used for T cell analysis. (D) (Left) Gating strategy and (right) tetramer reactivity

demonstrate the correct epitope/H-2 class I definition; all four animals had reactive splenocytes. Representa

mice. Data were acquired in duplicate. (E) In vivo killing. (Left) Differentially CMTMR/CFSE labeled and peptide-p

RNA-MVA (M4–M6) vaccinated BALB/c mice, re-isolated 10 hr later, and analyzed using flow cytometr

AMQMLKDTI; 3—VLVGPTPVNI; and 4—ILVGPGPVNI. (Right) % in vivo killing is shown. Flow cytometry plots

the mean of the duplicates for each mouse was calculated and data in graphs shown as median ± IQR of th
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in vitro several effector functions upon peptide re-
stimulation, killed in vivo epitope variants, and dis-
played structured memory subpopulations with
well-represented effector and central memory. Ho-
mologous saRNA boost did not improve the
induced T cell frequencies significantly, and no
obvious effect of a time span between the prime
and boost was readily discernible within the 2
and 6 weeks tested. In contrast, heterologous boosts
with non-replicating virus vectors were able to at
least double the HIV-1-specific T cell frequencies.
The current superiority of the heterologous regimen over two
saRNA deliveries was also demonstrated in a more rigorous model
system of outbred animals. Thus, although a direct comparison of
y, performed in triplicate, enumerated the elicited T cells using

ominant epitopes VLV and AMQMLKETI (right; n = 5mice). The

f mice per group. Groups were compared using Kruskal-Wallis

p < 0.01. (B) The RNA-MVA regimen was used to assess the

ses over 50 SFUs/106 splenocytes are measured in duplicate;

for n = 5mice per group. (C) Although all 26 stimulatory 15-mer

epitopes had unique amino acids (red) and recognition of 18

folding functional MHC class I/peptide monomers. These were

are shown. The best of 4 mice for each tetramer is shown to

tive data are shown from a single analyzed mouse out of four

ulsed target cells transferred into naive (M0), RNA (M1–M3), or

y are shown. Targets are as follows: 1—AMQMLKETI; 2—

are shown for all three mice. All data are analyzed in duplicate;

e means for n = 3 mice per group.
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self-amplifying and non-self-amplifying mRNA showed 64-fold
higher immunogenicity of the former,52 we see a great scope for all
variations of this still very young platform to improve and shape
future vaccine induction of both antibody and T cell responses.

We find the increase in T cell responses over 5 weeks and their long,
sustained persistence intriguing. We are not aware of any studies sug-
gesting, e.g., slow vaccine mRNA release from a depo, persistence of
immunogenic protein, or requirement for any particular cell type
uniquely explored by mRNA vaccines. We hypothesized that no
immunogen is present for priming of T cell responses until after
cell entry of saRNA and its translation. This would explain a delay
of immune cell activation compared to protein- and/or live-virus-
based treatments that already come with foreign and/or “danger” an-
tigens. As saRNA translation begins, the immune responses can be
generated with a steady trigger of ongoing protein expression up to
the transfected cell death, which delivers another important trigger
for immune response activation and releases immunogen for cross-
presentation. Overall, we believe that these features generate a
different immune response kinetic compared to other platforms.
Further studies are warranted.

For HIV-1, there is a broad consensus on the importance of sup-
porting development of vaccines aiming at induction of antibody-
mediated protection. However, evidence of T-cell-mediated control
of HIV-1 infection is ample. This comes from the temporal
association of CD8+ T cell appearance and control of primary
viremia,53–58 extensive virus escape in targeted epitopes,55,59–61 asso-
ciation of certain HLA class I alleles with HIV-1 control
in vivo,54,59,60,62–64 and definition of protective CD8+ T cell epitopes
in patient cohorts.21,26,65–67 Also model infection of rhesus ma-
caques with simian immunodeficiency virus supports importance
of CD8+ T cells.68–74 Thus, inducing highly effective T cell responses
by vaccination is likely to help broadly neutralizing antibodies
reduce acquisition of HIV-1, as achieving truly sterilizing protection
will be challenging and may be central to HIV cure. However, defi-
nition of beneficial qualities and quantity of T cells remain elusive.
This is because HIV-1-specific T cells are a heterogeneous popula-
tion, which, in natural HIV-1 infection, target both protective and
non-protective viral epitopes.26,65,66 Thus, any attempts to associate
a single CD8+ T cell property with HIV-1 control have to be carried
out in the context of T cell specificity. Furthermore, HIV-1 control
likely depends on a number of critical T cell traits required to be
optimal at the same time, and if any one of these traits is subopti-
mal, the T cells, and therefore vaccines, may fail to protect.9,26

These important parameters include specificity for protective
epitopes,26,65,66 parallel recognition of multiple protective epi-
topes,8,75,76 optimal interaction with HLA-peptide complexes,77

rapid proliferation upon exposure to cognate peptides to reach pro-
tective numbers,78,79 lysis of infected cells, and production of soluble
antiviral and intercellular signaling molecules.78–81 The CD8+ T cells
induced by regimens involving saRNA displayed in the mouse
model a number of the desired properties. Whether or not these
will translate to humans and be beneficial remains to be seen, but
Molecul
the presented data encourage and deserve such translational studies.
The BALB/c inbred mouse strain allowed detailed, sophisticated
T cell analyses, and the CD1-SWISS mice demonstrated vaccine
elicitation of desired responses in an outbred animal stock closer
to a human population. However, many critical costimulatory sig-
nals, including stimulation through the toll-like receptors, differ be-
tween mice and humans, and therefore, having shown here the great
potential of the saRNA technology to stimulate T cell responses,
further optimization for human vaccines has to be carried out in
humans. It follows that, to advance our understanding of T cell
protection against HIV-1 infection, we need to measure multiple
parameters in human vaccine studies.

Great promise of the mRNA vaccine platform comes from the ample
possibilities to manipulate mRNA backbone, 50 cap, UTRs, codon us-
age, nucleoside-base modifications, self-amplification, delivery sys-
tems, co-delivery of immunomodulatory molecules, safety, and
manufacturing ease, which collectively provide enormous flexibility
and room for optimization.30,35,37,42,44,82 At this point of time, there
are many more promises than human data and optimization of all
these parameters in humans for each disease target may take some
time.42 For example, it was demonstrated for self-amplifying
mRNA that potent initial induction of type I interferons by double-
stranded RNA (dsRNA) was counterproductive to immunogen
expression and subsequent immunogenicity.83,84 Thus, any rational
exploitation of the innate signals and/or immunomodulation will
require careful evaluation, which will ultimately need to be confirmed
in the target species, i.e., humans.85 Nevertheless, new technologies
can often precipitate the long-awaited breakthroughs in difficult chal-
lenges of public health, such as prevention and treatment of HIV-1,
malaria, tuberculosis, cancer, and allergies, and the mRNA platform
has the potential to be such a transforming technology. Many com-
mercial programs have already started moving into clinic,44 and first
results are emerging. We argue that the tHIVconsvX conserved re-
gions and their match to global pandemic HIV-1s is currently state
of the art and that the specificity of T cells and their breadth we
aim to induce has a real potential to hurt HIV-1 where it is most
vulnerable. This is strongly supported by our studies in ART treat-
ment-naive, HIV-1-infected patients in Japan, whereby both the
magnitude and breadth of tHIVconsvX-specific responses induced
in natural HIV-1 infection correlated directly with high CD4 T cell
count and indirectly with low plasma viral load.26,67 saRNA is now
poised to accelerate the iterative process of identifying and optimizing
induction of the necessary protective T cell traits controlling HIV-1
infection in human clinical trials.

MATERIALS AND METHODS
Preparation and Formulation of AIR.tHIVconsv1 and

AIR.tHIVconsv2 saRNA Vaccines

The synthesis of the AIR.tHIVconsv1 andAIR.tHIVconsv2 saRNAs is
based on T7 in vitro transcription protocols provided by MEGAscript
T7 Transcription Kit (Thermo Fisher Scientific, Schwerte, Germany)
described before.83 Briefly, a linear DNA template was generated con-
taining the Semliki Forest virus isolate L10 saRNA vector (accession
ar Therapy: Methods & Clinical Development Vol. 12 March 2019 41
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number AJ251359), and modifications were described elsewhere. The
different tHIVconsvX sequences, including the co-transcriptional
capping, with the synthetic cap analog g-S-ARCA(D1). The in vitro
transcription followed an already described process86 and was opti-
mized with respect to saRNA length of up to 10,000 nt. For in vivo
application, saRNAwas formulatedwith a polyethylenimine-based re-
agent (Polyplus Tranfection, Illkirch, France). The formulation proto-
col followed to the supplier’s protocol and particle generation was
confirmed by particle size measurement using a Dynamic Light Scat-
tering instrument (Wyatt Technology, Dernbach, Germany). Only
particles below 200 nm were released for in vivo application. All
saRNA preparations were tested for their RNA integrity using a Bio-
analyzer instrument internally optimized with respect to saRNA
length (Agilent Technologies, Waldbronn, Germany). The prepara-
tion of other vaccines used in this study was described before.26,27

Mice and Immunizations and Preparation of Splenocytes

Six-week-old female BALB/c or CD1-SWISS mice were purchased
from Envigo (UK) or Charles River Laboratories (UK), respectively,
and housed at the Functional Genomics Facility, University of Ox-
ford. Mice were immunized intramuscularly under general anesthesia
either with varying amounts of saRNA as indicated in figures, a total
108 infectious units (IUs) of rChAdOx1s, and a total of 5 � 106 pla-
que-forming units (PFUs) of rMVAs. Immunization schedules are
listed in Figure S1. On the day of sacrifice, spleens were collected
and cells isolated by pressing organs individually through a 70-mm
nylon mesh sterile cell strainer (Fisher Scientific) using a 5-mL sy-
ringe rubber plunger. Following the removal of red blood cells with
RBC Lysing Buffer Hybri-Max (Sigma), splenocytes were washed
and resuspended in R10 (RPMI 1640 supplemented with 10% fetal
calf serum [FCS], penicillin and streptomycin, and b-mercaptoetha-
nol) for ELISPOT, ICS assays, and other procedures. All procedures
and care were approved by the local Clinical Medicine Ethical Review
Committee, University of Oxford and conformed strictly to the
United Kingdom Home Office Guidelines under the Animals (Scien-
tific Procedures) Act 1986. Experiments were conducted under proj-
ect license 30/3387 held by T.H.

Peptides and Peptide Pools

All peptides were at least 90% pure by mass spectrometry (Ana Spec,
San Jose, CA, USA and Synpeptide, Shanghai, China), dissolved in
DMSO (Sigma-Aldrich) to yield a stock of 10 mg/mL, and stored at
�80�C. Four hundred and one tHIVconsvX-derived peptides
15-mer overlapping by 11 amino acids were divided into 10 pools
P1–P10 of 34–47 individual peptides in a way that variant peptides
were always present in the same pool for use in ICS and ELISPOT as-
says. Also peptides pairs AMQ (AMQMLKETI and AMQMLKDTI)
and VLV (VLVGPTPVNI and VLIGPTPVNI), a pool of 17 pairs of
stimulatory “BALB/c” peptides, were employed as specified in each
figure. The peptides were used at a final concentration of 2 mg/mL.

The IFN-g ELISPOT Assay

The ELISPOT assay was performed using the Mouse IFN-g ELISpot
kit (Mabtech) according to the manufacturer’s instructions. Immune
42 Molecular Therapy: Methods & Clinical Development Vol. 12 March
splenocytes were collected and tested separately from individual mice.
Peptides were used at 2 mg/mL each, and splenocytes at 2� 105 cells/
well were added to 96-well high-protein-binding Immobilon-P mem-
brane plates (Millipore) that had been precoated with 5 mg/mL anti-
IFN-g monoclonal antibody (mAb) AN18 (Mabtech, Stockholm,
Sweden). The plates were incubated at 37�C in 5% CO2 for 18 hr
and washed with PBS before the addition of 1 mg/mL biotinylated
anti-IFN-g Mab (Mabtech) at room temperature for 2 hr. The plates
were then washed with PBS, incubated with 1 mg/mL streptavidin-
conjugated alkaline phosphatase (Mabtech) at room temperature
for 1 hr, washed with PBS, and individual cytokine-producing units
were detected as dark spots after a 10-min reaction with 5-bromo-
4-chloro-3-idolyl phosphate and nitro blue tetrazolium using an alka-
line-phosphatase-conjugate substrate (Bio-Rad, Richmond, CA,
USA). Spot-forming units were counted using the AID ELISpot
Reader System (Autoimmun Diagnostika). The frequencies of re-
sponding cells were expressed as a number of spot-forming units/
106 splenocytes.

ICS Assay

Splenocytes or PBMCs isolated from whole blood were stimulated
with peptide at 2 mg/mL; ionomycin and phorbol myristate acetate
(PMA) at 2.0 mg/mL and 0.5 mg/mL, respectively; or tissue culture me-
dia with 1% DMSO as a negative control. The cultures were supple-
mented with anti-CD107a phycoerythrin (PE)-conjugated mAb
(eBioscience). The cells were incubated at 37�C, 5%CO2 for 2 hr prior
to the addition of brefeldin A and monensin (BD Biosciences) and
then left in culture overnight. The cells were centrifuged briefly,
washed in PBS plus 5% BSA (Sigma-Aldrich), and the pellet resus-
pended in 40 mL of CD16/32 with LIVE/DEAD fixable aqua stain
(Molecular Probes, Invitrogen). Cells were washed; a mastermix of
anti-membrane marker mAbs was prepared containing CD4 allophy-
cocyanin (APC)/Cy7 (BioLegend), CD3 PerCP-eFluor710, and CD8a
eFluor 450 (both from eBioscience); and 40 mL added to each tube.
The cells were incubated at 4�C for 30 min and then permeabilized
using Fix/Perm solution (Becton Dickinson) for 20 min at 4�C. The
cells were washed with Perm Wash buffer (Becton Dickinson), and
a mastermix of anti-intracellular molecule mAbs was prepared con-
taining IFN-g PE-Cy7, IL-2 APC, and TNF-a fluorescein isothiocya-
nate (FITC) (all from eBioscience). The cells were incubated at 4�C
for 30 min, washed, and resuspended in Perm Wash buffer prior to
running on an LSRII flow cytometer (Becton Dickinson).

Memory Subtype Assay

Splenocytes and PBMCs isolated from whole blood were stimulated
with specific tHIVconsvX-derived BALB/c peptide pool and stained
with 100 mL of a mastermix of anti-membrane marker mAbs contain-
ing LIVE/DEAD fixable aqua stain (Molecular Probes, Invitrogen),
CD3-APC, CD4-FITC, CD8a-eFluor 450, CD44-PE, and CD62-L-
PE-Cy7 605 (all from eBioscience). The cells were incubated at 4�C
for 30min, washed, and fixed with 1% paraformaldehyde in PBS prior
to running on an LSRII flow cytometer (Becton Dickinson). The fre-
quencies of the subtypes in CD8+ and CD4+ T cells represent the dif-
ferences in stimulated and unstimulated immune cells.
2019
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MHC Class I Tetramer Staining

RefoldedMHC-peptidemonomers (immunAware,Denmark)were tet-
ramerized by adding streptavidin-conjugate-APC (Life Technologies)
at 4�C. Splenocyteswere stainedwith30mLof the optimal tetramer con-
centration for 20min at room temperature and washed followed by the
addition of 40 mL of a mastermix of anti-membranemarkermAbs con-
taining LIVE/DEAD fixable aqua stain (Molecular Probes, Invitrogen),
CD4 APC/Cy7 (BioLegend), CD3 PerCP-eFluor710, and CD8a eFluor
450 (both fromeBioscience). The cellswere incubated at 4�C for 30min,
washed, and fixed with 1% paraformaldehyde in PBS prior to running
on an LSRII flow cytometer (Becton Dickinson).

In Vivo Killing Assay

Syngeneic splenocytes were incubated with or without 2 mg/mL
peptides at 37�C, 5% CO2 for 90 min and thoroughly washed.
Unpulsed cells were labeled with 5-(and-6)-([(4-chloromethyl)ben-
zoyl]amino)tetramethylrhodamine (CMTMR; Molecular Probes,
Invitrogen) only, and peptide-pulsed cells were labeled with
750 nM (AMQMLKETI - 1 and VLVGPTPVNI - 3) and 150 nM
(AMQMLKDTI - 2 and ILVGPTPVNI - 4) 5(6)-carboxyfluorescein di-
acetateN-succinimidyl ester (CFSE) (Molecular Probes; Invitrogen); in
addition, the VLVGPTPVNI and ILVGPTPVNI peptide-pulsed cells
were incubated with 10 mMCMTMR at 37�C for 15 min and a further
15 min in fresh medium. Five differentially labeled cell cultures were
combined for intravenous adoptive transfer 5 weeks after saRNA and
1week after rMVA immunizations, with each animal receiving approx-
imately 2 � 106 cells of each population. Ten hours later, splenocytes
were isolated and analyzed using flow cytometry. Cytolytic activity
was estimated using the following formula: adjusted % survival =
100 � (% survival of peptide-pulsed cells/mean % survival of peptide
unpulsed cells), followed by the calculation of % specific lysis =
100 � adjusted % survival.

CSFE Proliferation Assay

Cryopreserved splenocytes were thawed, resuspended in pre-warmed
PBS with 0.1% BSA at a final concentration of 1 � 106 cells/mL, and
labeled with 750 nM CFSE for 10 min at 37�C, 5% CO2. The staining
was quenched by adding 5 volumes of ice-cold R10 followed by a
5-min incubation on ice. The cells were pelleted, washed, and plated
in 96-well round-bottom plates at a concentration of 1 � 106 cells/
well. The CFSE-labeled cells were then stimulated for 5 days with
2 mg/mL of peptide, 2.0 mg/mL ionomycin, and 0.5 mg/mL PMA (pos-
itive control) or tissue culture media with 1% DMSO (negative
control). The cells were stained with a mastermix containing the
dead cell marker (LIVE/DEAD Fixable Aqua stain; Invitrogen) and
anti-membrane marker mAbs anti-CD4-APC/Cy7 (BioLegend),
anti-CD3-PerCPeFluor710, and anti-CD8-eFluor450 (both from
eBioscience), fixed and acquired on a BD LSR II flow cytometer.
Data analysis was performed using FlowJo software (Tree Star)
with gating shown in Figure S6.

Statistical Analysis

Statistical analyses were performed using Graph Pad Prism version 7.
ELISPOT and flow cytometry results were assumed to be non-
Molecul
Gaussian in distribution; thus, non-parametric tests were used
throughout and medians (range) are shown. Multiple comparisons
were performed using the Kruskal-Wallis test with Dunn’s multiple
comparison post test for nonparametric data. Groups with the same
in vitro restimulations were compared using two-tailed Mann-Whit-
ney U tests. Two-tailed p values were used, and p values of less than
0.05 were considered statistically significant.
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