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General theory for stochastic admixture
graphs and F-statistics

Samuele Soraggi 1, Carsten Wiuf 23

July 18, 2018

————————————————————————————————–

Abstract: We provide a general mathematical framework based on the the-
ory of graphical models to study admixture graphs. Admixture graphs are
used to describe the ancestral relationships between past and present pop-
ulations, allowing for population merges and migration events, by means of
gene flow. We give various mathematical properties of admixture graphs
with particular focus on properties of the so-called F -statistics. Also the
Wright-Fisher model is studied and a general expression for the loss of het-
erozygosity is derived.

Keywords: introgression, genetic drift, Wright-Fisher model, heterozygos-
ity, F-statistic, Markov graphical model. MSC: 92D15, 92D25.

————————————————————————————————–

1 Introduction

Inference on human demographic history from a genetic perspective has
been a topic of wide interest in population genetics [2, 3, 16, 7, 13, 18, 17].
Methods for the assessment of migration between populations, and the iden-
tification of admixture and splitting events have recently been proposed
based on the study of gene flow and introgression between populations
[16, 13, 14]. The postulated demographic relationships between popula-
tions are described by a graph, generally referred to as an admixture graph,
where each node represents a population, ancient or extant, and each di-
rected edge represents an ancestral relationship between two populations.
Allele frequencies or other genetic quantities characterising the populations
are associated to the nodes, thereby creating, what we name, a stochastic
admixture graph. The difference in allele frequencies between two nodes
quantifies the gene flow between the two populations represented by the
nodes.

The goal of this paper is to provide a stringent mathematical definition
and treatment of stochastic admixture graphs and their properties. We use
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the theory of graphical models [6, 10, 19] to develop a general mathemati-
cal framework to describe stochastic admixture graphs and their associated
variables (such as gene frequencies). In the literature stochastic admixture
graphs and their properties are often studied with a particular population
genetic model in mind. We abstract properties that generalise properties of
particular models, using the theory of graphical models.

Many popular computational tools, building on admixture graphs, quan-
tify similarities in genetic composition between populations by means of
moment statistics, called F -statistics [13, 16, 14]. These tools rely on prop-
erties of the F -statistics that are not always motivated, but nonetheless have
proven essential to disentangle complicated genetic ancestries of populations
[1, 13, 15, 11]. We deduce general properties of the F -statistics, in partic-
ular the F2-statistic, and show that the F -statistics can be decomposed in
terms of the admixture paths between populations. Furthermore, we give
conditions under which the F2-statistic is additive (in a sense to be made
precise later) and forms a metric on the nodes of the graph. In the final
section of the paper, we consider the Wright-Fisher diffusion model and give
a general formula for the decline of heterozygosity over time in a stochastic
admixture graph.

We envisage that the general theory developed here and the vast amount
of exiting literature on model selection and inference on graphical models
will be useful to understand inferential properties of stochastic admixture
graphs, what can be done and how. All proofs are given in the appendix.

2 Admixture graphs

We consider labeled graphs with directed and undirected edges, and use the
notations i ↔ j (equivalently j ↔ i) and i → j (equivalently j ← i) for an
undirected edge between two nodes i and j, and a directed edge from i to
j, respectively. An edge i → j is said to be ingoing to j and outgoing of i.
The parents of j is the set par(j) = {i | i → j is an edge}. The node i is a
child of j if j is a parent of i.

Definition 1. An admixture graph is an edge labeled graph G = (V, E ,L)
without directed cycles. The triplet consists respectively of the set of nodes,
edges and labels. The set of nodes V is divided into:

(i) roots R, nodes without ingoing edges. All pairs of roots, and only
these, are connected by an undirected edge,

(ii) admixed nodes A, nodes with ingoing directed edges,

(iii) leaves A0 ⊆ A, admixed nodes without outgoing directed edges.
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The label αij of an edge i→ j is positive and fulfils∑
i∈par(j)

αij = 1. (1)

An edge between two roots r1, r2 ∈ R has label αr1r2 = 1.

In the genetic context, an admixed node, say j, represents a population
that is a mixture of several populations, such that 100αij percent of the
size of population comes from population i, i ∈ par(j). The roots repre-
sents populations that are ancestral to the other populations in the graph,
whereas the ancestral relationship between the root populations are assumed
unknown and left unspecified.

By definition, an admixture graph is connected. We assume an admix-
ture graph is not trivial, meaning that it does not consist of only roots
and undirected edges. For convenience, we define αji = αij , αii = 1, and
αe = αij , if e is an edge connecting the nodes i, j. See Figure 1 for examples.

In the following G denotes an admixture graph G = (V, E ,L).

Figure 1: Examples of admixture graphs. (A) An admixture graph
where nodes 1, 2, 3 are roots, 4 an admixed node and 5, 6 a leaves. (B) An
admixture graph with three leaves. From 3 to 5 there is as an a-path of type
(b), namely (3, 5) with label α35, and one of type (c), namely (3, 1, 2, 5) with
label 1 · 1 · α36 = α36.

Definition 2. Given an admixture graph G and two nodes i, j ∈ V, an
admixture path (or simply an a-path) γ from i to j is a sequence of edges
with distinct nodes,

ik ← ik−1, . . . , i1 ← i0, j0 → j1, . . . , jm−1 → jm,

where ik = i, jm = j, k,m ≥ 0, and i0 6= j0 only if i0, j0 are roots, in which
case there is an edge i0 ↔ j0. The set of a-paths from i to j is denoted by
Γij .
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The label pγ of an a-path γ ∈ Γij is the product of the labels of its edges,

pγ :=
∏

e∈γ
αe,

where e ∈ γ means e is an edge in the sequence γ.

An a-path contains at most two roots. We might think of three types of
a-paths between two nodes: (a) those where all directed edges have direction
← (k > 0,m = 0), (b) those where all directed edges have direction →
(k = 0,m > 0), and (c) those with both directions (k,m > 0). If both
nodes are roots, then there is only one a-path consisting of an undirected
edge (k = m = 0). There cannot be both type (a) and type (b) a-paths
between two nodes as this would create a directed loop. Retuning to the
genetic context, an a-path between two populations implies that one of the
populations is ancestral to the other (a,b) or that they share a common
ancestor (c). Due to the nature of the graph, there can be two types of
a-paths between two populations, as in Figure 1(B).

The set Γii contains only the empty sequence with label one. An a-path
γ ∈ Γij , i 6= j, is not symmetric, meaning that it is not considered the same
as the a-path γ′ ∈ Γji composed by the edges of γ in the opposite order.
Therefore Γij 6= Γji. However, the labels of γ and γ′ are identical.

For convenience, we often write an a-path as an ordered sequence of
nodes (ik, . . . , i0, j0, . . . , jm), leaving out j0 if i0 = j0. If γ = (i, . . . , k, . . . , j) ∈
Γij , then the subsequences γ1 = (i, . . . , k) ∈ Γik and γ2 = (k, . . . , j) ∈ Γkj
are a-paths as well.

An a-path γ is not a path in standard graph terminology [8].

Proposition 1. Consider two nodes i, j ∈ V of an admixture graph G. Then
Γij 6= ∅. Further, the sum of the labels over Γij is one,

∑
γ∈Γij

pγ = 1.

A tree is a connected subgraph of an admixture graph with only directed
edges and at most one incoming edge to each node. In what follows we
characterize - in terms of a-paths and labels - when an admixture graph is
a tree or a forest. Here a forest is a set of trees with roots connected by
undirected edges.

Theorem 1. For an admixture graph G, the following statements are equiv-
alent:

(i) for any pair of nodes, there is only one a-path connecting them,

(ii) every a-path has probability one,

(iii) the admixture graph consists of a forest of R trees, where R is the
number of roots.
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Definition 3. Let ` ∈ A be an admixed node and r ∈ R a root of an
admixture graph G. Let Ω`r ⊆ Γ`r be the set of a-paths from ` to r that
do not contain another root. The root weight of r with respect to ` is the
probability

q`r =
∑

γ∈Ω`r

pγ .

Proposition 2. Given an admixture graph, the root weights with respect
to an admixed node form a probability distribution.

The probability q`r is the proportion of the ancestry of the node ` stem-
ming from the root r. If the admixture graph is a forest, then q`r is one if
the node ` is in the tree with root r, and otherwise q`r = 0.

Definition 4. Let G = (V, E ,L) be an admixture graph and let C ⊆ V. We
define the admixture graph spanned by C as the graph GC =

(
VC , EC ,LC

)
,

where

VC =
{
i | i is in an a-path of Γjk for some j, k ∈ C

}
,

EC =
{
e | e ∈ E connects two nodes of VC

}
,

and LC is the set of labels inherited from G. In particular, GV = G.

It is immediate to verify that the graph GC is an admixture graph.

Proposition 3. Let G be an admixture graph, A0 ⊆ V the leaves and GA0

the admixture graph spanned by A0. Furthermore, assume every root has
a child. One of the following two equivalent conditions holds

(i) for each node k ∈ V\A0, there is a pair of nodes i, j ∈ A0 and two
a-paths γ ∈ Γik, δ ∈ Γkj , such that γ and δ only have k in common,

(ii) for each node k ∈ V\A0, there are two nodes i, j ∈ A0 and an a-path
from i to j that includes k,

if and only if G = GA0 . Moreover A0 is the smallest set spanning the graph
G, in the sense that any other set that spans G contains A0.

An a-path of G between two nodes of C is also an a-path of GC by
definition.

3 Stochastic admixture graphs

We will assume an admixture graph expresses conditional independencies
of a random vector. Specifically, an admixture graph is a chain graph (a
graph with directed and undirected edges and no directed cycles), which
gives rise to a special type of Markov graphical models, called chain graph
models [10, 6, 19], see Appendix A. Many models in population genetics and
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phylogenetics are assumed to fulfil the conditional independences expressed
by a tree, which is a special type of chain graph. Here we make the natural
extension to admixture graphs.

Given an admixture graph G, we define the augmented graph G∗ =
(V∗, E∗) by

V∗ = V ∪
{

(i, j) | i→ j ∈ E
}
,

E∗ = {i↔ j | i↔ j ∈ E} ∪ {i→ (i, j) | i→ j ∈ E} ∪ {(i, j)→ j | i→ j ∈ E},

see Figure 2. Note that G∗ is an admixture graph except for the labelling
and that an a-path of G between two nodes i, j ∈ V corresponds to a unique
a-path of G∗ between the same two nodes i, j ∈ V ⊆ V∗, and vice versa.

Here and elsewhere, an equality between two random variables means
equality almost surely with respect to the underlying probability measure.
If X is a random variable with finite expectation, then E(X|Y ) denotes the
conditional expectation of X given the random variable Y .

Definition 5. Let G be an admixture graph and (Vi | i ∈ V) a random
vector with finite expectation. Then, (Vi | i ∈ V) is a stochastic admixture
graph over G if there exists a random vector (Cij | i → j ∈ E), defined on
the same space as (Vi | i ∈ V), with finite expectation and such that

(i) (Vj , Cij | i ∈par(j), j ∈V) is a chain graph model over G∗,

(ii) Vj =
∑

i∈par(j) αijCij , j ∈ A,

(iii) E(Cij |Vi) = Vi for i ∈ par(j), j ∈ A.

The variables Cij , (i, j) ∈ V∗, are called contribution variables.

The requirement that expectations are finite ensures the existence of
conditional expectations [9]. In the genetic context, where the variables
are allele frequencies, Definition 5(i) is a mathematical formalisation of the
statement that evolution and gene flow happens independently along distinct
lineages. Definition 5(ii) states that the allele frequency of a population is a
weighted sum of the allele frequencies of the admixted populations. These
frequencies are themselves the result of neutral evolution in the sense that
their expectation is constant over time, Definition 5(iii).

Example 1. Assume (Vi | i ∈ V) is a Gaussian graphical model over a
directed acyclic graph (DAG) G [19]. The conditional distribution of Vj
given the parent variables, (Vi | i ∈ par(j)), has a Gaussian distribution
with form ∑

i∈par(j)

αijVi + εj ,

where αij 6= 0 and the error terms εj are independent with expectation
zero and variance σ2

j > 0. If αij > 0 and
∑

i∈par(j) αij = 1, then εj can be
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realised as a weighted sum of independent terms εj =
∑

i∈par(j) αijεij , where

εij has expectation zero and variance σ2
j /αij . By defining Cij = Vi + εij ,

the three conditions of Definition 5 can be verified. If an arbitrary Gaussian
distribution are specified for the variables of the roots of G, then (Vi | i ∈ V)
is a stochastic admixture graph over G (assuming the roots are connected
by undirected edges).

A similar remark could be said about Structural equation models (SEMs),
where the distribution of (Vi | i ∈ V) is allowed to take a general form while
preserving (1).

Example 2. The Wright-Fisher model with two alleles, say A and B, as-
sumes a population of constant size N . The frequency of the A allele evolves
according to random sampling with replacement (without mutation)

P (Xn+1 = ` | Xn = k) =

(
N

`

)(
k

N

)̀ (
1− k

N

)N−`
,

where Xn denotes the number of A alleles in generation n [5]. The condi-
tional expectation of Xn+m given Xn is E(Xn+m | Xn) = Xn.

Assume evolution occurs on the edges of an admixture graph according to
the Wright-Fisher model and that the nodes i and (i, j) in the augmented
graph represent a population at different time points. Let Vi and Cij be
the relative frequencies of the A allele at these time points, and assume
the population at node j is the admixture of its parent populations with
respective frequencies αij , i ∈ par(j). Then Definition 5(ii)-5(iii) hold.

The same conclusion can be made if mutation between A and B is al-
lowed, and in the diffusion limit as N → ∞. We will return to this model
in Section 5.

Figure 2: Contribution nodes. An example of an admixture graph (A)
and its augmented graph (B). Black dots represent nodes associated with
contribution variables.

Definition 5(iii) does not in general hold for variables associated to the
roots.
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Theorem 2. Let G be a stochastic admixture graph, and assume V1, . . . , Vk
are the variables associated with the roots. Then E(Vi |Vj) = Vj holds for
any pair of roots if and only if V1 = V2 = · · · = Vk.

For reasons of exposition, we assume an order on the set of the roots,
(R,≺), of an admixture graph. This provides a natural way of writing
undirected edges with the smallest node first, k ↔ `, if k ≺ ` and k, ` ∈ R.

For two nodes i, j ∈ V, the drift from i to j is defined as

Dij := Vj − Vi.

Note that Dji = −Dij . Similarly, we define the partial drift of an edge
e = k → ` ∈ E as

de = dk` := Ck` − Vk,
and of an edge e = k ↔ ` ∈ E , k ≺ `, between two roots as

de = dk` := V` − Vk.

If k ↔ ` is an undirected edge or if k is the only parent of `, then the partial
drift dk` coincides with the drift Dk` from k and `.

Let e = k → ` or k ↔ `, k ≺ `, be an edge in an a-path γ. The sign of e
with respect to γ is defined as

signγ(e) =


signγ(e) = +1 if γ = (. . . k, ` . . .),

signγ(e) = −1 if γ = (. . . `, k . . .),

signγ(e) = 0 if e 6∈ γ.

Theorem 3. Let (Vi | i ∈ V) be a stochastic admixture graph over G and
let i, j ∈ V. The drift Dij from i to j decomposes as

Dij =
∑

γ∈Γij

(
pγ
∑

e∈γ
dγe

)
, (2)

where dγe = signγ(e)de is the signed partial drift with respect to γ.

If γ1 ∈ Γij is an a-path from i to j, and γ2 ∈ Γji is the ‘reversed’ a-path
from j to i, then dγ1e = −dγ2e . The signed partial drift of an undirected edge
along an a-path is independent of the order defined on R.

Lemma 1. Let (Vi | i ∈ V) be a stochastic admixture graph over G and let
e1, e2 ∈ E be two distinct edges, where at least one is directed. The product
of their partial drifts is zero in expectation,

E(de1de2) = 0. (3)

Furthermore, for any edge e = i → j ∈ E , we have E(d2
e) = Var(Cij) −

Var(Vi).

The second part of the lemma implies that Var(Cij) ≥ Var(Vi), which
was first shown for the Wright-Fisher model [14].

Example 3. Continuing with Example 1, for an edge k → `, the expectation
of the squared partial drift is E(d2

k`) = Var(Vk + εk`)−Var(Vk) = σ2
k/αk`.
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4 F -statistics

In this section we discuss the F -statistics F2, F3 and F4 [13, 16, 14], and give
various results for these. We assume (Vi | i ∈ V) has finite second moments.

Definition 6. Let (Vi | i ∈ V) be a stochastic admixture graph over G and
i, j ∈ V. The F2-statistic between i and j is

F2(i, j) = E(D2
ij). (4)

The F2-statistic is non-negative and symmetric by definition. Using
Theorem 3 and Lemma 1, we might rewrite (4) in terms of squared partial
drifts along the a-paths of Γij , see below.

For two edges e1, e2 ∈ E and four nodes i, j, k, ` ∈ V of an admixture
graph, define the B-coefficient of (e1, e2) with respect to the pairs (i, j), (k, `)
as

B(i,j)(k,`)
e1,e2 =

∑
(γ1,γ2)∈Γ

e1
ij ×Γ

e2
k`

signγ1(e1) signγ2(e2)pγ1pγ2

=

(∑
γ1∈Γ

e1
ij

signγ1(e)pγ1

)(∑
γ2∈Γ

e2
k`

signγ2(e)pγ2

)
. (5)

For an edge e ∈ E , the A-coefficient of e with respect to the pairs (i, j), (k, `)
is defined as

A(i,j)(k,`)
e = B(i,j)(k,`)

e,e . (6)

For convenience, we write A
(i,j)
e and B

(i,j)
e1,e2 if (k, `) = (i, j). In that case the

coefficients are symmetric in i, j.

Lemma 2. Let G be an admixture graph and i, j, k, ` ∈ V. For two edges
e1, e2 ∈ E , the following holds:

(i) −1 ≤ B(i,j)(k,`)
e1,e2 ≤ 1,

(ii) B
(i,j)(k,`)
e1,e2 = ±1 if and only if Γe1ij = Γij , Γe2k` = Γk`, signγ1(e1) is inde-

pendent of γ1 ∈ Γij and signγ2(e2) is independent of γ2 ∈ Γk`,

(iii) B
(i,j)(k,`)
e1,e2 = 0 for all positive values of αe, e ∈ E , such that (1) is

fulfilled, if and only if Γe1ij = ∅ or Γe2k` = ∅.

The lemma implies that 0 ≤ A(i,j)
e ≤ 1 for any edge and −1 < B

(i,j)
e1,e2 ≤ 1

for two undirected edges. The latter follows from (ii) and the fact that an
a-path cannot pass through two distinct undirected edges.

Let Eij ⊆ E be the set of edges that appear in at least one path of Γij .
Further, let Euij ⊆ Eij be the set of undirected edges and Edij ⊆ Eij the set of
directed edges.
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Theorem 4. Let (Vi | i ∈ V) be a stochastic admixture graph over G and
i, j ∈ V. The F2-statistic F2(i, j) decomposes as

F2(i, j) =
∑
e∈Edij

A(i,j)
e E(d2

e) +
∑

(e1,e2)∈Euij×Euij

B(i,j)
e1,e2 E(de1de2) (7)

If G{i,j} has at most two roots, (7) might be written compactly as

F2(i, j) =
∑
e∈Eij

A(i,j)
e E(d2

e).

If G is a Gaussian admixture graph, then A
(i,j)
e E(d2

e) = σ2
kA

(i,j)
e /αk` is a

polynomial in the labels, that is, αk` cancels out, see Example 3.
We next characterise the additivity of the F2-statistic [12, 16, 13].

Proposition 4. Consider a stochastic admixture graph (Vi | i ∈ V) over
G, and let i, j, k ∈ V. If all a-paths of Γij pass through k, then F2(i, j) =
F2(i, k) + F2(k, j).

Assume G{i,j} has at most two roots. If F2(i, j) = F2(i, k) + F2(k, j) for
all positive values of E(d2

e) and αe, e ∈ E , such that (1) is fulfilled, then all
a-paths of Γij pass through k.

If additivity holds for any node on the a-paths between any two nodes,
then and only then is the admixture graph a forest (Theorem 1).

Example 4. Consider the admixture graph in Figure 1B. The only a-path
of Γ57 goes through node 2, so F2(5, 7) = F2(5, 2) + F2(2, 7). For node 6 we
have F2(5, 7) = F2(5, 6) + F2(6, 7)− 2F3(6; 5, 7), but F3(6; 5, 7) is only zero
for certain values of the parameters. In fact,

E(D65D67) = α2
36E(d2

36) + α2
46E(d2

46)− 2α36α46E(d2
23 + d2

24),

which is zero for certain choices of parameters.

The F3- and F4-statistics are defined analogously to the F2-statistic

F3(i; j, k) = E(DijDik) and F4(i, j; k, l) = E(DijDk`),

for four nodes i, j, k, ` ∈ V. Similarly to the decomposition of the F2-
statistic, the F3- and F4-statistics decompose as

F3(i; j, k) =
∑

e∈Edij∩Edik

A(i,j)(i,k)
e E(d2

e) +
∑

(e1,e2)∈Euij×Euik

B
(i,j)(i,k)
(e1,e2) E(de1de2) (8)

F4(i, j; k, `) =
∑

e∈Edij∩Edk`

A(i,j)(k,`)
e E(d2

e) +
∑

(e1,e2)∈Euij×Euk`

B
(i,j)(k,`)
(e1,e2) E(de1de2). (9)
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(the proofs are similar to the proof for the F2-statistic).
A visual method to decompose the F -statistics is introduced in [13] and

[16]. This is formally motivated here as a consequence of the decompositions.
The steps to calculate the F2-statistic between two nodes i, j ∈ V are the
following, see Example 5:

1. Consider all pairs (γ1, γ2) ∈ Γij × Γij , including coincident pairs,

2. For each pair (γ1, γ2), multiply the sum of the squared partial drifts
of the directed edges that are in both a-paths by pγ1pγ2 ,

3. For each pair (γ1, γ2), sum the products of partial drifts dγ1e1d
γ2
e2 over

the undirected edges e1 ∈ γ1 and e2 ∈ γ2, and multiply by pγ1pγ2 ,

4. Sum all terms above and take the expectation of the sum.

An analogous procedure is followed to calculate the F3- and F4-statistics,
by considering the pairs of a-paths (γ1, γ2) between the pairs of nodes
(i, j), (i, k) and (i, j), (k, `) for F3(i; j, k) and F4(i, j; k, `), respectively.

Example 5. Consider F2(5, 6) in the admixture graph of Figure 1A. There
are two a-paths in Γ56, namely γ1 = (5, 4, 1, 3, 6) and γ2 = (5, 4, 2, 3, 6),
resulting in four pairs of a-paths, see Figure 3A. Applying the visual method
yields:

F2(5, 6) = E
(
p2
γ1(d2

45 + d2
14 + d2

13 + d2
36) + p2

γ2(d2
45 + d2

24 + d2
23 + d2

36)

+ 2pγ1pγ2(d2
45 + d2

36 + d13d23)
)
.

By collecting terms with the same partial drifts, we obtain

F2(5, 6) = E(d2
45) + E(d2

36) + p2
γ1E(d2

14) + p2
γ1E(d2

13) + p2
γ2E(d2

24)

+ p2
γ2E(d2

23) + 2pγ1pγ2E(d13d23).

We recognize the A- and B-coefficients,

A
(5,6)
4→5 = A

(5,6)
3→6 = 1, A

(5,6)
1→4 = A

(5,6)
2→4 = p2

γ1 ,

B
(5,6)
2↔3,2↔3 = p2

γ2 , B
(5,6)
1↔3,1↔3 = p2

γ1 , B
(5,6)
1↔3,2↔3 = B2↔3,1↔3 = pγ1pγ2 .

The F3-statistics can be given in terms of the F2-statistics,

F2(i, j) = F2(i, k) + F2(k, j)− 2F3(k; i, j)

[16]. This shows that the F2-statistic is a metric on V (that is, it fulfils the
triangular inequality) if and only if F3(k; i, j) ≥ 0, for all i, j, k ∈ V.

11



Figure 3: Visual method for the F -statistic. Illustration of the visual
method to calculate F2(5, 6) in the admixture graphs of Figure 1A. A pair of
paths is represented by a blue and a green lines connecting adjacent nodes.
(A-B) Pairs of coincident admixture paths sharing all their edges. (C-D) A
pair of different paths where the shared directed edges are 4 → 5, 3 → 6.
The product of partial drifts of the two undirected edges on the blue and
green paths appears in F2(5, 6) (see step 3 of the visual method).

If there are at most two roots then there is at most one undirected edge
and F3(i; j, k) can be written as a sum involving only A-coefficients, see (6)
and (8). Express F3(i; j, k) as the sum F3+(i; j, k) + F3−(i; j, k), where

F3+(i; j, k) =
∑

e∈Eij∩Eik

A
(i,j)(i,k)
e+ E(d2

e), F3−(i; j, k) =
∑

e∈Eij∩Eik

A
(i,j)(i,k)
e− E(d2

e),

and A
(i,j)(i,k)
e+ and A

(i,j)(i,k)
e− collect the terms with same and opposite sign of

e in (γ1, γ2) ∈ Γeij × Γeik, respectively.
The next statement relates the sign of the F3-statistic to the topology

of the admixture graph.

Proposition 5. Let G be an admixture graph and C = {i, j, k} ⊆ V such
that GC has at most two roots. Then F3−(i; j, k) 6= 0 if and only if there
exist e ∈ Eij ∩ Eik and a pair of a-paths (γ1, γ2) ∈ Γeij × Γeik such that

γ1 = i← · · · → j or γ1 = i← . . .↔ j,

γ2 = i← · · · → k or γ2 = i← . . .↔ k,

and signγ1(e) = −signγ2(e).

5 The Wright-Fisher model

In this section we consider the Wright-Fisher model in the diffusion limit as
the population size becomes infinite [5], see also Example 2.

Definition 7. A Wright-Fisher admixture graph (Vi|i ∈ V) over G is a
stochastic admixture graph such that Vi, i ∈ V , are the frequencies of a
particular allele in the populations represented by the nodes of the graph,

12



and such that Cij conditional on Vi = v ∈ [0, 1], i ∈ par(j), j ∈ V, is
distributed as the frequency in a Wright-Fisher diffusion process at time τij ,
given it starts at frequency v, and τij is the population scaled time between
the nodes i and (i, j).

[12, chapter 13] showed that the expected heterozygosity of an allele
declines exponentially over time,

E(V1(1− V1)) = (1− e−τ12)E(V2(1− V2)),

where V1 is the frequency at time zero and V2 the frequency τ12 popula-
tion scaled time units later. We generalise this formula to a Wright-Fisher
admixture graph.

Proposition 6. Consider a Wright-Fisher admixture graph (Vi | i ∈ V)
over G. Then the expected heterozygosities fulfil

E(Vj(1− Vj)) =
∑

(r1,r2)∈R×R

Dj
r1,r2E(Vr1(1− Vr2)), j ∈ V,

where Dj
r1,r2 are non-negative constants depending on the edge labels and

the population scaled times. Furthermore,∑
r1,r2

Dj
r1,r2 ≤ 1, j ∈ V.

If all population scaled times τij , i→ j ∈ E , between two nodes are set to

zero, then the sum of Dj
r1,r2 over r1, r2 is precisely one (see the proof of the.

proposition). In that case, E(Vj(1 − Vj)) is the probability of drawing two

different alleles from the root populations. With probability Dj
r1,r2 , alleles

from population r1 and r2 are drawn. In general, when Dj
r1,r2 does not sum

to one, heterozygosity is lost.
If there is only one root, then the sum consists of just one term, hence

all expected heterozygosities can be expressed in terms of the expected het-
erozygosity of the root variable. [12] showed that the partial drift of an edge
e = i→ j fulfils

E(d2
e) = (1− e−τij )E(Vi(1− Vi)), (10)

so that the F2-statistics can be expressed in terms of the expected heterozy-
gosities of the root variables (Theorem 4).

To end we consider a few examples. The linear Wright-Fisher admixture
graph with edges 1→ 2, 2→ 3 was already studied in [12, chapter 13] and
it was found that

F2(2, 3) = e−τ12(1− e−τ23)E(V1(1− V1)).
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It is also a consequence of (10) and additivity of the F2-statistic.
In a Wright-Fisher admixture graph with edges 1 → 2, 2 → 3, 2 → 4,

3 → 5, 4 → 5, such that there are two overlapping a-paths from 1 to 5, we
have

F2(1, 5) =
(
1− α2

35e
−τ̂1 − α2

45e
−τ̂2 − 2α35α45e

−τ12)E(V1(1− V1)),

where τ̂1 = τ12 + τ23 + τ35 and τ̂2 = τ12 + τ24 + τ45.
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Appendix A

Consider a graph G = (V, E), where V, E , are the nodes and the edges,
respectively, and edges are directed or undirected. A directed edge from i
to j and an undirected edge between i and j are written as i→ j and i↔ j,
respectively. A path from node i to node j is a sequence of adjacent nodes
i0, i1, ......, iK , where i0 = i, iK = j, and either ik → ik+1 or ik ↔ ik+1,
for k = 0, . . . ,K − 1. A cycle is a path with i = j. A cycle is directed if
ik → ik+1 for k = 0, . . . ,K − 1. (A path is not the same as an a-path.)
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A graph where the nodes are connected by either directed or undirected
edges and without directed cycles is called a chain graph.

The node set V of a chain graph G can be partitioned into unique blocks
B1, . . . , BN such that B1 = R, and if two nodes i, j ∈ V are connected
by a sequence of directed edges i → i1, i1 → i2, . . . , ik → j in E , then
i ∈ Bni , j ∈ Bnj and ni < nj . Two nodes i, j are said to be in the same
component if they are connected by an undirected or directed path from i to
j and from j to i. Note that a component does not coincide with a block. In
Figure 1B each node is a distinct component, but the blocks are B1 = {1},
B2 = {2, 8}, B3 = {3, 4}, B4 = {5, 6, 7}.

A subset A ⊆ V of a chain graph G induces a graph G(A) = (A, E(A)),
where E(A) contains the edges of G whose nodes are in A

The border of a subset A ⊆ V is defined as

bd(A) :=
{
i ∈ V : i→ j or i↔ j for some j ∈ A

}
,

and the moral graph of G is Gm = (V, Em), where Em consists of the union
of

• the set Eu consisting of the edges of E made undirected,

• the set of undirected edges of E that connect pairs of nodes that are
in the border of a component of G.

In Figure 1B the moral graph is obtained by making all edges undirected,
and by adding an undirected edge between 3 and 4.

Let A,B,C be three disjoint subsets of V. The sets A and B are separated
by C when every path from i ∈ A to j ∈ B (or vice versa) includes at least
one node of C. Given A ⊆ V , the set of ancestors of A, anG(A), is the
subset of nodes of V having at least one path to some node of A.

A random vector (Ui|i ∈ V) is a chain graph model over G if it fulfils the
global G-Markovian (GM) property,

(Ui|i ∈ A) ⊥ (Ui|i ∈ B) | (Ui|i ∈ C),

whenever C separates A and B in Gman(A∪B∪C) and X ⊥ Y |Z denotes that
the random vectors X and Y are conditionally independent given Z.

Let (Vi|i ∈ V) be a stochastic admixture graph over G. The Markov
structure of the chain graph implies in particular that two contribution
variables Cij , Ck`, where i, k are not necessarily distinct, are conditionally
independent given the variables Vi, Vk of their parents, that is,

Cij ⊥ Ck` | (Vi, Vk). (11)

Further, for a contribution variable Cij , let Bni be the block in which node
i is located. Then

Cij ⊥
(
Vk | k ∈

⋃ni

n=1
Bn

)
| Vi. (12)
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As a consequence of (12), if a node k is in
⋃ni
n=1Bn, it follows that

Cij ⊥ Vk | Vi. (13)

Appendix B

Proofs of statements in the main text are presented here. We start by
listing in Table 1 the possible forms of an a-path between two distinct nodes
i, j ∈ V. In a,e) there might be only one edge, in the others at least two.
For two a-paths γ, δ, the concatenation of γ with δ is the sequence of edges
in γ followed by those of δ. It might or might not be an a-path.

a) i ← . . . ← j d) i ↔ . . . → j
b) i ← . . . ↔ j e) i → . . . → j
c) i ← . . . → j

Table 1: Possible admixture paths according to Definition 2.

Lemma 3. Let i, j ∈ V be two distinct nodes of an admixture graph G,
such that not both of them are roots. Then either all a-paths γ ∈ Γij end
with a directed edge k → j, for some k ∈ V, or all a-paths γ ∈ Γij start with
a directed edge i← k, for some k ∈ V, where k might depend on γ.

Proof of Lemma 3. It follows by inspecting the possibilities for a-paths.

Lemma 4. Let i, j ∈ V be two distinct nodes of an admixture graph G, such
that i 6∈ R and assume that all a-paths γ ∈ Γij start with an edge i ← k,
for some k ∈ V (as in Lemma 3). Then

Γij = ∪`∈par(i){(i← `, γ) | γ ∈ Γ`j},

where (i← `, γ) denotes the concatenation of the a-path i← ` with γ.

Proof of Lemma 4. It follows trivially that Γij is included in the right hand
side of the equality. To prove the converse we need to show that (i← i′, γ),
γ ∈ Γi′j is an a-path from i to j, that is, the edges are directed according
to Definition 2 (see Table 1) and i does not belong to γ. By inspection
of the possibilities for γ, it shows that the edges have the correct directions
(including undirected). Assume i is in γ. It cannot be a root by assumption.
Then by inspection, either there is a subsequence i′ ← . . . ← i of γ, or a
subsequence i → . . . → j. In the former case, this yields a directed cycle
from i to i via i′ by adding the edge i′ → i. In the latter case, it yields an
a-path from i to j, violating the assumption of the starting edge. Hence the
proof is completed.
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Lemma 5. Let i, j, k ∈ V be distinct nodes of an admixture graph G, and
assume any a-path of Γij passes through k. Then it holds that

Γij = Γik × Γkj ,

where (γ, δ) ∈ Γik × Γkj denotes concatenation of γ and δ.

Proof of Lemma 5. We will prove the two sets are included into each other.
It trivially holds that Γij ⊆ Γik×Γkj . Next we prove the converse inclusion.
According to Lemma 3, we might assume all a-paths γ ∈ Γik start with a
directed edge i← i′, i′ ∈ par(i), hence the same is true for the a-paths of Γij .
According to Table 1 this yields 3 ·5 = 15 possibilities for the forms of (γ, δ).
In the cases (a,a), (a,b), (a,c), (a,d), (a,e), (b,e), (c,e) the concatenation of
γ with δ is an a-path from i to j. The cases (b,a), (b,b), (b,c), (c,d) give
impossible constraints on k, hence they cannot occur. The case (b,d) gives
i ← . . . ← k1 ↔ k ↔ k2 → . . . → j for two roots k1, k2 ∈ R. Hence there
is an a-path i ← . . . ← k1 ↔ k2 → . . . → j, not going though k, which is
impossible. The remaining three cases are

γ δ
(c,a) i ← . . . → k ← . . . ← j
(c,b) i ← . . . → k ← . . . ↔ j
(c,c) i ← . . . → k ← . . . → j

The node k cannot be a root, k 6∈ R. We will construct an a-path from i
to j, based on γ and δ, that does not go through k, hence (c,a), (c,b), (c,c)
cannot occur. Specifically, there are three possibilities for the a-path γ,

i ← . . . ← i′ → . . . → k
i ← . . . ← r → . . . → k
i ← . . . ← r ↔ r′ → . . . → k

In the first case, there is r ∈ R and an a-path r → . . .→ i′ by definition of an
admixture graph. It does not contain k as this would create a directed cycle.
Consequently, in all three cases, there is r ∈ R and an a-path r → . . .→ i,
not containing k.

For δ we can do similarly. In the first case above, there exists r′ ∈ R
and an a-path r′ → . . .→ j, not containing k as this would create a directed
cycle. In the second case, j ∈ R and we define r′ = j. In the third case, we
proceed as for γ and conclude there is r′ ∈ R and an a-path r′ → . . . → j,
not containing k.

Now consider the a-path η from r to i, and the a-path η′ from r′ to j,
constructed above (r = r′ or r 6= r′). If η and η′ do not share any nodes,
except perhaps for r, r′, then their concatenation is an a-path (η, η′) ∈ Γij ,
not containing k. If they do share nodes, chose sub-a-paths ζ : ` → . . . → i
and ζ ′ : ` → . . . → j, sharing only the node `. Then their concatenation
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is an a-path (ζ, ζ ′) ∈ Γij , not containing k. Hence, none of the cases (c,a),
(c,b), (c,c) are valid, and the lemma holds.

Proof of Proposition 1. If i = j then the statements are true by defini-
tion. Given distinct i, j ∈ A, there exists r1, r2 ∈ R and two a-paths
r1 → i1 → . . . → ik−1 → i and r2 → j1 → . . . → jk′−1 → j for some
nodes i1, . . . , ik−1, j1, . . . ,
jk′−1 ∈ A, and k, k′ ≥ 1 (because the admixture graph is connected and there
are no directed cycles). Either all these nodes are distinct (except perhaps
for r1, r2) in which case they form an a-path from i to j by concatenation, or
there is i` = i′`′ for some `, `′. Choose `, `′ such that `+ `′ ≤ k+k′ is as large
as possible. Then i ← ik−1 ← . . . ← i`+1 ← i` → i′`′+1 → . . . → i′k′−1 → j
is an a-path from i to j by definition of an a-path. There cannot be any
repeated nodes, otherwise `+ `′ is not as large as possible. If i, j ∈ R, then
they are trivially connected by an a-path. If i ∈ R and j ∈ A, then there is
an a-path j ← ik−1, . . .← i1 ← i (potentially with i1 ↔ i and i1 a root) for
some i1, . . . , ik−1 ∈ A (as before). Hence Γij 6= ∅.

To prove the second part of the proposition, we proceed by induction in
the length of the a-paths. For i, j ∈ V, consider Γij and let lγ denote the
number of edges in an a-path γ ∈ Γij . Assume lγ ≤ 0 for all γ ∈ Γij . Hence
i = j and

∑
γ∈Γij

pγ = 1 by definition.

Assume now the statement holds if
∑

γ∈Γij
pγ = 1 and lγ ≤ k, γ ∈ Γij , for

some k ≥ 1. Consider two nodes i, j ∈ V such that all a-paths between them
fulfil lγ ≤ k + 1 and start with an edge i ← k for some k ∈ V (otherwise
exchange the roles of i and j). Then, using Lemma 4 to decompose the
a-paths according to the parents of i, we obtain∑

γ∈Γij

pγ =
∑

`∈par(i)

∑
γ∈Γ`j

αi`pγ =
∑

`∈par(i)

αi`
∑
γ∈Γ`j

pγ =
∑

`∈par(i)

αi` = 1,

as all a-paths in Γ`j must have length at most k.

Proof of Theorem 1. We will prove (ii) ⇒ (i) ⇒ (iii) ⇒ (ii). Assume
(ii). If the label pγ of an a-path between i and j is one, then Γij = {γ},
according to Proposition 1. It proves (i). Let Ar be the nodes in A for which
there is an a-path from r ∈ R to a node in A, not involving any other root.
Any i ∈ A is in at least one Ar, and cannot be in two such sets Ar1 ,Ar2 ,
because then there would be a-paths (r1, . . . , i) and (r1, r2, . . . , i) from r1 to
i, contradicting uniqueness of a-paths (i). The set {r}∪Ar with the inherited
edges form a tree. It proves (iii). The last implication is straightforward
using the definition of a forest and taking into account the undirected edges
between the roots, so (ii) is proven.

Proof of Proposition 2. Consider r1 ∈ R. Any a-path γ1 ∈ Γ`r1 contains one
root or two roots. In the latter case, the a-path is the concatenation of an
a-path γ′ ∈ Ω`r2 , r2 6= r1, with the edge r2 ↔ r1 and pγ = pγ′ . It follows
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that ∑
r∈R

q`r =
∑
r∈R

∑
γ∈Ω`r

pγ =
∑

γ∈Γ`r1

pγ = 1.

Proof of Proposition 3. For the if and only if, assume (ii). By Definition
4, we have VA0 = V and EA0 = E . Oppositely, if GA0 = G, then again by
Definition 4, (ii) holds.

We next prove the equivalence between (i) and (ii). (ii) trivially implies
(i). To prove the converse, let γ ∈ Γik, δ ∈ Γkj be as stated, sharing only
the node k ∈ V \ A0 and i, j ∈ A0. There are five possibilities for a-paths,
see Table 1. As i, j ∈ A0, then d,e) are not an option for γ, and a,b) are not
an option for δ, yielding nine possible combinations. By inspection, (a,c),
(a,d), (a,e), (b,e), (c,e) yield valid a-paths from i and j, hence (ii) holds in
these case. The cases (b,c), (c,d) yield impossible constraint on k, and thus
cannot occur. The two remaining cases (b,d), (c,c) give

γ δ
(b,d) i ← . . . ↔ k ↔ . . . → j
(c,c) i ← . . . → k ← . . . → j

Since k 6∈ A0 then there is an a-path, say η, k → . . . → k′, with k′ ∈ A0

(in the first case we use that every root has a child). If this a-path does not
share a node with γ (similarly, with δ) except from k, then γ concatenated
with η is an a-path from i to k′ through k, as required. Otherwise, if η
shares nodes with both a-paths, let k′′ 6= k (say in δ, similar if in γ) be the
first such node counting from k. Let η′ be the a-path from k to j given by
k → . . . → k′′ → . . . → j by concatenating the part of η ending at k′′ with
the part of δ beginning at k′′. The edge from k′′ towards j cannot be↔ nor
← for the following reasons. In the former case,→ k′′ ↔ which is impossible.
In the latter case, δ takes the form k ← . . . ← k′′ ← . . . ← j, creating a
directed loop from k to k′′ and back to k via η′. Finally, γ concatenated
with η′ is an a-path from i to j through k, as required.

Proof of Theorem 2. A general reference is [9]. Let Vi, Vj be two root
variables, corresponding to distinct roots in R. By definition of conditional
expectation (first equality) and by assumption (second equality)∫

A
Vi dP =

∫
A
E(Vi | Vj) dP =

∫
A
Vj dP

for all Rj-measurable subsets A. Similarly, by exchanging the role of Vi and
Vj , the same holds for all Vi-measurable subsets. Hence,∫

A
Vi dP =

∫
A
Vj dP
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for all (Vi, Vj)-measurable subsets A. Consequently, using that Vi, Vj have
finite expectation by assumption, it follows that Vi = Vj .

Proof of Theorem 3. We prove the statement by induction on the maximum
number of edges n of the a-paths γ ∈ Γij . If n = 0, then i = j and there
is nothing to prove. Assume now (2) for is true for n = ` and consider
n = ` + 1 for some ` ≥ 1. Further, assume that i is such that any a-path
of Γij involves a parent of i as the first node (Lemma 3). Then using the
inductive hypothesis, Proposition 1, Definition 5(ii), Lemma 4 and (1), it
holds that∑

γ∈Γij

pγ
∑
e∈γ

dγe =
∑

i′∈par(i)

∑
γ′∈Γi′j

αi′ipγ′
(
d

(i,i′)
i′i +

∑
e∈γ′

dγ
′
e

)
=

∑
i′∈par(i)

αi′i

(
d

(i,i′)
i′i +

∑
γ′∈Γi′j

pγ′
∑
e∈γ′

dγ
′
e

)
=

∑
i′∈par(i)

αi′i

(
Ci′i − Vi′ + Vi′ − Vj

)
=

∑
i′∈par(i)

αi′iCi′i −
∑

i′∈par(i)

αi′iVj = Vi − Vj .

If any a-path of Γij does not involve a parent of i as the first node after
i, then it holds that any a-path involves a parent of j as second last node
(Lemma 4). Note that Dij = −Dji, and that the decomposition holds for
Dji. Thus

Dij = −
∑
γ∈Γji

pγ
∑
e∈γ

dγe =
∑
γ∈Γij

pγ
∑
e∈γ

dγe ,

using that the partial drifts change sign when an a-path is reversed.

Proof of Lemma 1. Let e1 = i → j and e2 = k → ` (with one of the two
potentially being undirected). Further, assume that the blocks Bni , Bnk

,
associated to the nodes i, k are such that ni ≥ nk. The expected value in
(3) can be rewritten as

E(dijdk`) = E(CijCk`)− E(CijVk)− E(Ck`Vi) + E(ViVk).

Consider the first expectation,

E(CijCk`) = E(E(CijCk`|Vi, Vk)) = E(E(Cij |Vi, Vk)E(Ck`|Vi, Vk)) (14)

= E(E(Cij |Vi)E(Ck`|Vi, Vk)) = E(ViE(Ck`|Vi, Vk)). (15)

Here we used (11), (13) to derive (14), and Definition 5 to derive (15). With
similar considerations, it follows that

E(Ck`Vi) = E(E(Ck`Vi|Vi, Vk)) = E(ViE(Ck`|Vi, Vk)).
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Finally,

E(CijVk) = E(E(CijVk|Vi)) (16)

= E(E(Cij |Vi)E(Vk|Vi)) (17)

= E(ViE(Vk|Vi)) = E(E(ViVk|Vi)) = E(ViVk), (18)

using (13) and Definition 5(ii) to derive (16) and (17), respectively, and
properties of the conditional expectation to derive (18). Combining it all
yields E(dijdk`) = 0. Finally consider E(d2

ij) = E(C2
ij +V 2

i −2CijVi). Using
the definition of variance and Definition 5(ii), it follows that

E(C2
ij) = V ar(Cij) + E(Vi)

2 and E(V 2
i ) = V ar(Vi) + E(Vi)

2.

By conditioning on Vi and using Definition 5(ii) again, we have E(CijVi) =
−V ar(Vi) − E(Vi)

2. Using the linearity of the expectation it can be con-
cluded that E(d2

ij) = V ar(Cij)− V ar(Vi).

Proof of Theorem 4. Rewrite the definition of F2(i, j) using the decomposi-
tion of drift in (2),

F2(i, j) = E

[  ∑
γ1∈Γij

(
pγ1

∑
e1∈γ1

dγ1e1

) ∑
γ2∈Γij

(
pγ2

∑
e2∈γ2

dγ2e2

) ]. (19)

Distributing the products and exploiting the linearity of the expectation,
(19) is equivalent to

F2(i, j) =
∑

(γ1,γ2)∈Γij×Γij

∑
e1∈γ1

∑
e2∈γ2

pγ1pγ2E(dγ1e1d
γ2
e2 ),

=
∑

(e1,e2)∈Eij×Eij

∑
(γ1,γ2)∈Γ

e1
ij ×Γ

e2
ij

pγ1pγ2E(dγ1e1d
γ2
e2 ).

Observe that Eij is the disjoint union of Edij and Euij . Moreover, the product
of two distinct edges, where at least one is directed, has expectation zero,
see Lemma 1. Thus

F2(i, j) =
∑
e∈Edij

∑
(γ1,γ2)∈Γe

ij×Γe
ij

signγ1(e) signγ2(e)pγ1pγ2 E(d2
e)

+
∑

(e1,e2)∈Euij×Euij

∑
(γ1,γ2)∈Γ

e1
ij ×Γ

e2
ij

signγ1(e1) signγ2(e2) pγ1pγ2 E(de1de2)

=
∑
e∈Edij

A(i,j)
e E(d2

e) +
∑

(e1,e2)∈Euij×Euij

B(i,j)
e1,e2E(de1de2).
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Proof of Lemma 2. (i) Let i, j ∈ V and e ∈ E . Using Proposition 1,
Γe1ij ⊆ Γij and the definition of the sign function, it follows that

1 =
∑

γ1∈Γij

pγ1 ≥
∑

γ1∈Γ
e1
ij

pγ1 ≥
∑

γ1∈Γ
e1
ij

signγ1(e1)pγ1 . (20)

An analogous inequality holds by changing the sign of each term. The same
results apply to the pair of nodes k, ` ∈ V. Therefore

− 1 ≤
(∑

γ1∈Γ
e1
ij

signγ1(e1)pγ1
)(∑

γ2∈Γ
e2
k`

signγ2(e2)pγ2
)
≤ +1,

hence the statement is proved. (ii) The value of |B(i,j)(k,`)
e1,e2 | is 1 if and only

if each of the two factors of the B-coefficient assumes the value ±1. Equiv-
alently, (20) and the analogous with changed sign, has an equality for both
pairs of nodes (i, j) and (k, `). This is verified only under the conditions
contemplated in statement (ii), hence (ii) is proved. (iii) Observe that, if
two distinct a-paths of Γij share some edges, they must go through two dif-
ferent outgoing edges of a shared node, thus their path labels differ for at
least one edge label in their factorization. An analogous statement holds for
a-paths of Γk`. Hence there are no terms resulting from the product in (5)

that can sum to zero. Therefore it holds that B
(i,j)(k,`)
e1,e2 = 0 for all αe, e ∈ E ,

if and only if one of the two factors in (5) is equal to zero for all αe, e ∈ E
(see [4, p. 4]). Thus at least one of these factors is equal to zero [4, p. 510].
This condition is verified if and only if one or both sets Γe1ij and Γe2k` do not
contain any a-path.

Proof of Proposition 4. Assume that all a-paths of Γij pass through k, and
that i, j, k are all distinct, otherwise there is nothing to prove. By Lemma
5,

Γij = Γik × Γkj ,

where (γ, δ) ∈ Γik×Γkj denotes concatenation of γ and δ. By Lemma 1, we
have

Dij =
∑

η∈Γij

(
pη
∑

e∈η
dηe

)
=
∑

γ∈Γik

∑
δ∈Γkj

(
pγpδ

(∑
e∈γ

dγe +
∑

e∈δ
dδe

))
= Dik +Dkj ,

using Lemma 4, the definition of path label and drift. Hence D2
ij = D2

ik +

D2
kj + 2DikDkj . Note that no edge can be shared between γ ∈ Γik and

δ ∈ Γkj , as (γ, δ) ∈ Γij is an a-path. Similarly, there can at most be one
undirected edge in (γ, δ), hence by Lemma 1, E(DikDkj) = 0, and

F2(i, j) = E(D2
ij) = E(D2

ik) + E(D2
kj) = F2(i, k) + F2(k, j).
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For the reverse statement, assume there exists an a-path γ ∈ Γij that
does not pass through k, and assume that all a-paths of Γij start with an
edge of type i ← i′, for some i′ ∈ par(i), i.e. they are of type (a,b,c,d)
(see Table 1). Then there is at least one pair of a-paths γ1 ∈ Γik, γ2 ∈ Γkj
sharing edges. In fact, denote by δ1, δ2 the two subpaths of γ from i to k′

and from k′ to j, respectively. Here, k′ is the first node not having parents
in γ, so that δ1 is fixed as an a-path of type (a), whereas δ2 can be of type
(d) or (e). From Proposition 1, there is an a-path δ′1 ∈ Γk′k that can be of
any type. Let δ′2 ∈ Γkk′ be the reverse a-path of δ′1. It is possible to verify
by inspection that the concatenations γ1 = (δ1, δ

′
1), γ2 = (δ′2, δ2), are two

a-paths of Γik, Γkj , respectively, and share the edges of δ′1 and δ′2. With
an analogous construction, the same holds for the other possible types of
a-paths of Γij .

Since F2(i, j) = F2(i, k) + F2(k, j), then E(DikDkj) = 0. Note that

E(DikDkj) =
∑
γ1∈Γik
γ2∈Γkj

pγ1pγ2
∑

e∈Eik∩Ekj

signγ1(e)signγ2(e)E(d2
e)

=
∑
e∈E

( ∑
γ1∈Γik

signγ1(e)pγ1

)( ∑
γ2∈Γkj

signγ2(e)pγ2

)
E(d2

e)

where we have used the definition of sign and the linearity of expectation.
The expression is linear in E(d2

e), e ∈ E , hence if E(DikDkj) = 0 for arbitrary
(positive) values of E(d2

e), then the coefficient of E(d2
e), e ∈ E , is zero. The

argument in the proof of Lemma 2(iii) also applies here to conclude that
either of the two factors in the coefficient is zero. Since Γik 6= ∅ and Γkj 6= ∅
(assuming i, j, k are different), then signγ1(e) = signγ2(e) = 0, contradicting
the existence of a pair of overlapping a-paths. Therefore all a-paths of Γij
go through k.

Proof of Proposition 5. Assume F3−(i; j, k) 6= 0. Then there is at least

one edge e ∈ E for which A
(i,j)(i,k)
e− 6= 0. It follows that there is a pair of

a-paths (γ1, γ2) ∈ Γeij × Γeik such that signγ1(e) 6= signγ2(e). Let us consider
the possible combinations of two a-paths (γ1, γ2) ∈ Γij × Γik from Table
1, and verify for which pairs it is possible to have signγ1(e) 6= signγ2(e).
By inspection, it is immediate to verify that e has the same sign in the
combinations (a,a), (a,b), (a,c), (b,d), (d,d) (e,e). Combination (a,d) is
not possible, because i would be a root and an admixed node at the same
time. Combinations (a,e), (b,e), (c,e) and (d,e) imply that e /∈ Γeij ∩ Γeik.
There remains combinations (b,b), (b,c) and (c,c), that admit one or more
shared edges of opposite sign in the two paths. The opposite implication is

immediate by definition of F3−(i; j, k) and A
(i,j)(i,k)
e− .
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Proof of Proposition 6. We will prove a slightly stronger statement, namely

E(Vj(1− Vj′)) =
∑

(r,r′)∈R×R

Dj,j′

r,r′E(Vr(1− Vr′)), j, j′ ∈ V,

by induction on the block index (Appendix A), and where Dj,j′

r,r′ are non-
negative and sum to at most one over r, r′ for any j, j′.

First consider nodes j, j′ ∈ B1 = R. By defining Dj,j′

r,r′ = 1 if r = j,
r′ = j′, and zero otherwise, we have

E(Vj(1− Vj′)) =
∑

(r,r′)∈R×R

Dj,j′

r,r′E(Vr(1− Vr′)),

and the claim holds for j, j′ ∈ B1. Now assume the statement holds for
nodes in ∪mk=1Bk, m ≥ 1, and consider j, j′ ∈ ∪m+1

k=1 Bk such that at least one
of j, j′ is in Bm+1, say j ∈ Bm+1 (similar if j′ ∈ Bm+1). If j 6∈ B1 then

E(Vj(1− Vj′)) = E

 ∑
i∈par(j)

αijCij

1−
∑

i′∈par(j′)

αi′j′Ci′j′

 (21)

=
∑

(i,i′)∈par(j)×par(j′)

αijαi′j′E(Cij(1− Ci′j′)),

using that 1 =
∑

i′∈par(j′) αi′j′ . If (i, j) 6= (i′, j′) then E(Cij(1 − Ci′j′)) =
E(Vi(1 − Vi′)) by conditioning on (Vi, Vi′) and using Definition 5(iii). If
(i, j) = (i′, j′) then E(Cij(1 − Cij) = e−τijE(Vi(1 − Vi), where τij is the
population scaled time from i and j [12]. Define P (j, j′) = par(j)× par(j′).
Then

E(Vj(1− Vj′)) =
∑

(i,i′)∈P (j,j′)

e−τijδii′αijαi′j′E(Vi(1− Vi′))

=
∑

(i,i′)∈P (j,j′)

e−τijδii′αijαi′j′
∑

(r,r′)∈R×R

Di,i′

r,r′E(Vr(1− Vr′))

=
∑

(r,r′)∈R×R

 ∑
(i,i′)∈P (j,j′)

e−τijδii′αijαi′j′D
i,i′

r,r′E(Vr(1− Vr′))


=

∑
(r,r′)∈R×R

Dj,j′

r,r′E(Vr(1− Vr′))

where the second line holds by induction hypothesis since i, i′ ∈ ∪mk=1Bk,
δii′ = 1 if i = i′ and zero otherwise, and

Dj,j′

r,r′ =
∑

(i,i′)∈P (j,j′)

e−τijδii′αijαi′j′D
i,i′

r,r′ .
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It is easily seen that the constants above have the desired properties. If
j ∈ B1 (similar if j′ ∈ B1) then we do the same as above except only Vj′ is
replaced by a sum in (21). We obtain similarly to (21),

E(Vj(1− Vj′)) =
∑

i′∈par(j′)

αi′j′E(Vj(1− Ci′j′))

=
∑

i′∈par(j′)

αi′j′E(Vj(1− Vi′))

=
∑

i′∈par(j′)

αi′j′
∑

(r,r′)∈R×R

Dj,i′

r,r′E(Vr(1− Vr′))

=
∑

(r,r′)∈R×R

Dj,j′

r,r′E(Vr(1− Vr′)),

where
Dj,j′

r,r′ =
∑

i′∈par(j′)

αi′j′D
j,i′

r,r′ .

If j′ ∈ B1 then the role of j and j′ is reversed, yielding a similar answer. In
both cases the constants fulfil the desired requirements.

Letting j = j′ yields the desired result.
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