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ON THE COMPLETE BOUNDEDNESS OF THE
SCHUR BLOCK PRODUCT

ERIK CHRISTENSEN

Abstract. We give a Stinespring representation of the Schur
block product on pairs of square matrices with entries in a C∗-
algebra as a completely bounded bilinear operator of the form:

A := (aij), B := (bij) : A�B := (aijbij) = V ∗λ(A)Fλ(B)V,

such that V is an isometry, λ is a *-representation and F is a self-
adjoint unitary. This implies an inequality due to Livshits and 2
more ones, apparently new, on the diagonals of matrices:

‖A�B‖ ≤ ‖A‖r‖B‖c
operator, row and column norm;

−diag(A∗A) ≤ A∗�A ≤ diag(A∗A),

∀Ξ,Γ ∈ Cn ⊗H : |〈(A�B)Ξ,Γ〉| ≤ ‖
(
diag(B∗B)

)1/2
Ξ‖‖

(
diag(AA∗)

)1/2
Γ‖.

1. Introduction

The Hadamard or Schur product between a pair of scalar matrices of
the same shape has been studied for more than 100 years [16, 8], and it
is closely related to basic mathematical subjects such as matrix theory
and representation theory. The product also has a natural interest for
operator theorists [2], operator algebraists [14] and it is also used in
the study of quantum channels, [1]. The usage of the names Hadamard
and Schur in connection with this product has varied in the literature,
and nice expositions on the history behind the use of the names are to
be found in Horn [7], section 2 and Horn & Johnson [8], section 5.0.

In connection with the theory of operator spaces and completely
bounded mappings on operator algebras [5, 6, 13, 15] it is obvious
to ask questions on the generalization of the Schur product to square
matrices over a C∗-algebra. This extension of the classical Hadamard
or Schur product already exists in the theory for matrices and linear
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2 ERIK CHRISTENSEN

algebra [10, 11, 12], and our present article extends especially results
by Horn, Mathias and Nakamura from [11] and Livshits [12]. We will
return to this point, when we have established some more notation.

In [4] we discussed a bilinear mapping Φ, defined on the product of a
pair of C∗-algebras A, B and mapping into a C∗-algebra C. We defined
Φ to be completely bounded if there exists a positive constant K such
that for any natural number k and for the bilinear operator Φk defined
on the k × k matrices over the algebras A,B denoted as Mk(A) and
Mk(B) into Mk(C) by

∀A ∈Mk(A)∀B ∈Mk(B)∀i, j ∈ {1, 2, . . . , k} :

(Φk(A,B))ij :=
k∑

l=1

Φ(ail, blj),(1.1)

we have ‖Φk‖ ≤ K. If a bilinear operator Φ is completely bounded
we define its completely bounded norm by ‖Φ‖cb := sup{‖Φk‖}. The
main result of the article [4] is that a bilinear operator like Φ on a pair
of C∗-algebras A,B into a C∗-algebra C acting on a Hilbert space H,
is completely bounded if and only if there exist Hilbert spaces K, L,
∗−representations λ of A on K, ρ of B on L and bounded operators X
in B(K,H), Y in B(L,K), Z in B(H,L) such that
(1.2)
∀a ∈ A∀b ∈ B : Φ(a, b) = Xλ(a)Y ρ(b)Z, and ‖Φ‖cb = ‖X‖‖Y ‖‖Z‖.
The decomposition of the bilinear operator Φ given in (1.2) is called a
Stinespring representation of Φ in recognition of Stinespring’s descrip-
tion of completely positive mappings on C∗-algebras, [18].

A linear operator between operator spaces is defined to be completely
bounded if all the natural extensions to matrices over the space are
bounded by some fixed number. Given a scalar n × n matrix A =
(aij) ∈Mn(C), it is known [6, 17] that the mapping SA on Mn(C) which
is induced by Schur multiplication with A on Mn(C) is completely
bounded and the completely bounded norm ‖SA‖cb equals its norm
‖SA‖. The aim of this article is to prove that for any operator algebra
A the associative product � on the algebra Mn(A) of n × n matrices
over A, which usually is called the Schur product and is defined by

∀A,B ∈Mn(A) : A�B := (aijbij),

is completely bounded with completely bounded norm 1, and that it
has a natural decomposition as a difference of 2 positive, a term which
will be explained below, bilinear mappings. We do this by providing
an explicit and - in our opinion natural - Stinespring representation of
� as a completely bounded bilinear operator on Mn(A) of norm 1.



COMPLETE BOUNDEDNESS OF THE SCHUR PRODUCT 3

Here we pose a warning to avoid too much confusion. The operation
� is defined on Mn(A) and is for any natural number k lifted to an
associative product �k on Mk(Mn(A)) via the formula (1.1), so we
prove that sup{‖�k‖} is 1 by showing that if the algebra A acts on a
Hilbert space H, and Mn(A) acts on Cn ⊗H, in the natural way, then
there exists an isometry V of Cn⊗H into Cn⊗H ⊗Cn, a self-adjoijnt
unitary F on Cn⊗H⊗Cn and a unital *-representation λ of Mn(B(H))
on Cn ⊗H ⊗ Cn such that

(1.3) ∀A,B ∈ Mn(A) : A�B = V ∗λ(A)Fλ(B)V.

Since the self-adjoint unitary is a diifference of 2 complementary or-
thogonal projections F = P − (I − P ), we get from the equation (1.3)
that
(1.4)
∀A,B ∈ Mn(A) : A�B = V ∗λ(A)Pλ(B)V − V ∗λ(A)(I −P )λ(B)V,

so the Schur block product is written in a natural way as a difference
of 2 completely bounded bilinear operators which, in a natural way,
may be called positive. It turns out that if we take the absolute value,
which we denote |�|, in the sense that we replace F by I in (1.3) then
we get

∀A,B ∈ Mn(A) :

A|�|B = V ∗λ(AB)V = diag(AB) :=
∑

1≤i,j≤n

eii ⊗ aijbji.(1.5)

From the equations (1.4) and (1.5) we get immediately the following
operator inequality

(1.6) ∀A ∈ Mn(A) : −diag(A∗A) ≤ A∗�A ≤ diag(A∗A),

and an inequality which is closely related to the classical Cauchy-
Schwarz inequality for positive semidefinite bilinear forms,

∀Ξ,Γ ∈ Cn ⊗H ∀A,B ∈ Mn(B(H)) :

|〈(A�B)Ξ,Γ〉|2 ≤ 〈diag(B∗B)Ξ,Ξ〉〈diag(AA∗)Γ,Γ〉(1.7)

= ‖
(
diag(B∗B)

)1/2
Ξ‖2‖

(
diag(AA∗)

)1/2
Γ‖2.

After we completed the first draft of a presentation of this result we
realized that the operation of constructing �k was introduced in [11] by
Horn, Mathias and Nakamura in the case when the Schur product is the
classical one on Mn(C), or in other words when the C∗-algebra equals
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C. The article [11] is from 1991, and the quoted result on completely
bounded bilinear operators is presented in [4] from 1987. On the other
hand the result of Lemma 3.2 of the article [11] actually is related
to our description of the Schur product � given in Theorem 2.9 as a
completely bounded operator.

The proof we present below goes back to the classical result for scalar
matrices, which tells that the Schur or Hadamard product may be found
as a principal submatrix of the Kronecker product, or in modern terms
the tensor product, of the two matrices. This result is presented in
[8], Lemma 5.1.1. The new twist is that for block matrices the Schur
product is no longer commutative.

The reason why we tried to show complete boundedness of the Schur
product came from an inequality in [3], where we studied commutators
of the form [f(D), a] where D is an unbounded self-adjoint operator
and f is an absolutely continuous function with a certain growth con-
dition. The basic tool we used in that study is a result on the operator
norm of the Schur product between a pair of operator valued matrices.
This result follows easily from the description of the Schur product we
give below, and is presented as a part of our main theorem. In the
article [3] we got the result as a generalization of Theorem 1.1 point
(i) of [2], in which Bennett studies the scalar Schur product. Later on,
when working on the present article, we realized that Livshits already
in [12] from 1994 published the same inequality. Furthermore the in-
equality may be seen as an extension of results by Horn, Mathias and
Nakamura [9, 11] on analogies to the Cauchy-Schwarz inequality. In
order to formulate this result we have to introduce the concepts row
norm and column norm of a matrix of operators. The column norm
of a matrix with operator entries is simply the supremum of the norms
of the columns from the matrix, when considered as operators. The
row norm is defined in the obvious analogous way, and it equals the
column norm of the adjoint operator. The fundamental norm identity
for bounded operators on Hilbert spaces states that ‖x∗x‖ = ‖x‖2, and
based on this we can give the following formal definition.

Definition 1.1. Let A be subalgebra of a C∗-algebra C, J a set of
indices and A = (aij), i, j ∈ J, aij ∈ A an A valued matrix over
J. The column norm ‖A‖c and the row norm ‖A‖r are given by the
expressions

‖A‖r := sup
i∈J

√
‖
∑
j∈J

aija∗ij‖ =
√
‖diag(AA∗)‖
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‖A‖c := sup
j∈J

√
‖
∑
i∈J

a∗ijaij‖ =
√
‖diag(A∗A)‖.

Livshits’ inequality may then be presented as follows:
For any pair of matrices A = (aij), B = (bij) indexed over J and with
entries from an operator algebra A, the operator norm ‖A�B‖ of the
Schur block product A�B = (aijbij) satisfies the inequality

(1.8) ‖A�B‖ ≤ ‖A‖r‖B‖c.

2. The explicit Stinespring form of the Schur block
product

We will now present our decomposition of the Schur block product for
matrices over an operator algebra A, and we may and will just as well
assume that A is a subalgebra of B(H) for some Hilbert space H. The
set of indices J, with respect to which we will construct square matrices
over A may be any set and hence it may be infinite. We will use the
symbol MJ(A) to denote all square matrices over A, indexed by J, and
defining bounded operators on `2(J,H). The point of having MJ(A) in
mind instead of the larger algebra MJ((B(H)) is to underline that the
Schur block product is an associative product on the algebra MJ(A).
On the other hand the description of the product we are going to give
will be independent of the algebra A, so in the rest of the article we will
just consider the Schur block product as a binary operation on matrices
over B(H). The result that the Schur product of bounded matrices is
bounded, follows directly from the description of the product we give.

We will first define the notation we are using. There is a canonical
orthonormal basis say {αj : j ∈ J} for `2(J,C) and corresponding to
this basis there is a set of matrix units eij in B(`2(J,C)) such that
we have eijαk = δjkαi. We will then adopt the notation that for a
matrix A = (aij) in MJ(B(H)) we will represent it as an operator on
the Hilbert space `2(J,C) ⊗H ⊗ `2(J,C) in 3 different ways as limits
of strongly convergent bounded nets, such that each element in each
of the nets is a finite sum of elementary tensor products of operators.
The ordered index set for all 3 nets will be denoted (F(J),⊆), and it
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consists of all finite subsets of J ordered by inclusion.

λ(A) := strong limit
F∈F(J)

∑
i,j,k∈F

eij ⊗ aij ⊗ ekk,(2.1)

σ(A) := strong limit
F∈F(J)

∑
i,j∈F

eij ⊗ aij ⊗ eij,(2.2)

ρ(A) := strong limit
F∈F(J)

∑
i,k,l∈F

eii ⊗ akl ⊗ ekl.(2.3)

We assume that it is well known that the mappings λ, ρ, σ are faithful
*-repre-sentations, i.e. injective self-adjoint homomorphisms of norm
1. In particular this means that for 2 bounded matrices A = (aij)
and B = (bij) and for a fixed pair (i,m) of indices the infinite sum∑

j∈J aijbjm is strongly convergent and defines a matrix element cim of

a matrix C in MJ(B(H)), such that λ(C) is given as the strong limit

λ(C) =strong limit
F∈F(J)

∑
i,j,k,l,m,n∈F

(eij ⊗ aij ⊗ ekk)(elm ⊗ blm ⊗ enn)(2.4)

= strong limit
F∈F(J)

∑
i,j,k,m∈F

eim ⊗ aijbjm ⊗ ekk.(2.5)

The representations λ and ρ are unital, but σ is not, unless J consists
of one element. For σ we get σ(I) =

∑
j∈J ejj ⊗ IB(H) ⊗ ejj which is

an orthogonal projection, say Q, from `2(J,C) ⊗ H ⊗ `2(J,C)) onto
the closed subspace K which is spanned by all the vectors of the form
{αj ⊗ ξ ⊗ αj : j ∈ J, ξ ∈ H}. The reason why we have attached the
names λ, ρ and σ to these representations, is that in the case when
H = C and J = {1, , . . . , n}, then λ and ρ are named the left and the
right standard representation of Mn(C) in the theory of von Neumann
algebras and these 2 representations have something in common with
the left and the right regular representation of a discrete group. The
representation σ is a kind of symmetric mix and it fits nicely into
the description of the Schur block product. Before we can see that,
we need a generalization of the Kronecker product to the setting of
matrices with operator entries.

Definition 2.1. Let A = (aij) and B = (bkl) be elements in
MJ((B(H)). The Kronecker block product of A and B is the matrix
A ∗KB B in MJ(MJ(B(H))), which is defined by the equation

(2.6) A ∗KB B := λ(A)ρ(B) = strong limit
F∈F(J)

∑
i,j,k,l∈F

eij ⊗ aijbkl ⊗ ekl.
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We may now benefit from the classical result [8] Lemma 5.1.1, which
describes the Schur product of two scalar matrices as a principal sub-
matrix of their Kronecker product. In the setting of (2.6), the matrix,
we are looking at, is of the form (J × J) × (J × J) and the rows are
indexed by pairs (i, k) whereas the columns are indexed by pairs (j, l)
and the principal submatrix, which gives the Schur block product, is
the one where the index set consists of all the pairs {(j, j) : j ∈ J}.
Moreover we find right away that the orthogonal projection Q we de-
fined above is exactly the one which supports the principal sub-matrices
which have non-zero entries only on elements which have indices of the
form ((i, i), (j, j)). Based on this we state without any further proof
the following proposition:

Proposition 2.2. Let A = (aij) and B = (bij) be elements in
MJ((B(H)), then their Schur block product A�B = (aijbij) is in
MJ((B(H)) and

σ(A�B) = strong limit
F∈F(J)

∑
ij∈F

eij ⊗ aijbij ⊗ eij

= Qλ(A)ρ(B)Q

= Q(A ∗KB B)Q.(2.7)

It should be remarked, that you may right away see, that in the
case when H = C, then the matrices A = (aij) and B = (bkl) are
scalar matrices, and the Kronecker block product is just the well known
Kronecker product.

The space K := Q
(
`2(J,C) ⊗ H ⊗ `2(J,C)

)
is closely related to

`2(J,C)⊗H and we define an isometry V of `2(J,C)⊗H onto K by

(2.8) ∀Ξ ∈ `2(J,C)⊗H, Ξ =
∑
j∈J

αj ⊗ ξj : V Ξ :=
∑
j∈J

αj ⊗ ξj ⊗αj.

It is now a matter of computation to verify the following equation,
which shows that the representation σ on K is unitarily equivalent to
the identity representation of MJ(B(H)) on `2(J,C)⊗H.

(2.9) ∀A = (aij) ∈MJ(B(H)) : σ(A)V = V A, or A = V ∗σ(A)V.

We may then present our first theorem.

Theorem 2.3. The Schur block product is completely bounded, with
completely bounded norm 1.

Proof. We give a description of the Schur block product in the form
described in equation (1.2), so let A = (aij) and B = (bij) be in
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MJ(B(H)) then

A�B = V ∗σ(A�B)V by (2.9)

= V ∗(A ∗KB B)V by (2.7) and V V ∗ = Q

= V ∗λ(A)ρ(B)V by (2.6),(2.10)

and we have obtained the form from (1.2) with operators of norm 1.
Since MJ(B(H)) has a unit, the completely bounded norm is 1, and
the theorem follows. �

We could leave the result like this, but we think that the bilinear
operators, we look at, do have many things in common with sesquilinear
forms, and in the latter case we do prefer self-adjoint or even better
positive semidefinite forms. A similar kind of aesthetics may apply
here, so we want to describe the Schur block product not only as a
bilinear completely bounded operator, but rather as a difference of 2
positive completely bounded bilinear operators. We are not far from
this in the equation (2.10), but we need to introduce a well known
self-adjoint unitary to get the expression, we think may be the right
one.

Definition 2.4. The flip operator F on `2(J,C)⊗H⊗`2(J,C) is defined
as the strong limit

F := strong limit
K∈F(J)

∑
i,j∈F

eij ⊗ I ⊗ eji.

We have a couple of simple observations, which we collect in the fol-
lowing lemma.

Lemma 2.5.
(i) F is a self-adjoint unitary

(ii) ∀A = (aij) ∈MJ(B(H)) : Fλ(A)F = ρ(A)
(iii) FV = V.

Proof. It is well known that F is a self-adjoint unitary, which has the
property that for X,Z in B(`2(J,C)) and Y in B(H) we have F (X ⊗
Y ⊗ Z)F = Z ⊗ Y ⊗ X, so the statements (i) and (ii) follow. The
statement (iii) follows easily once we remark that the subspace K =
Q(`2(J,C) ⊗ H ⊗ `2(J,C)), which is the range space of V, is spanned
by vectors of the form αi ⊗ ξ ⊗ αi and all such vectors are clearly
eigenvectors for F corresponding to the eigenvalue 1. �

Below we list a property of the isometry V, which will show why the
operator norm of a Schur product A�B is related to the row norm of
A and the column norm of B as described in (1.8).
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Lemma 2.6. For any matrix A = (aij) in MJ(B(H)) we have

‖A‖c = ‖λ(A)V ‖
‖A‖r = ‖V ∗λ(A)‖.

Proof. We will prove the column case only, since the row case fol-
lows by taking adjoints. First remark, that Q = V V ∗, so the identity
‖λ(A)Q‖ = ‖λ(A)V ‖ follows because V is an isometry. Then let us
compute the square of the norm λ(A)Q of using the C∗-algebraic norm
identity.

‖λ(A)Q‖2 = ‖Qλ(A∗A)Q‖

= ‖st. lim.
F∈F(J)

(
∑

i,j,k,l,s,t∈F

(eii ⊗ I ⊗ eii)(ejl ⊗ a∗kjakl ⊗ ess)(ett ⊗ I ⊗ ett)‖

we see that i = j = s = t = l so

≤ lim sup
F∈F(J)

‖
∑
i,k∈F

eii ⊗ a∗kiaki ⊗ eii‖

= sup
i∈J
‖
∑
k∈J

a∗kiaki‖ = ‖A‖2c .

On the other hand, for each j ∈ J we have

‖λ(A)Q‖ ≥ ‖λ(A)(ejj ⊗ IB(H) ⊗ ejj)‖ =

√
‖
∑
i∈J

a∗ijaij‖,

so ‖λ(A)Q‖ ≥ ‖A‖c and the lemma follows. �

We give the formal definition of the diagonal of a matrix of operators

Definition 2.7. For an operator A = (aij) in MJ(B(H)) we will define
the diagonal diag(A) in MJ(B(H)) by

diag(A)ij =

{
0 if i 6= j

aii if i = j
.

There are some simple observations we will use.

Lemma 2.8. For an operator A in MJ(B(H)) we have

diag(A) = V ∗λ(A)V

‖A‖c = ‖diag(A∗A)‖1/2

‖A‖r = ‖diag(AA∗)‖1/2.

Then we can state the main result.
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Theorem 2.9. For any Hilbert space H and any set of indices J :

(i) The Schur block product on MJ(B(H)) is given by the formula.

∀A, B ∈MJ(B(H)) : A�B = V ∗λ(A)Fλ(B)V.

(ii) This is Livshits’s inequality, [12]

∀A, B ∈MJ(B(H)) : ‖A�B‖ ≤ ‖A‖r‖B‖c.

(iii) Let X = (xij), and Y = (yij) be matrices indexed by J with
elements from B(H), and C a non negative real. If the matrix
Z defined by Z = (zij) := (xijyij) is bounded whenever Y is
column bounded and satisfies ‖Z‖op ≤ C‖Y ‖c, then X is row
bounded and satisfies ‖X‖r ≤ C.

(iv)

∀A ∈MJ(B(H)) : −diag(A∗A) ≤ A∗�A ≤ diag(A∗A).

(v)

∀Ξ,Γ ∈ `2(J,C)⊗H ∀A,B ∈ MJ(B(H)) :

|〈(A�B)Ξ,Γ〉| ≤ ‖
(
diag(B∗B)

)1/2
Ξ‖‖

(
diag(AA∗)

)1/2
Γ‖.

Proof. For A,B in MJ(B(H)) we have

A�B = V ∗λ(A)ρ(B)V by (2.10)

= V ∗λ(A)Fλ(B)FV by Lemma 2.5 (ii)

= V ∗λ(A)Fλ(B)V by Lemma 2.5 (iii),

and the claim (i) is proved.
The claim (ii) follows from (i) and the result in Lemma 2.6.
Item (iii) shows that Livshits’s inequality determines the row norm

and by symmetry the column norm as well. To prove it, let k be in J,
then we can estimate the norm of the k’th row of X via the assumptions
made. We define the matrix Y by yij = 0 if i 6= k, j ∈ J and ykj = 1
for all j in J. Then Y is column bounded with column norm 1 and the
norm of the matrix Z := (xijyij) is exactly the norm of the k’th row of
X.

The statement in (iv) is a direct consequence of (i), Lemma 2.8 and
the fact that −λ(A∗A) ≤ λ(A∗)Fλ(A) ≤ λ(A∗A).
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With respect to item (v), we find from the classical Cauchy-Schwarz
inequality, the statement in (i) and the Lemma 2.8 that

∀Ξ,Γ ∈ `2(J,C)⊗H ∀A,B ∈ MJ(B(H)) :

|〈(A�B)Ξ,Γ〉|2 = |〈V ∗λ(A)Fλ(B)V Ξ,Γ〉|2

≤ ‖λ(B)V Ξ‖2‖λ(A∗)V Γ‖2

= 〈V ∗λ(B∗B)V Ξ,Ξ〉〈V ∗λ(AA∗)V Γ,Γ〉
= 〈diag(B∗B)Ξ,Ξ〉〈diag(AA∗)Γ,Γ〉,

and by taking square roots

|〈(A�B)Ξ,Γ〉| ≤ ‖
(
diag(B∗B)

)1/2
Ξ‖‖

(
diag(AA∗)

)1/2
Γ‖.
�

3. An elementary observation

It is worth to remark, that the statement (iv) in Theorem 2.9 above
implies Livshits’ inequality, and that (iv) is an easy consequence of the
ordinary Cauchy-Schwarz inequality as the few lines of computations
below show. Hence the validity of the inequality (iv) may have been
realized by many people before, but may be not linked to the complete
boundedness of the Schur product. In fact we find by 2 applications
of Cauchy-Schwarz inequalities for Hilbert spaces and for numbers re-
spectively that for any index set J, vectors Ξ = (ξj), Γ = (γj), in
`2(J,H) and bounded matrices of operators A = (aij) and B = (bij) in
MJ(B(H)) we have

|〈(A�B)Ξ,Γ〉|2 = |
∑
i,j∈J

〈bijξj, a∗ijγi〉|2

≤
(∑

i,j∈J

‖bijξj‖2
)(∑

i,j∈J

‖a∗ijγi‖2
)

=

(∑
j∈J

〈
∑
i∈J

b∗ijbijξj, ξj〉
)(∑

i∈J

〈
∑
j∈J

aija
∗
ijγi, γi〉

)
= 〈diag(B∗B)Ξ,Ξ〉〈diag(AA∗)Γ,Γ〉.
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