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Robust predictions of ecosystem responses to climate change are challenging. To

achieve such predictions, ecology has extensively relied on the assumption that

community states and dynamics are at equilibrium with climate. However, empirical

evidence from Quaternary and contemporary data suggest that species communities

rarely follow equilibrium dynamics with climate change. This discrepancy between the

conceptual foundation of many predictive models and observed community dynamics

casts doubts on our ability to successfully predict future community states. Here we

used community response diagrams (CRDs) to empirically investigate the occurrence

of different classes of disequilibrium responses in plant communities during the Late

Quaternary, and bird communities during modern climate warming in North America.

We documented a large variability in types of responses including alternate states,

suggesting that equilibrium dynamics are not the most common type of response to

climate change. Bird responses appeared less predictable to modern climate warming

than plant responses to Late Quaternary climate warming. Furthermore, we showed

that baseline climate gradients were a strong predictor of disequilibrium states, while

ecological factors such as species’ traits had a substantial, but inconsistent effect on the

deviation from equilibrium. We conclude that (1) complex temporal community dynamics

including stochastic responses, lags, and alternate states are common; (2) assuming

equilibrium dynamics to predict biodiversity responses to future climate changes may

lead to unsuccessful predictions.

Keywords: predictive ecology, global changes, anthropocene, holocene, plants, birds, equilibrium dynamics,

lagged responses

INTRODUCTION

Contemporary climate change impacts the dynamics of biodiversity (Parmesan, 2006; Steinbauer
et al., 2018) but our ability to predict these impacts remains limited. Many fields of ecology have
historically relied on the concept of equilibrium to study and forecast the responses of biodiversity
to climate change. The dynamic equilibrium hypothesis assumes that species distributions and
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assemblages reflect a climate niche optimum in which species
climate niches match the observed climate, and that changes in
climate induce changes in community composition or species
distribution to stay close to this equilibrium state with climate
(Webb, 1986; Prentice et al., 1991). This hypothesis assumes a
linear relationship between climate and species climate niches,
with limited presence of lags, threshold effects, stochastic
variations, and transient dynamics in biodiversity responses to
climate changes. These processes probably impair the community
responses expected from the equilibrium dynamics hypothesis
(Jackson and Overpeck, 2000; Krauss et al., 2010). There is
growing evidence that biotic responses observed in nature do
not match those expected under the assumption of dynamic
equilibrium with climate change (e.g., Devictor et al., 2012;
Svenning and Sandel, 2013; Ash et al., 2017).

The dynamic equilibrium hypothesis has provided the
conceptual foundation of most anticipatory predictions of
biodiversity responses to climate change (i.e., a prediction
intended to deduce future states from a given model, sensu
Mouquet et al., 2015). The underlying assumption is that species’
climate tolerances are constant over time (Pearman et al., 2008;
Wiens et al., 2010) and that species ranges reflects climatically
suitable areas (Leroux et al., 2013; Stephens et al., 2016).
Therefore, species ranges are expected to track climatic change
(Parmesan et al., 1999; La Sorte and Jetz, 2012), triggering local
turnover in community compositions based on species climate
tolerance (Devictor et al., 2008; Gaüzère et al., 2015). This is
supported by empirical results at multiple scales and in many
taxa. Some of the reported examples from the literature include
multi-taxon responses to Younger Dryas climate changes in
Switzerland (Birks and Ammann, 2000), woody species responses
to late Quaternary climate warming (Jackson and Overpeck,
2000); bird (Tingley et al., 2009) or marine taxa (Pinsky et al.,
2013) responses to modern climate change.

However, the relevance of the dynamic equilibrium hypothesis
has also been challenged. The assumption of species range-
climate associations is not strongly supported in all taxa (Jackson
and Overpeck, 2000; Beale et al., 2008); species might not be
able to keep up with the velocity of climate change (Devictor
et al., 2008; Bertrand et al., 2011; Svenning and Sandel, 2013); and
changes in available climatic space, habitats or biotic interactions
might affect expected responses to climate change (La Sorte and
Jetz, 2012; Maiorano et al., 2013; Wisz et al., 2013). In general,
ecological systemsmight intrinsically be unpredictable because of
their complexity and the amount of chaotic, neutral, or stochastic
processes impairing their dynamics (Petchey et al., 2015). In
consequence, climate change only partly explains the dynamics of
species and communities since the Last Glacial Maximum (Veloz
et al., 2012; Blois et al., 2013) or during modern climate change
(Zhu et al., 2012; Ash et al., 2017; Currie and Venne, 2017).While
most projected shifts in species distributions or biodiversity (e.g.,
Thuiller et al., 2011) have relied on equilibrium dynamics, there
is no general consensus about the taxonomic, spatial or temporal
scales at which this assumption is reasonable.

Delineating the limits of predictability and the presence of
non-linear responses is a critical prerequisite for advancing
predictive ecology in the Anthropocene (Mouquet et al., 2015).

Contemporary climate change highlights the increasing need
to forecast the future state of populations, communities and
ecosystems to better inform conservation strategies (Clark et al.,
2001; Mouquet et al., 2015; Petchey et al., 2015). While tools for
researching and communicating ecological predictability already
exist (Petchey et al., 2015; Blonder et al., 2017), there is still a
weak empirical understanding of when and why predictability
could be possible in communities (Blonder et al., 2018). The goal
of this study is to provide an empirical assessment of whether
and when anticipatory predictions of community responses to
climate change are a reachable goal.

While particular scenarios like equilibrium dynamic
responses might be predictable, other type of responses might
not. Different response scenarios such as constant-lag dynamics
or alternate stable states can lead to a deviation from equilibrium
with climate condition (Blonder et al., 2017). As a consequence,
no-lag or constant-relationship dynamics, where the community
response follows the observed climate with a fixed time delay,
are predictable. However, transient dynamics and alternate
unstable states are not predictable. While recent theoretical work
has identified and defined a broad range of possible scenarios
(Blonder et al., 2017), limited empirical work has explored the
presence of these different scenarios.

Here we address this gap by documenting the relationship
between temperature forcing and responses in community
composition within birds and terrestrial plants of North America.
We sought to delineate contexts in which predictability is
reachable by (i) investigating the response of plant communities
since the Last Glacial maximum (−21 Ka-present) and the
contemporary responses of bird communities to recent climate
changes (1970–2012C.E.), and (ii) understanding how the
predictability of community responses to climate change co-
varies with climatic gradients, human pressures, and dispersal-
related traits.

We studied community predictability (here defined as the
ability to provide anticipatory predictions of a community state
from climate observations or projections) via time series analyses
of the relationship between environmental forcing and the
community response. We use a newly developed framework in
which response scenarios are detected by sequentially plotting
time series of observed and community-inferred climate values,
the community response diagram (CRD) framework (Figure 1,
Blonder et al., 2017). CRDs can be used to detect deviations
between a climate forcing, such as temperature change, and
a corresponding community state response (Figure 1). First,
for a given site monitored through time (Figure 1A), the
community state is defined as the average niche temperature
value of all species composing a community at a given time
(Figure 1B). Community-inferred temperature is similar to a
community temperature index (Devictor et al., 2008; Lenoir
et al., 2013), a floristic temperature (De Frenne et al., 2013),
a coexistence interval (Mosbrugger and Utescher, 1997), or
an Ellenberg indicator value (Ellenberg and Mueller-Dombois,
1974). Secondly, these community responses are paired with
the observed climate change for a given site/time (Figure 1C).
A CRD is the sequential time series plot of community-
inferred temperatures and observed temperatures (Figure 1D).
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CRDs can be summarized using three statistics that provide
complementary insights into community dynamics (Figure 1E).
First, the absolute deviation, 3̄, depicts the time-average absolute
deviation of a community’s state from its expected state under
equilibrium with climate. If 3̄ = 0 then the observed community
follows a 1:1 relationship with climate. Second, the deviation
change, d3, measures the temporal change of the deviation
during the survey. It indicates whether and how much the
community gets further or closer to the equilibrium state
during the study period. If d3 6= 0 the expected community
response to climate varies across the time series. Third, the
maximum state number, n, counts the maximum number of
community climate states observed for a given temperature over
the period. When n > 1 there is more than one community
state for a given climate value. If there is only one value of
community-inferred temperature corresponding to each value
of observed temperature, then n = 1 (Figure 1D). When n =

1 the community has dynamics that can always be predicted
from knowledge of the observed temperature. If n > 1, more
than one community-inferred temperature value exists for a
given observed temperature value. It is therefore not possible
to predict the community’s state with knowledge only of the
observed temperature. From a CRD, the combination of the three
statistics characterizes different theoretical response scenarios
and quantifies different aspects of predictability (see Box 1).

We applied the CRD framework to species community data
in two contrasting settings, (i) the long-term dynamics of
plant communities during the Late Quaternary climate warming
(21 Ka–present) and (ii) the contemporary responses of bird
communities to recent temperature changes (1971–2012C.E.)
(Figure S1). We hypothesized that the short-term responses of
bird communities to Anthropocene climate change would exhibit
a lower predictability than the long-term thermal reshuffling
of plant communities during the late Quaternary, for three
reasons.

First, short-term variation might be harder to predict than
long-term changes because stochasticity is most predominant at
fine spatial and temporal scales (Levin, 1992). Second, short-
term resistance to unfavorable conditions (Fordham et al., 2016),
delayed effect of climate change via indirect effects (e.g., by
changing habitats or resource availability, Gaget et al., 2018) and
the time needed for species to track climate changes (Alexander
et al., 2018) are all expected to increase mismatch in community
responses to climate change. In contrast, changes in average
temperatures across longer time periods are expected to be
balanced with the regional species pools, due to an extended
period in which climate induced extinction and colonization
could occur (Webb, 1986; Holm and Svenning, 2014). Third,
birds might exhibit lower predictability because they are less
sensitive to climate change than plants. They have broader
thermal tolerances (Araújo et al., 2013), and the relevance of
dynamic equilibrium responses as a conceptual model to explain
birds responses to climate change is controversial. For example,
their realized niche may not necessarily match the observed
climate (Beale et al., 2008). Evidence of breeding bird responses to
recent climate change are mixed and appear highly idiosyncratic
(Stephens et al., 2016; Currie and Venne, 2017).

FIGURE 1 | Summary of the community response diagram (CRD) framework.

Data on community composition of a given site through time (A) are used to

(Continued)

Frontiers in Ecology and Evolution | www.frontiersin.org 3 November 2018 | Volume 6 | Article 186

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Gaüzère et al. Disequilibrium Dynamics and Climate Change

FIGURE 1 | estimate the community-inferred temperature through time (B).

Climatic data are used to extract observed temperature of the site through

time (C), and the community-inferred temperature through time. These time

series are combined in a time-implicit parametric plot to build the CRD (D). For

each time bin, deviation from the 1:1 line value and the number of

community-inferred value existing for each observed temperature value are

used to compute three statistics (E) summarizing different aspects of

predictability.

We also hypothesized that different aspects of community
predictability will be structured by environmental and ecological
factors, yielding the following predictions:

• More extreme temperature (warm or cold) are linked to
stronger disequilibrium in community responses to climate
change, with low 3̄, negative to null d3 and n = 1. In the
coldest (northern) and warmest (southern) areas of North
America, regional species pools might not provide climate-
adapted species to local communities (Bertrand et al., 2016)
and therefore limit their response to temperature change
(Blonder et al., 2015)

• Complex topography is linked to higher predictability, with
low 3̄, negative to null d3 and n = 1. In mountainous
terrain, we expect strong variation of temperature within small
distances to lower the perceived velocity of large scale climate
change (Loarie et al., 2009) and therefore increase community
thermal response (Bertrand et al., 2011; Gaüzère et al., 2017).

• Human impact is linked to lower predictability, with strong
3̄, low d3 and n > 1. Human impact (i.e., direct
exploitation, species introduction, and land conversion)
influences community dynamics and also the predictability of
community responses to climate change (Maxwell et al., 2016;
Bowler and Böhning-Gaese, 2017; Gaget et al., 2018).

Beyond these external factors, we expect biological intrinsic
factors to influence community predictability. Assuming that the
community mean reflects the local species pool, we predict that:

• Species characteristics increasing dispersal ability are linked to
higher predictability, with low 3̄, negative to null d3 and n
= 1. Communities consisting of species with a high dispersal
potential (lower seed mass, migrant species) respond quickly
to climate change (Jenni and Kéry, 2003; Svenning and Skov,
2007).

• Species characteristics increasing persistence in unfavorable
environments are linked to lower predictability, with strong
3̄, c. null d3 and n > 1. Life history traits such as longevity,
adult height or bodymass increase resistance and persistence
to unfavorable climate conditions, therefore decrease the
predictability of community.

METHODS

Data
Community Data
Plant assemblage composition data across the Late Quaternary
and Holocene (21 Ka–present) were compiled from the Neotoma
paleoecology database (Goring et al., 2015), relying on the fossil

pollen data sets used inMaguire et al. (2016). Sites represent high-
quality assemblages and were primarily located in eastern North
America. We used Blois et al. (2011) selection of sites and revised
chronologies. Pollen assemblages obtained from lake sediments
can provide a rough proxy for the composition of communities,
despite issues on spatial and taxonomical scale integration,
species abundance vs. pollen abundance, and detectability of
rare taxa (Birks and Seppä, 2004). These issues might influence
the quantification of disequilibrium state because rarer taxa
with lower dispersal abilities might be undetected. More details
on the data processing, spatial and temporal distributions of
site are provided in Figure S1. The overall process yielded a
presence/absence dataset comprising 425 sites, 103 plant taxa,
and 45 time bins (500 yr each) spanning 21 Ka–present.

Bird assemblage composition across the last 50 years were
compiled from the North American Breeding Bird Survey (BBS,
Sauer et al., 2013, data and protocol at http://www.pwrc.usgs.gov/
bbs/). We used data processed from Barnagaud et al. (2017): first-
year observer effects were removed by excluding the first survey
performed by a given observer on a given route. The dataset
was restricted to 807 routes monitored at least 8 years and once
every 5 years during the 1970–2011 period. Coastal, pelagic and
species which accounted together for <1% of the records were
not taken into account (87 species). The overall process yielded
an abundance dataset comprising 807 routes for up to 435 birds
species over 43 years. More details on the data processing, spatial
and temporal distributions of the sites are provided in Figure S1.

Temperature Data

Temperature time series in North-America
Paleoclimate time-series data were obtained from SynTraCE-21,
a set of transient simulations runs using the CCSM3 model (Liu
et al., 2009), with decadal averages stored from 22 Ka to the
present. These simulations are reasonably congruent with site-
based climate reconstruction (Harrison et al., 2014). Simulations
were statistically downscaled to a 0.5◦ by 0.5◦ grid cell following
the CRU TS 3.20 dataset, and then for every 500 years from 21
to 0 Ka, average maximum temperature was calculated based on
a 200 year window centered on the 500 year time step (Lorenz
et al., 2016).

Contemporary temperature time-series data were extracted
from the Parameter Regression of Independent Slope Model
(PRISM) (Oregon Climate Service, Corvallis, OR, USA) for
the continental United States (Daly et al., 2000). Both climate
datasets were created using point meteorological station data,
digital elevation models, and other spatial data sets to generate
interpolated gridded estimates of monthly, yearly and event-
based climatic parameters. Maps had a spatial resolution of 2.5
arcmin (∼3 km cell size at this latitude), as generated by PRISM
(Daly et al., 2000).

Global temperature contemporary distribution
Spatial global temperature data used to estimate climate niches
(see below) were extracted from WorldClim (http://worldclim.
org/version2) raster at 2.5min of a degree resolution (Fick and
Hijmans, 2017). WorldClim rasters at 2.5min degree provide the
best independent descriptors available at global scale, despite the
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Box 1 | Response scenarios between species communities and climatic conditions expected from theory, compiled from Blonder et al. (2017).

1. No-lag scenario

The climate preferences of species in a given community closely match the observed climate. Changes in climate causes an immediate change in community

composition so that the climate preference of the present species matches the new climatic conditions.

Expected statistic values : 3̄ → 0; d3 → 0; n=1

2. Constant-relationship

The community response to climate change has a one-to-one mapping such that the assemblage of species has a unique climatic preference for any observed

climate value.

Expected statistic values : 3̄ > 0; d3 → −∞; n=1

3. Constant-lag

The climate preference of a community follows the observed climate with a fixed time delay. When the response to climate change is linear, this scenario reduce

to the constant-relationship scenario. In other cases, the lag could follow a periodic function or the future response of the system might depend on its past history,

e.g., via memory effects (hysteresis).

Expected statistic values : 3̄ > 0; d3 → 0; n=1

4. Alternate unstable states

A generalization of the constant-lag scenario in which the community shows memory effects and the future response to climate depends on the past state of the

system. In this scenario, community dynamics follow the observed climate with a variable delay and magnitude. Under such conditions several species assemblages

with similar climate preference combinations could occur together with a single value of observed climate. Thus, the future dynamics of the community cannot be

predicted only by knowing the current community state.

Expected statistic values : 3̄ > 0; d3 → 0; n=2

5. Stochastic or chaotic dynamics

Community dynamics are uncorrelated with the observed climate, for example due to stochastic dynamics. As a consequence, many species assemblages with

different climate preferences might occur at a given observed climate value.

Expected statistic values : 3̄ > 0; d3 → 0; n > 1

uncertainty and error associated with the values (Hijmans et al.,
2005). We used the 2.5min degree resolution spatial resolution
(this is about 4.5 km at the equator) in order to erase micro-
climatic variations and local characteristics of the habitat when
inferring species thermal niches.

Climate Niches
We inferred realized plant climate niches for mean maximum
temperature for each taxon using independent contemporary
occurrence data for each species or genus in the paleo-
community dataset from the BIEN3 database. We choose
maximum temperature as a unique climatic niche axis because
it is a strong predictor of the species’ responses to temperature
increase (Jiguet et al., 2007; Lorenz et al., 2016; Maguire
et al., 2016). Note that maximum temperature was strongly
correlated with mean temperature and minimum temperature
in both paleo and contemporary temperature data (correlation
coefficients ranging from 0.89 to 0.98). BIEN3 contains more
than 30,000,000 geo-referenced vascular plant observations
(Enquist et al., 2009) from a much broader geographic
scope than represented by the pollen dataset. Contemporary
occurrence data were filtered to include only New World
records that did not come from cultivated areas. Genus-level
distributions were pooled for taxa with multiple names (e.g.,
“Ostrya/Carpinus”). For each taxa, we estimated the niche
maximum temperature value as the mean of the average
monthly maximum temperature values (◦C, extracted from the
WorldClim raster) over all sites where the taxa was detected.
Such realized-niche estimates can be affected by sampling
bias, but have the benefit of being estimable from broad-scale

and commonly available presence-only data. To ensure that
sampling bias does not affect our estimates, we tested the
correlation between species’ thermal niches estimated from raw
data bounded to the 95% confidence interval (i.e., incorporating
the density of sampling) with species’ thermal niches sampled
from a uniform distribution bounded to the 95% confidence
interval of real distribution (i.e., without sampling density).
A Pearson’s product-moment correlation test showed a strong
positive correlation between species thermal niches estimated
from the different approaches (correlation coefficient ± CI =
0.9967 ± 0.001, t = 120.32, df = 97, p < 0.0001). We concluded
that spatial sampling bias is unlikely to affect thermal niche
estimates.

We recognize that realized niches for plants may shift
over 103–104 year timescales (Veloz et al., 2012). To check
the correlation between paleo and modern niches estimations,
we investigated the relationships between paleo-inferred and
contemporary-inferred climate niches (Figure S2) and showed
that they were closely related (Pearson’s correlation coefficient =
0.96, t = 39.9, df= 94, P < 0.0001).

We inferred American bird species’ thermal niches by clipping
their global extent of occurrence maps onto temperature layers
from WorldClim. We used an independent dataset combining
global extent-of-occurrence maps for 9,886 bird species (Bird
Life International Handbook of the Birds of the World, 2017).
BirdLife’s species range maps are produced to provide robust,
reliable geographic extents of a species range. They are used
to present bird distributions on the BirdLife Datazone, the
IUCN Red List website and for assessment of individual species
Red List status (Bird Life International Handbook of the
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Birds of the World, 2017). These data have been compiled
from multiple sources, including specimens, distribution atlases,
survey reports, published literature, and expert opinion, and
currently represent the most comprehensive assessment of
global bird species occurrences. BirdLife International and HBW
endeavor to maintain clean, accurate, and up-to-date data at all
times. However, such vector maps do not contain within-range
heterogeneity in species’ presence, and errors on range margins
might be present, especially on ill-sampled avifaunas (Herkt
et al., 2017). For each taxon, we estimated the niche maximum
temperature value as the breeding-season (May, June, July)
average monthly maximum temperature values (◦C, extracted
from the WorldClim raster) over the breeding distribution range
of taxa.

Community Response Diagrams
We used community-inferred temperatures and observed
temperatures to build CRDs for the plant and bird datasets, as
shown in Figure 1.

First, we computed community-inferred temperature values
using the climate niches previously inferred via the species
distribution data. For each site monitored at a given time, the
community-inferred temperature corresponds to the average
climate niche value of all species present in a community.
community-inferred temperature was calculated as the average
maximum temperature niche value of all species present in a
community. We also computed the standard deviation associated
with each community-inferred community value.

For birds, we additionally calculated community-inferred
temperature based on the abundance-weighted mean of
specie’s maximum temperature values. This method takes
into account the relative abundance of each species in the
community and could provide a more sensitive estimation on
community-inferred temperature change. Abundance weighted
community-inferred temperatures were strongly correlated to
estimates based on occurrence only (see Figure S3, Pearson’s
correlation coefficient = 0.95, t = 540.94, df = 32264, P <

0.0001). We therefore used occurrence-based community-
inferred temperature in order to increase the comparability of
results between plants and birds.

We then extracted observed maximum temperature for each
site and each time bin from paleoclimate and modern time-series
data (see Data subsection). In order to reduce the inter-annual
variability and temporal stochasticity that might undermine the
identification of community and climate dynamics, we smoothed
community-inferred and observed temperature times series by
using Local Polynomial Regression Fitting (LOESS). LOESS was
performed for each time series independently using the loess
{stats} R function with an α span of 0.75.

Finally, we built CRDs for each site by sequentially plotting
raw and smoothed time series of observed and community-
inferred climate values, as shown in Figure 1D. We used CRDs to
estimate three complementary statistics depicting predictability
of community responses to climate change. For each CRD, the
absolute deviation, 3̄, was calculated as the absolute value of
the average deviation, where the deviation is calculated, for
each time value, as the difference between the smoothed value

of community-inferred temperature and the smoothed value
of observed temperature (Figure 1D). The deviation change,
d3, was calculated as the difference of deviation between the
last and the first time bin of the CRD, divided by the overall
timespan of the CRD. The state number, n, was calculated as the
number of smoothed community-inferred temperature values
(y-axis in CRD) that correspond to a given single value of
observed temperature (x-axis in CRD). n counts the number
of times a vertical line on the diagram crosses the community-
inferred temperature trajectory. Temporal stochasticity and
sampling error tend to inflate the state number n through
the detection of more than one community state which are
statistically not different. To correct for this false detection
of n > 1, we tested for the difference between community-
inferred temperature values by comparing the difference between
95% confidence interval associated to each community-inferred
value. If the 95% confidence interval were overlapping, we
inferred that the community-inferred temperature values could
not be differentiated, and reduced n by 1 (further called
corrected n). More details, formalization, and simulations of
CRDs are provided in Blonder et al. (2017). R scripts and
functions used to compute these summary statistics and other
descriptive metrics can be found at https://github.com/pgauzere/
Predictability_CRD.

Predictors
For both plants and birds, we gathered a set of five explanatory
variables associated to community responses to changes in
temperature: two abiotic variables (i.e., baseline temperature
and topography), one variable related to human influence on
ecosystems (i.e., paleo human density for plants, contemporary
human influence index for birds), and two variables related to
species characteristics known to influence tracking and resistance
processes (i.e., seed mass and plant height for plants, body mass,
and migration for birds). The distributions and mapping of
predictors variables are shown in Figure S4. Note that none
of our pairs of predictors were strongly correlated (maximum
correlation coefficient was 0.41 for baseline climate-topography).

Baseline Temperature
To test for the effect of climate on community predictability, we
extracted the baseline maximum temperature of each site as the
first observed maximum temperature value recorded for a given
site. See Temperature Data section.

Topography
To estimate topography, we extracted digital elevation data
(DEMs) from the NASA Shuttle Radar Topographic Mission
(SRTM). The NASA SRTM provides elevation as 3 arc second
(∼90m) resolution. For each site, we calculated a topography
index as the difference between highest and lowest elevation
within a 50 km buffer around the site. We tested the influence
of the buffer size on our estimate by computing topography on
100 and 150 km buffer and comparing these values to the 50 km
buffer.
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Human Imprint on Ecosystems
To estimate the human imprint on ecosystems over the
Holocene period, we obtained population density data over
the Holocene for the period ranging from 21 to 0 Ka from
the HYDE 3.2 database (Klein Goldewijk et al., 2011). These
data are chosen to provide an approximate proxy for the
upper bound of human impacts on communities across the
last 21 Ka. We extracted population density value for each
site from Neotoma dataset. To estimate the contemporary
human imprint on ecosystems, we used the Global Human
Influence Index (HII) from the NASA Socioeconomic Data and
Applications Center. This index estimates the direct human
footprint on ecosystems (Sanderson et al., 2002) as a proxy
of recent human pressure on biodiversity. HII incorporates
nine global data layers corresponding to population density,
human land use, infrastructure, and human access. We extracted
HII values for each site from BBS dataset using the raster
library.

Species Characteristics
For plants, we computed the community mean seed mass and
plant height (Honnay et al., 2002; Matlack, 2005; Normand et al.,
2011) using traits values compiled from the TRY database (Kattge
et al., 2011). For birds, we used mean body mass and the percent
of migrants of each community (Jiguet et al., 2007; Angert et al.,
2011) using traits from the Encyclopedia Of Life (http://www.
eol.org), the Animal Diversity Web (http://www.animaldiversity.
org) and the field guide to North American birds (Sibley, 2014)
previously compiled in Barnagaud et al. (2017).

Statistical Analysis
We tested the effect of our set of predictors on each CRD
summary statistic by implementing generalized additive models
(GAM). We ran six models in which each statistic was
the response variable (3̄, d3, and n. for both plants and
birds) regressed over a set of five predictors (for plants:
baseline climate, topography, human density, mean seed mass,
means plant height; for birds: baseline climate, topography,
human influence index, mean body mass, percent of migrant
species). We estimated the linear effect of each predictor,
and added a two-dimensional spline based on geographic
coordinates in order to account for spatial autocorrelation
(Wood, 2006). Because we predicted the effect of baseline
climate to occur at coldest and warmest conditions, our
models included both linear and quadratic terms for baseline
climate. Because state number (n) values take positive integer
values, we used Poisson GAMs to analyze these data. Strong
outliers corresponding to site with very low number of taxa,
or strong variations of number of taxa through time were
deleted for the analysis (between one and five points depending
on models). P-values reported for parametric and smoothed
model terms were based on Wald tests. All analyses were
performed using the mgcv library in R statistical software
(R Development Core Team, 2013). The code written for
data analysis can be accessed at https://github.com/pgauzere/
Predictability_CRD.

RESULTS

We found strong support for disequilibrium dynamics in both
plant and bird responses to climate change. We described a
wide variation in the type of community dynamics, with CRD
depicting potential evidence for all scenarios listed inBox 1. CRD
for a few representative communities are shown in Figure 2. All
CRDs, along with associated time series and statistics values are
shown in Figure S5.

The main component explaining the three summary statistics
from the CRD was baseline climate. In the multivariate models,
baseline climate was consistently related to variations of CRD
statistics (baseline climate has a significant effect on statistics in
five over six GAMs performed, Figure 2). Apart from baseline
climate, no clear general pattern emerged from other predictors.
The geographic two-dimensional splines smooth terms included
in the model substantially increased the fit of the models for the
absolute deviation and the deviation change but did not increase
the fit of the model for maximum state number. Overall, our set
of predictors explained from 20.9 to 80.5% of the deviance (apart
from n for birds).

Plants
Scenarios of Responses
Plant communities generally exhibited lagged monotonic
and positive relationship between inferred and observed
temperatures during the last 21 Ka. A few communities (2.4%)
showed no-lag (or low-lag) dynamics, where relationships
between inferred community and observed temperature are
linear and close to the 1:1 line. These communities were
characterized by 3̄<5◦C, −2 < d3 < 2◦C.Ka−1, and n = 1
(Figure 2A). Many communities (60.0%) showed approximately
constant-relationship dynamics, where increases in temperature
lead tomonotonic and non-linear change in community-inferred
temperature. These communities were characterized by 3̄>5◦C,
d3 <0◦C.Ka−1 and n = 1 (Figure 2B). In plant communities,
a particular constant-relationship dynamic was commonly
observed. It was characterized by communities having strong
baseline deviation from climatic equilibrium that did not exhibit
substantial variation in community-inferred temperature while
observed temperature strongly increased. Such dynamics led
to a strong decrease in deviation through time (Figure 2B).
Some communities (23.0%) showed approximately constant-
lag dynamics with partial or complete loops (Figure 2C) or
stochastic dynamics (Figure 2D). These communities were
characterized by−2 < d3 < 2◦C.Ka−1 and n >1 (Figure 2C).

Summary Statistics
Generally, plant communities did show a large deviation between
observed and inferred climate (3̄ = 8.37 ± 3.4 ◦C [mean ±

sd], Figure 3) and did not follow a 1:1 equilibrium state with
climate. 3̄ values were structured in space, with high values of
3̄ at northern and southern latitudes and lower 3̄(< 5◦C, see
Figure 3) at mid latitudes. Across the study sites this deviance
from equilibrium was constant through the last 21 Ka (d3 =

−0.54± 0.63 ◦C.Ka−1). However,∼85% of the communities did
show negative d3 values (suggesting that the amount of climate
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FIGURE 2 | Examples of representative community response diagrams (CRD). Representative CRD from plant community responses during Late Quaternary climate

change (top, A–D) and birds community responses between 1966 and 2011 (C,E) (bottom, E–H). For each CRD, community-inferred maximum temperature (y-axis) is

plotted over observed maximum temperature in a time-implicit diagram. Gray points and bars are raw mean values with associated standard deviations. Red lines are

smoothed values used to compute statistics. Black lines are 1:1 relationship, dotted black lines represent the linear regression of the smoothed values. Name of the

site and summary statistics are reported at the top of each panel, abs.Dev = absolute deviation 3̄, dev.change = deviation change d3, n = maximum state number n.

disequilibrium did decrease at these sites). Low d3 values did
peak at mid latitudes (Figure 3). The maximum state number n
ranged from 1 to 4. 24.5% of the sites had more than one state
number for a specific observed temperature temperature during
the time series. Thus, in a quarter of the communities the inferred
temperature value can have multiple values for a single observed
temperature. Maximum state number n tended to peak in boreal
latitudes.

Factors Structuring Equilibrium Dynamics
Absolute deviation 3̄ decreased with increasing baseline
temperature (Baseline.Climate coefficient = −1.34 ± 0.089
[mean ± Standard Error], z = −15.02, ∗∗∗P < 0.001,
Figure 4A left panel), with saturation on warmest conditions
(Baseline Climate2 coefficient = 0.49 ± 0.09, z = 5.71,
∗∗∗P < 0.001, Figure 4A left panel). 3̄ also decreased with
increasing mean plant height (Plant height coefficient =

−0.32 ± 0.10, z = −3.02, ∗∗P < 0.001, Figure 4A left panel).
The geographic splines smooth terms were significantly
improving the fit of the model (edf = 33.8, F = 21.82,
∗∗∗P< 0.001). The full model (i.e., including a 2-dimensional
spline based on geographic coordinates) explained 92.8%
of the deviance, excluding the geographical spline reduced

the explained deviance to 70.2%. Thus, deviation from
equilibrium state was generally higher for plant communities
situated in coldest areas and composed of shortest plant
species.

Deviation change d3 increased with baseline temperature
(Baseline.Climate coefficient = 0.34 ± 0.019 SE, z = 21.45, ∗∗P
< 0.001, Figure 4A mid panel), with saturation on warmest
conditions (Baseline.Climate2 coefficient = −0.09 ± 0.09 SE, z
= 4.97, ∗∗∗P < 0.001, Figure 4A mid panel). d3 also slightly
increased with increasing mean seed mass (Seed.mass coefficient
= 0.07± 0.03 SE, z= 2.13, ∗P < 0.05, Figure 4Amid panel). The
geographic splines smooth terms were significantly improving
the fit of the model (edf = 26.32, F = 6.94, ∗∗∗P < 0.001).
The full model explained 84.1% of the deviance (51.3% without
geographical spline). Thus, deviation from equilibrium state
increase through time for plant communities situated in warmer
areas.

Maximum state number n increased with increasing baseline
temperature (Baseline.Climate coefficient= 0.14± 0.06, z= 2.39,
∗P< 0.05, Figure 4A right panel). The geographic splines smooth
terms did not improve the fit of the model (edf = 3.59, Chi.sq =

5.076, P = 0.17). The full model explained 34.4% of the deviance
(20.9% without geographic splines).
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FIGURE 3 | Distributions (left panels) and maps (right panels) of summary statistics (A,B: absolute deviation 3̄; C,D: deviation change d3; E,F: maximum state

number, n) estimated from CRD for plants (A,C,E) and birds (B,D,F). Colors correspond to the statistics value, as shown in distributions. Broken black lines represent

expectation from no-lag scenario.
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FIGURE 4 | Effect of predictors on plant (A) and bird (B) summary statistics (absolute deviation 3̄, left panel; deviation change d3, middle panel, maximum state

number n, right panel), estimated as linear coefficients (± 95% confidence intervals) from generalized additive mixed models. Topography and Human Density were

square-root transformed. All predictors were scaled to mean = 0 and SD = 1 prior to modeling to ease comparisons. Point and bar colors indicate the significance

level associated to the test (light green: non-significant; light blue: significant at α = 5%; dark blue: significant at α = 1%).

Birds
Scenarios of Responses
Bird communities generally exhibited non-directional and
stochastic dynamics in climate responses between 1966 and
2011. A few communities (1.4%) showed no-mismatch or
low-mismatch dynamics, where relationships between inferred
community and observed temperature are linear and close to the

1:1 line. These communities were characterized by 3̄<2◦C, −20
< d3 < 20◦C.Ka−1, and n = 1 (Figure 2E). A few communities
(3.4%) showed approximately constant-relationship dynamics,
where increases in temperature lead tomonotonic and non-linear
change in community-inferred temperature. These communities
were characterized by 3̄>2◦C, d3 < −20◦C.Ka−1 and n =

1 (Figure 2F). A few communities (2%) showed approximately
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constant-lag or stochastic dynamics with partial or complete
loops. These communities were characterized by −20 < d3
< 20◦C.Ka−1, and n >1 (Figure 2G). However, many bird
communities (c. 60%) exhibited non-directional and stochastic
dynamics of response to observed temperatures (strong absolute
deviation and low deviation change) with n = 1 (Figure 2H).
Such stochastic dynamics associated with low state number are
mainly due to the correction applied to the estimation of n, and
are hard to identify (see Figure S4).

Summary Statistics
Bird communities showed a consistent deviation from climate
equilibrium (3̄ = 2.41 ± 1.86◦C, Figure 3). 3̄ was structured
in space, with higher values of 3̄ in the south-eastern part of
North America. On average, equilibrium states did not change
in the bird communities between 1966 and 2011 (d3 =10.06 ±

19.64◦C.Ka−1). However, 73.2% of the sites did show positive d3
values (e.g., an increase in climatic disequilibrium). The lowest
negative values of d3 were present in Western North America,
while positive values were generally distributed in south-eastern
North America.

Ninety-eight percent of the sites had amaximum state number
n= 1, indicating that predictability is reachable for a large part of
the communities. However, over this interval there was limited
directional change in climate (see CRD), which would also be
consistent with slow but stochastic dynamics. The low n value was
mainly due to the correction we applied to take into account the
strong stochasticity associated with these dynamics (see sections
Methods-Community Response Diagrams and Discussion). On
average, the uncorrected n value was strong (mean ± sd = 3.2 ±
0.76), with 99% of sites having n > 1 and 88% of sites having n >

2. The max state number n did not exhibit any spatial pattern.

Factors Structuring Equilibrium Dynamics
Absolute deviation 3̄ increased with increasing baseline
temperature (Baseline.Climate coefficient = 1.17 ± 0.054 SE, z
= 21.51, P < 0.001∗∗, Figure 4B, left panel), with saturation
on coldest conditions (Baseline.Climate2 coefficient = 0.54 ±

0.0304, z = 14.19, P < 0.001∗∗∗, Figure 4B, left panel). 3̄

increased with decreasing topography (Topography coefficient
= −0.16 ± 0.045, z = −3.72, ∗∗∗P < 0.001) and increasing
mean body mass (Body mass coefficient = 0.106 ± 0.0275 SE,
z = 4.12, ∗∗∗P < 0.001). The geographic splines smooth terms
were significantly improving the fit of the model (edf = 45.26, F
= 26.79, ∗∗∗P < 0.001). The full model explained 93.4% of the
deviance (81.6% without geographical spline). Overall, deviation
from equilibrium state was generally higher for bird communities
situated in warmer and mountainous areas with high human
influence and those composed of larger species.

Deviation change d3 decreased with increasing baseline
temperature (Baseline.Climate coefficient = −8.45 ± 1.62, z =

−6.13, ∗∗∗P < 0.001, Figure 4A, mid panel). Furthermore, d3
slightly decreased (effect significant at α = 10%) with increasing
topography (Topography coefficient=−2.33± 1.31, z=−1.77,
P = 0.076 ns). The geographic splines smooth terms were
significantly improving the fit of themodel (edf= 40.97, F= 5.84,
∗∗∗P < 0.001). The full model explained 44.5% of the deviance

(17.7% without geographical spline). Deviation from equilibrium
state decreased through time for bird communities situated in
warmer, mountainous areas, and composed of higher proportion
of migratory birds.

Maximum state number n was not related with any of
our predictors (Figure 4B, right panel). The geographic splines
smooth terms were not improving the fit of the model (edf =
0, Chi.sq = 0, P = 1). The full model explained 2.3% of the
deviance (1% without geographical spline).

DISCUSSION

We explored the limits and the determinants of predictability
in community responses to climate change in bird and plant
assemblages using CRDs. Currently, anticipatory prediction of
biodiversity responses to climate change have considered a
limited range of dynamics, relying on predictable relationships
between species or community dynamics and climate change.
While the no-lag equilibrium hypothesis is the implicit
foundation of species distribution modeling (Peterson et al.,
2011), only recent extensions of this method has successfully
considered constant lag or constant relationship by incorporating
dispersal limitation and/or properties of species assemblages
(Guisan and Rahbek, 2011; Zurell et al., 2016). We here provided
potential evidence for all types of community dynamics (see
Box 1), including unpredictable dynamics (e.g., alternate states
and stochastic dynamics) which are often not considered in
current modeling approaches. Our work suggests that the current
understanding of community dynamics in relation to climate
change is oversimplified. Among the responses described in our
study, equilibrium dynamics were the exception rather than
the norm. This result challenges the equilibrium dynamic as
the fundamental concept for predictive models of biodiversity
response to climate change.

Along with the equilibrium dynamics hypothesis, the space-
for-time substitution approach has often been used to predict the
effects of climate change on biodiversity. Although this assumed
equivalence may be relevant in situations where equilibrium
dynamics prevails (Walker et al., 2010), many studies have
emphasized substantial differences between spatial and temporal
responses (Johnson and Miyanishi, 2008). Our work suggests
that because many community dynamics are diverging from
equilibrium, the space-for-time substitution approach should be
used with caution to infer future community state. Temporal
dynamics might provide fundamentally different insights than
spatial patterns (Bonthoux et al., 2013; Bjorkman et al., 2018).
While ecology is undergoing a major transformation to leverage
and synthesizemore spatial datasets (Hampton et al., 2013), time-
series data and analysis are more than ever needed to reach
a better understanding and predictability of non-equilibrium
biodiversity responses to climate change.

For plants, the most common type of dynamics reported were
constant-relationship scenarios. Such dynamics were impaired
with strong lagged responses. The current distribution of North
American plants are heavily affected by climatic conditions
at the Last Glacial Maximum (Ordonez, 2013), and plants
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are known to show dispersal lags in post-glaciated areas
(Normand et al., 2011). This explains the persistence of
deviation in responses between observed and inferred climate
in North American plant communities across the last 21 Ka.
Constant-relationship scenarios responses might be predictable
by modeling approaches considering dispersal and community
assembly rules (Guisan and Rahbek, 2011). However, almost
a quarter of the plant communities exhibited unpredictable
dynamics such as constant-lag and alternate stable states.

Bird communities mainly exhibited unpredictable dynamics.
Community dynamics appeared stochastic, and often
uncorrelated with the observed climate. Despite the fact
that maximum temperature change was generally not strong or
directional (see Figure S5), the complex disequilibrium observed
in bird communities compared to the plant communities is
in line with our expectations. Two reasons can explain the
stochasticity observed in bird responses to modern climate
change. Firstly, climatic determinism of northern hemisphere
bird communities is questionable (Beale et al., 2008; Currie and
Venne, 2017). For example, broad thermal tolerances (Araújo
et al., 2013) and phenological responses (Stenseth et al., 2002;
Dunn and Winkler, 2010) might buffer the impact of moderate
temperature changes on communities dynamics (Gaüzère et al.,
2015). Moreover, bird sensitivity to habitat changes probably
influences community-inferred temperatures (Clavero et al.,
2011; Barnagaud et al., 2013) and overrides the direct effect
of climate warming on community dynamics (Eglington and
Pearce-Higgins, 2012; Gaget et al., 2018).

Secondly, short-term variationmight be harder to predict than
long-term changes because stochastic variability is predominant
at fine spatial and temporal scales (Levin, 1992). However,
consistent short-term directional changes in bird community-
inferred temperature have been reported at continental (Devictor
et al., 2012; Princé and Zuckerberg, 2015), national (Devictor
et al., 2008), and landscape scales (Gaüzère et al., 2015).
Our results showed that local-scale changes in community-
inferred temperature were not consistently related to observed
temperature change. The scale of effect is defined as the scale
at which an environmental attribute has the strongest effect on
inferred species-environment relationship. While it is known as
a strong determinant of explanatory predictions (Holland et al.,
2004; de Knegt et al., 2010), many empirical studies might not be
conducted at the appropriate spatial scales (Jackson and Fahrig,
2015). Hence, we can hypothesize that the low predictability
exhibited by breeding bird communities might be due to the
weak climatic determinism of bird community dynamics at local
scale. This suggest that using equilibrium dynamics hypothesis as
a conceptual model to predict biodiversity responses to climate
change requires caution. We argue that a careful assessment of
climate determinism focused on the taxon and the scale of study
is a prerequisite for successful anticipatory predictions.

We also showed that some aspects of predictability—absolute
deviation from climate equilibrium and deviation change—
were structured by environmental or ecological factors, while
others—number of alternate states—were not. We expected
community predictability to decrease with thermal severity. Our
results showed that absolute deviation of plant communities

was decreasing with temperature, with a curvilinear relationship
showing a plateau on warmest values. Conversely, absolute
deviation for birds was increasing with increasing temperature
before reaching a plateau. This apparent discrepancy between
plants and birds is linked to the distribution of Neotoma and
BBS sites. Neotoma sites are distributed in northwestern Nearctic
margin and are therefore colder than BBS sites distributed
in southern Nearctic margin. Merging the BBS and Neotoma
estimates showed a quadratic relationship between absolute
deviation and baseline temperature (Figure S6). As expected,
overall absolute deviation increased with coldest and warmest
temperature. The consistent effect of baseline climate between
taxa and spatial scale suggest a strong regional-scale determinism
of predictability, structured by the diversity of realized thermal
niches in the regional species pool. In France, Bertrand et al.
(2016) already reported a strong effect of baseline temperature
on deviation from equilibrium state, in link with the absence
of climate-adapted species in the regional pool. Climate severity
is expected to have an even stronger effect in North America.
The distribution of land masses constrains Neartic species’
distribution range in their northern and southern boundaries.
These geometric constraints on species distribution, also called
“mid-domain effect,” are known to shape latitudinal richness
gradient (Colwell and Lees, 2000). While its application to
non-spatial domains is scarce (but see Letten et al., 2013), the
“thermal mid-domain effect” probably have a strong influence
on the species’ thermal tolerance present in regional species
pools (Brayard et al., 2005; Beaugrand et al., 2013). This
suggest that long-term biogeographic history and macro-scale
processes have a strong influence on community predictability.
Further investigations of the thermal mid-domain effect and its
consequence on regional pools should clarify its implication in
the predictability of community responses to climate change.

Our analysis showed that plant communities composed of
taller plants exhibited lower absolute deviation from climate
equilibrium. This result is in line with our predictions. No-
lag dynamics and predictable responses are thought to occur
when species exhibit low persistence through rapid extinction
at trailing range edges (Hampe and Petit, 2005), and/or efficient
niche tracking through long-distance dispersal. Conversely,
disequilibrium responses are thought to occur when species’
responses in these domains are opposite (Svenning and Sandel,
2013). In turn, the importance of these processes is linked to
species’ dispersal ability and life-history traits. For example,
species traits related to weak dispersal ability decrease species’
niche tracking (Svenning and Skov, 2007) while persistence
processes are enhanced by survival of long-lived individuals
(Eriksson, 1996; Holt, 2009; Jackson and Sax, 2010). However,
we did not find support for the effect of seed mass on the
predictability. While lower seed mass is generally considered
as a proxy for longer dispersal distance, empirical evidence is
mixed (Thomson et al., 2011). Plant height might even be better
predictor for seed dispersal distance (Muller-Landau et al., 2008;
Thomson et al., 2011). Because dispersal limitation is expected to
be a major driver of climate disequilibrium for plants (Svenning
and Skov, 2007, but see Bertrand et al., 2016), the improved
dispersal of taller plants supported our result.
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For birds we showed that, as predicted, communities
composed of larger birds exhibited stronger absolute deviation.
Despite the fact that body mass is an integrative species
characteristic correlated with many life-history traits, this result
confirms that life history traits can influence birds responses
through niche tracking and persistence processes (Jiguet et al.,
2007). Note that side analyses incorporated the percent of
insectivorous birds species as a potential determinant of
predictability (Figure S7). This predictor was removed from our
final model to keep consistency between plant and bird analyses.

Nevertheless, the influence of species characteristics was
generally weak, and not consistent across taxa and CRD statistics.
While trait might be good predictors for population responses
to climate change (e.g., Julliard et al., 2003; Jiguet et al., 2007),
there is weak support for their effect on species’ distribution range
shifts (Angert et al., 2011; Tingley et al., 2012; Smith et al., 2013).
Different reasons such as the stochastic nature of colonization
events, novel species interactions and extrinsic effects of habitat
availability and fragmentation might explain these weak effects.
Moreover, the properties of species assemblages and assembly
rules might be more important for community scale dynamics
(Guisan and Rahbek, 2011).

Our set of predictors failed to explain variation in
maximum state number. This statistic is a key component
of predictability. However, accounting for sampling error
challenges a straightforward interpretation of n-values when
applied to stochastic dynamics. Without sampling error,
stochastic dynamics are expected to cause high n values
associated with low predictability. For birds, the uncorrected
n values were, indeed, high (99% of the sites having n > 1 and
88% of the sites having n > 2), but the necessary correction
starkly reduced this estimate (14% of the sites having n > 1 after
correcting for sampling uncertainty).

CONCLUSION

A better understanding of the limits to predictability is a crucial
step for predictive modeling and applied ecology (Mouquet
et al., 2015). Our study showed that the equilibrium dynamic

hypothesis to infer community responses to climate change is
only sometimes applicable. In many cases, a straightforward
application of the equilibrium dynamic hypothesis to predict
biodiversity responses to future climate changes may lead to
misleading predictions. Equilibrium dynamics across different
taxa and scales should be assumed cautiously. We argue that
robust anticipatory predictions will require detailed knowledge
of the taxa considered, along with the spatial and temporal scales
at which key processes are expected to drive biodiversity response
to climate change.
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