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SUMMARY

DNA-protein crosslinks (DPCs) are bulky lesions
that interfere with DNA metabolism and therefore
threaten genomic integrity. Recent studies implicate
the metalloprotease SPRTN in S phase removal of
DPCs, but how SPRTN is targeted to DPCs during
DNA replication is unknown. Using Xenopus egg ex-
tracts that recapitulate replication-coupled DPC pro-
teolysis, we show that DPCs can be degraded by
SPRTN or the proteasome, which act as independent
DPC proteases. Proteasome recruitment requires
DPC polyubiquitylation, which is partially dependent
on the ubiquitin ligase activity of TRAIP. In contrast,
SPRTN-mediated DPC degradation does not require
DPC polyubiquitylation but instead depends on
nascent strand extension to within a few nucleotides
of the lesion, implying that polymerase stalling at the
DPC activates SPRTN on both leading and lagging
strand templates. Our results demonstrate that
SPRTN and proteasome activities are coupled to
DNA replication by distinct mechanisms that pro-
mote replication across immovable protein barriers.

INTRODUCTION

Vertebrate chromatin is composed of myriad proteins that

perform a multitude of functions. Sometimes, these proteins

are covalently trapped on DNA, yielding DNA-protein crosslinks

(DPCs) (Barker et al., 2005; Ide et al., 2011; Tretyakova et al.,

2015). While DPCs generated by most crosslinking agents

(e.g., formaldehyde, cisplatin-based chemotherapeutics) link

proteins to uninterrupted duplex DNA (type I DPCs), abortive

reactions by DNA repair enzymes such as topoisomerase I

and II form DPCs that are flanked on one side by a single-

stranded (type II DPCs) or double-stranded DNA break (type
574 Molecular Cell 73, 574–588, February 7, 2019 ª 2018 The Author
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III DPCs), respectively (Ide et al., 2011). Left unrepaired,

DPCs stall or inhibit DNA replication and transcription and

thereby threaten genomic integrity (Chválová et al., 2007; Duxin

et al., 2014; Kuo et al., 2007; Nakano et al., 2012; Novakova

et al., 2003).

Given the frequency and cytotoxicity of DPC lesions, cells

have evolved pathways to promote their removal. While nucle-

otide excision repair and homologous recombination have been

linked to DPC repair (Ide et al., 2011), recent experiments in

yeast identified the metalloprotease Wss1 as a dedicated

DPC-repair factor (Stingele et al., 2014). Wss1 removes DPCs

from the genome by degrading crosslinked proteins (Balakirev

et al., 2015; Stingele et al., 2014). In contemporaneous exper-

iments, we recapitulated replication-coupled DPC proteolysis

in Xenopus egg extracts (Duxin et al., 2014). In this mechanism,

a type I DPC encountered by the replisome is degraded to a

short peptide adduct. Degradation of the DPC facilitates repli-

some bypass and DNA synthesis across the lesion by the

translesion synthesis (TLS) polymerase complex Rev1-Polz

(Duxin et al., 2014). In this manner, the replisome simulta-

neously overcomes DPCs and clears them from the genome.

Collectively, the experiments in yeast and in Xenopus estab-

lished the existence of a dedicated, S-phase proteolytic DPC-

repair pathway, although the protease acting in vertebrates

remained elusive at the time.

Studies in mammalian cells suggest that the proteasome

also participates in DPC removal (Baker et al., 2007; Desai

et al., 1997; Lin et al., 2008; Mao et al., 2001; Quiñones

et al., 2015; Zecevic et al., 2010). Proteasome inhibition pre-

vents the removal of different types of DPCs, including trap-

ped topoisomerases and DNA Polb (Desai et al., 1997; Lin

et al., 2008; Mao et al., 2001; Quiñones et al., 2015), and

sensitizes cells to formaldehyde treatment (Ortega-Atienza

et al., 2015). In addition, DPC polyubiquitylation was reported

in the case of covalent topoisomerase I (Desai et al., 1997).

However, polyubiquitylation of the more abundant type I

DPCs could not be observed (Nakano et al., 2009), and it is

therefore unclear whether DPCs are generally targeted by

the proteasome. In Xenopus egg extracts, inhibition of the
s. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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proteasome on its own does not significantly stabilize type I

DPCs during DNA replication (Duxin et al., 2014). Therefore,

whether the proteasome acts on different types of DPCs and

whether this process operates during DNA replication remain

open questions.

Recently, the metalloprotease SPARTAN (SPRTN) has been

implicated in DPC degradation in higher eukaryotes. SPRTN

shares homology with the yeast DPC protease Wss1 and is

proposed to be functionally similar (Stingele et al., 2015; Vaz

et al., 2017). In humans, mutations in SPRTN that compromise

its protease activity cause Ruijs-Aalfs syndrome (RJALS), which

is characterized by genomic instability, premature aging, and

hepatocellular carcinoma (Lessel et al., 2014). In mice, loss of

SPRTN is embryonically lethal, and conditional inactivation of

SPRTN in murine embryonic fibroblasts (MEFs) blocks cell pro-

liferation (Maskey et al., 2014). Although SPRTN was initially

characterized as a regulator of TLS (Centore et al., 2012; Davis

et al., 2012; Mosbech et al., 2012), several recent reports sug-

gest that its essential role in genome maintenance involves

DPC proteolysis (Lopez-Mosqueda et al., 2016; Maskey et al.,

2017; Mórocz et al., 2017; Stingele et al., 2016; Vaz et al.,

2016). SPRTN is predominantly expressed in S phase and

associates with replisome components (Ghosal et al., 2012;

Kim et al., 2013; Mosbech et al., 2012; Vaz et al., 2016). In

the absence of SPRTN, cells accumulate DPCs and exhibit

impaired replication fork progression (Lessel et al., 2014; Mó-

rocz et al., 2017; Vaz et al., 2016). The data suggest that

DPCs readily form in vivo and that cells rely on SPRTN-depen-

dent DPC removal to suppress genome instability, cancer,

and aging.

SPRTN proteolytic activity is regulated via different mecha-

nisms. First, SPRTN undergoes monoubiquitylation (Mosbech

et al., 2012), which prevents its recruitment to chromatin (Stin-

gele et al., 2016). DPC induction triggers SPRTN deubiquityla-

tion by an unknown ubiquitin protease, allowing SPRTN to

localize to chromatin and initiate DPC degradation (Stingele

et al., 2016). Once SPRTN is recruited to chromatin, DNA

binding stimulates its protease activity (Lopez-Mosqueda

et al., 2016; Mórocz et al., 2017; Stingele et al., 2016; Vaz

et al., 2016), and evidence indicates that SPRTN is uniquely

activated by single-stranded DNA (ssDNA) (Stingele et al.,

2016). SPRTN also degrades itself, which may switch off its

proteolytic function when repair is complete (Stingele et al.,

2016; Vaz et al., 2016). Although these findings suggest that

SPRTN activity is subject to elaborate regulation, they do

not explain how SPRTN is specifically directed to DPCs during

DNA replication or how non-specific replisome destruction is

avoided.

We investigated the molecular mechanisms that link DPC

degradation to DNA replication. Here, we report that SPRTN

and the proteasome function as two replication-coupled DPC

proteases. Proteasome recruitment to DPCs depends on

replication-dependent DPC ubiquitylation. In contrast, SPRTN-

mediated DPC degradation can occur in the absence of DPC

ubiquitylation, but instead requires the extension of a nascent

strand to the DPC. Our results reveal how SPRTN and protea-

some activities are targeted to DPCs to facilitate replication

across these covalent protein barriers.
RESULTS

DPCs Are Ubiquitylated and Degraded during DNA
Replication
To investigate DPC repair, the 45-kDa DNA methyltransferase

HpaII (M.HpaII) was trapped at a fluorinated sequence on a

plasmid to generate a type I DPC (Chen et al., 1991). During repli-

cation of the resulting plasmid (pDPC) in Xenopus egg extracts,

converging forks transiently stall at the DPC, after which

daughter plasmid molecules are resolved (Figure S1A; Duxin

et al., 2014). The daughter molecule containing the DPC initially

migrates as an open circular (OC) species and is then gradually

converted to a supercoiled (SC) repair product through proteol-

ysis of the DPC and TLS across the resulting peptide adduct

(Figures S1A and S1B). To monitor the integrity of the DPC, we

pulled down the plasmid under stringent conditions, digested

the DNA, and analyzed M.HpaII via immunoblotting (Figure 1A).

At 15 min, when replication was under way (Figure S1B), cova-

lently attached M.HpaII migrated as a ladder of slow mobility

species that subsequently disappeared (Figure 1B, lanes 2–4).

The addition of FLAG-ubiquitin to the extract shifted the mobility

of the M.HpaII species (Figure 1C, lane 4), indicating that they

correspond to ubiquitylated M.HpaII. These slow mobility

M.HpaII species were also precipitated by FLAG resin during

DNA replication (Figure 1D, lane 6). When DNA replication initia-

tion was blocked with Geminin (Figure S1B) (Tada et al., 2001;

Wohlschlegel et al., 2000), M.HpaII persisted in a largely unmod-

ified form (Figure 1B, lanes 5–6), demonstrating that DPC ubiqui-

tylation and degradation are dependent on DNA replication. In

the absence of replication, a different set of modified M.HpaII

species slowly appeared (Figure 1B, lane 6). These species

were cleaved by the SUMO protease Ulp1 (data not shown),

and their appearance was dependent on the activity of the

SUMO ligase UBC9 (Figure S1C). In contrast, the replication-

dependent species did not involve SUMOylation (Figure S1D).

Therefore, DPCs undergo both replication-dependent ubiquity-

lation, which contributes to proteolysis (see below), and replica-

tion-independent SUMOylation, the function of which is still

unknown.

Replication forks promote the destruction of DPCs encoun-

tered on the leading and lagging strand templates (Duxin et al.,

2014). However, because the replicative Cdc45-Mcm-GINS

(CMG) helicase translocates on the leading strand template (Fu

et al., 2011), it is possible that DPCs encountered on the two

parental strands undergo different processing. To address this,

we replicated a plasmid containing a lac repressor array that is

flanked on one side by a DPC on the top or bottom strand (Fig-

ure 1E). The rightward fork stalls at the array, whereas the left-

ward fork encounters the DPC on the leading or lagging strand

templates, respectively (Dewar et al., 2015; Duxin et al., 2014).

As shown in Figure 1E, DPCs encountered on either strand

were ubiquitylated and degraded, suggesting that leading and

lagging strand DPCs are recognized and processed similarly.

We next asked whether a specific ubiquitin linkage is formed

on the DPC. The obutain1 and associated molecule with the

SH3 domain of the signal transducing adaptor molecule

(AMSH) deubiquitinases (DUBs), which are specific for Lys-48

and Lys-63 linkages, respectively, partially reduced the length
Molecular Cell 73, 574–588, February 7, 2019 575
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Figure 1. Replication-Coupled Ubiquitylation and Degradation of a DPC

(A) Schematic of the DPC recovery assay.

(B) pDPC was replicated in egg extracts. Geminin (+ Gem.) was added where indicated to block DNA replication. DPCs were recovered as illustrated in (A) at the

indicated time points, and DPCs were blotted with aM.HpaII antibody. Input samples were blotted with an origin recognition complex subunit 2 (ORC2) antibody.

(C) pDPC2xLead, a plasmid containing two DPCs (one on each leading strand; see Figure 2A), was replicated in egg extracts supplemented with free ubiquitin (Ub)

or FLAG-ubiquitin. At 20 min, DPCs were recovered and blotted as in (B). Red arrowheads indicate the mobility shift induced by FLAG-ubiquitin.

(D) pDPC2xLead was replicated in egg extracts supplemented with free ubiquitin (Ub) or FLAG-ubiquitin. At the indicated time point, DPCs were recovered as in (B)

(Input) and immunoprecipitated with anti-FLAG-resin (FLAG-IP). Ubiquitylated DPCs were detected with M.HpaII antibody. Red arrowheads indicate the location

of mono-, di-, and tri-ubiquitylated M.HpaII.

(E) pDPCLead or pDPCLag was replicated in egg extract in the presence of LacI to ensure that a single replication fork encounters the DPC (Duxin et al., 2014).

Recovered DPCs were blotted as in (B). The asterisk indicates residual uncrosslinked M.HpaII.
of M.HpaII-linked ubiquitin chains (Figure S1E). YOD1, which hy-

drolyzes all of the other ubiquitin linkages, also partially cleaved

DPC ubiquitin chains (Figure S1E). Polyubiquitylated M.HpaII

persisted even after treatment with a DUB cocktail that targeted

all linkages (Figure S1F), but treatment with ubiquitin carboxyl-

terminal hydrolase 2 (USP2), which cleaves ubiquitin moieties,

attached directly to target proteins (Hospenthal et al., 2015),

collapsed M.HpaII into a single band (Figures S1E and S1F).

These results suggest that ubiquitylated M.HpaII contains multi-

ple ubiquitin chain types added by one or more ubiquitin ligases.

Previously, we demonstrated that DPC degradation is drasti-

cally inhibited by ubiquitin-vinyl-sulfone (UbVS), which inhibits

DUBs and thereby depletes free ubiquitin in extracts (Dimova

et al., 2012; Duxin et al., 2014). Consistent with this result, UbVS
576 Molecular Cell 73, 574–588, February 7, 2019
delayed the ubiquitylation of M.HpaII and strongly inhibited DPC

proteolysis (Figure S1G, lanes 7–11), effects that were rescued

with free ubiquitin (Figure S1G, lanes 12–16). We conclude that

when a replication fork encounters a DPC, the DPC undergoes

extensive polyubiquitylation before being degraded.

SPRTN and the Proteasome Accumulate on Replicating
DPC Plasmids
To identify DPC protease(s), we combined plasmid pull-down

with quantitative high-resolution mass spectrometry (PP-MS)

(Figure 2A). In contrast to chromatinMS (CHROMASS),whichde-

tects proteins on randomly damaged sperm chromatin (R€aschle

et al., 2015), PP-MS identifies proteins associated with defined

DNA lesions and discrete repair intermediates (Figure 2A). To
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validate PP-MS, we first replicated an undamaged plasmid

(pCTRL) in egg extracts and isolated it during (10 min) or after

(40 min) replication (Figure 2A, lanes 1–3). As expected, CMG,

all three replicative DNA polymerases, andmost of the replisome

components, were significantly enriched when replication was

ongoing (Figures 2B, columns 1–2, and S2A), whereas the addi-

tion of Geminin abolished their recruitment (Figures 2B, column

3, S2A, and S2B). Thus, PP-MS is a robust method to detect

the proteins associated with plasmids in egg extracts.

Wenext appliedPP-MS toDPC repair. Tomaximize the yield of

DPC repair factors, we replicated pDPC2xLead, a plasmid contain-

ing two DPCs positioned 165 nt apart, such that both converging

forks encountered a DPC on the leading strand template (Fig-

ure 2A). Following fork stalling at the DPC, the daughter mole-

cules underwent decatenation, and the OC plasmids were

repaired by TLS (Figures 2A, lanes 4–8, and S2C). Consistent

with replication fork stalling at leading strand DPCs (Figure S2C)

(Duxin et al., 2014; Fu et al., 2011), replisome components

persisted for up to 40 min on pDPC2xLead (Figures 2B, columns

4–8, and S2D, MCM6 panel). The TLS polymerases REV1, Polz,

and Polk were recruited to pDPC2xLead following replisome un-

loading (Figures 2BandS2D,REV1panel), and their peak binding

correlated with the transition fromOC to SC plasmids (Figure 2A,

lanes 6–7), which depends on the REV1-Polz complex (Duxin

et al., 2014). By120min,whenall of themolecules hadundergone

replication-coupled repair (Figures 2A, lane 8, and 2C), repair fac-

tors were largely lost from DNA (Figure 2B, column 8).

Consistent with recent findings that SPRTN functions in

S phase DPC repair, we observed a specific enrichment of

SPRTN on replicating pDPC2xLead (Figure 2B, columns 4–8).

SPRTN recruitment occurred during the peak of proteolysis

(20–60 min), depended on DNA replication, and was not

observed on pCTRL (Figures 2B, 2C, S2D, and S2E). The 26S

proteasome was also specifically recovered on DPC plasmids.

A total of 26 proteasome subunits showed significant enrichment

on pDPC2xLead compared to pCTRL (Figure 2B), and their recruit-

ment also peaked between 20 and 60min and depended onDNA

replication (Figures 2B, 2C, S2D, and S2E). Collectively, these

experiments provide an unbiased resource of candidate DPC

repair factors (Tables S1 ans S2) and single out SPRTN and

the proteasome as two proteases that may mediate DPC

destruction in egg extracts. They also illustrate the ability of

PP-MS to identify proteins associated with different stages in

the repair of a chemically defined DNA lesion.

Both SPRTN and the Proteasome Degrade DPCs during
Replication
To explore the roles of SPRTN and the proteasome in DPC prote-

olysis, we replicated pDPC2xLead in the presence of the protea-
Figure 2. SPRTN and the Proteasome Are Recruited to a DPC Plasmid

(A) Depiction of replication, recovery, and analysis of pDPC2xLead by PP-MS. To

presence of [a-32P]dATP, and replication intermediates were analyzed by agarose

together with the bound proteins by a LacI pull-down (Budzowska et al., 2015) a

(B) Heatmap showing themean of the Z scored log2 label-free quantitation LFQ int

added to block replication where indicated.

(C) Analysis of protein recruitment to pDPC2xLead compared to pCTRL. Both plasm

the protein intensity plotted against the p value calculated by a modified, one-sid
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some inhibitor MG262 or in extracts depleted of SPRTN

(Figure 3A). Proteasome inhibition did not significantly inhibit

DPC repair and only caused a minimal delay in the conversion of

OC intermediates to SC repair products (Figure 3B, lanes 6–10)

(Duxin et al., 2014). SPRTN-depleted extracts exhibited a more

pronounced but still transient persistence of OC molecules

compared to mock-depleted extracts (Figure 3B, lanes 11–15).

In combination, however, SPRTNdepletion andMG262 treatment

strongly delayed the conversion of OC intermediates to SC prod-

ucts (Figures 3B, lanes 16–20) without affecting DNA replication

kinetics (Figure S3A), indicating that in the absence of both prote-

ases, DPC repair is specifically inhibited. Accordingly, whereas

SPRTN depletion or MG262 treatment alone resulted in a modest

delay in DPC degradation (Figures 3C, lanes 6–13, S3B, and S3C

for independent experiments), in combination these treatments

stabilized ubiquitylated M.HpaII species for up to 2 hr (Figures

3C, lanes 14–17,S3B, andS3C).DPCdegradationandgeneration

of SC repair products were largely restored by the addition of re-

combinant wild-type (WT) SPRTN but not catalytically inactive

(EQ) SPRTN (Figures 3D–3F). We also confirmed the role of the

proteasome on DPC degradation via immunodepletion, which

closely resembled MG262 treatment (Figures S3D and S3E).

Given that depletion of SPRTN or inhibition of the proteasome

did not prevent DPC degradation, we hypothesized that these

two proteases act independently. To test this idea, we pulled

down pDPC2xLead from extracts depleted of either SPRTN or

the proteasome. As shown in Figure 3G, neither SPRTN nor pro-

teasome depletion impaired the recruitment of the other prote-

ase to chromatin. We conclude that during DNA replication,

both SPRTN and the proteasome can degrade DPCs indepen-

dently of each other.

SPRTN Can Degrade Non-ubiquitylated DPCs
Wenext investigated the roleofDPCubiquitylation. To this end,we

chemically methylated the lysines of M.HpaII (Walter et al., 2006),

thereby generating a DPC that cannot be ubiquitylated (me-DPC)

(Figure 4A). As shown in Figure 4B,methylatedM.HpaII recovered

from replication reactions migrated as a single, unmodified band,

reflecting a block of DPC ubiquitylation (lanes 8–13). Notably,

even in the absence of ubiquitylation, plasmid-associatedM.HpaII

slowly decreased, and an M.HpaII degradation product of

�34 kDa accumulated (Figure 4B, lanes 10–13; note that the

M.HpaII antibody is detecting oneof possiblymultipledegradation

products). In plasmid pull-downs, M.HpaII methylation abolished

proteasome recruitment, while SPRTN recruitment was reduced

but still detectable (Figure 4C, lanes 9–14), suggesting thatSPRTN

is the soleproteaseactingon themethylatedDPC.Consistentwith

this idea, SPRTN depletion stabilized methylated M.HpaII and

abolished the formation of the degradation fragment (Figure 4D,
during Replication

monitor the progress of the repair reaction, pDPC2xLead was replicated in the

gel electrophoresis (lower autoradiograph). In parallel, plasmids were isolated

nd analyzed by label-free MS.

ensity from four biochemical replicates of pCTRL and pDPC2xLead. Geminin was

ids were recovered at 40 min. The volcano plot shows the mean difference of

ed t test. Full results are reported in Tables S1 and S2.
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Figure 3. SPRTN and the Proteasome Degrade DPCs during Replication

(A) Mock-depleted and SPRTN-depleted egg extracts were blotted with SPRTN and MCM6 (loading control) antibodies.

(B) The extracts from (A) were used to replicate pDPC2xLead in the presence of [a-32P]dATP. MG262 at 200 mM was added where indicated. Samples were

analyzed by native agarose gel electrophoresis. Red arrowheads indicate the accumulation of OC repair intermediates. Note that OCmolecules that accumulate

are subjected to 50 to 30 end resection and smear-down on the gel (lanes 14, 19, and 20;Duxin et al., 2014). Replication intermediates (RI), open circular (OC), and

supercoiled species (SC) were quantified as a percentage of total lane signal (lower graphs). The mean percentages across three independent experiments are

plotted, with error bars representing the SD.

(C) DPCs from (B) were recovered and monitored as in Figure 1B.

(D) Mock-depleted and SPRTN-depleted egg extracts were blotted with SPRTN and MCM6 (loading control) antibodies. SPRTN-depleted extracts were

supplemented with either buffer (+Buf), recombinant FLAG-SPRTN (+WT), or recombinant catalytically inactive FLAG-SPRTN E89Q (+EQ).

(E) The extracts from (D) were used to replicate pDPC2xLead in the presence of [a-32P]dATP. MG262 at 200 mM was added where indicated. Samples were

analyzed and quantified as in (B). The quantification of a representative biological replicate is shown.

(F) DPCs from (E) were monitored as in Figure 1B.

(G) Mock-depleted, SPRTN-depleted, or proteasome subunit a type-1 (PSMA1)-depleted extracts were used to replicate pDPC2xLead. Plasmids were recovered,

and protein-recruitment to the plasmid was monitored with the indicated antibodies (Budzowska et al., 2015).
lanes 6–10). This defect was reversed by SPRTN-WT but not

SPRTN-EQ (Figure 4E, lanes 6–7 and 14–15). Conversely,

MG262 did not prevent me-DPC proteolysis (Figures S4A and

S4B). Consistent with the absence of DPC proteolysis, SPRTN

depletion also caused a marked stabilization of OC intermediates

during the replication of pme-DPC2xLead and a corresponding

delay in thegenerationof replicatedSCmolecules (Figure4F, lanes

16–20). We conclude that SPRTN has a unique ability to degrade

non-ubiquitylated DPCs. In contrast, DPC ubiquitylation is essen-

tial to target the proteasome.

SPRTN Requires Its Ubiquitin Binding Motifs to
Degrade DPCs
We next explored the importance of the protein-interacting re-

gions of SPRTN. In addition to its SprT metalloprotease domain,

SPRTN contains C-terminal p97 (SHP), proliferating cell nuclear

antigen (PCNA) (PIP), and ubiquitin (UBZ)-interacting regions

(Figure S4C). We generated recombinant SPRTN with mutated

SHP, PIP, or UBZ domains (Figures S4D and S4E; Davis et al.,

2012; Mosbech et al., 2012) and tested their activity in pme-

DPC2xLead replication. Whereas SPRTN depletion blocked
degradation of me-DPCs, re-addition of SPRTN-SHP* or

SPRTN-PIP* reverted this effect (Figure 4E, lanes 8–9 and

10–11), suggesting that interactions with p97 and PCNA are

not essential for the function of SPRTN as a DPC protease. In

contrast, SPRTN-UBZ* failed to restore DPC proteolysis after

SPRTN depletion (Figure 4E, lanes 12–13). Efficient generation

of SC repair products was likewise supported by SPRTN-SHP*

and SPRTN-PIP*, but not by SPRTN-UBZ* (Figure S4F). The

role of SPRTN ubiquitin binding domains was confirmed by

deleting both C-terminal UBZ domains (SPRTN 1–435), which

also resulted in defective DPC degradation and replication (Fig-

ures S4G and S4H). In summary, our data demonstrate that

SPRTN can act on DPCs in the absence of DPC ubiquitylation.

However, SPRTN activity is still dependent on its ubiquitin-inter-

acting motifs, suggesting that SPRTN is recruited by a ubiquity-

lated protein other than the DPC itself.

SPRTN-Mediated DPCProteolysis Ensures Efficient TLS
As shownabove, SPRTNdepletion leads to a transient accumula-

tion of OC intermediates during the replication of a DPC plasmid.

To determine how SPRTN depletion affects replication across a
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Figure 4. SPRTN, but Not the Proteasome, Can Degrade Non-ubiquitylated DPCs

(A) Strategy to address the role of DPC ubiquitylation via reductive methylation of the DPC.

(B) pDPC2xLead and pme-DPC2xLead were replicated in egg extracts, and DPCsweremonitored as in Figure 1B. Note the concomitant disappearance of full-length

M.HpaII and appearance of a degradation product during replication of pme-DPC2xLead. Both a long and a short exposure of the M.HpaII blot are shown.

(C) pDPC2xLead and pme-DPC2xLead were replicated in egg extracts, and recruitment of the indicated proteins to the plasmid was monitored as in Figure 3G.

(D) pme-DPC2xLead was replicated in mock-depleted or SPRTN-depleted egg extracts. DPCs were monitored as in Figure 1B.

(E) pme-DPC2xLead was replicated in mock-depleted and SPRTN-depleted extracts. SPRTN-depleted extracts were supplemented with either buffer (+buf), or

recombinant FLAG-SPRTN variants (see Figure S4D). DPCs were monitored as in Figure 1B.

(F) pDPC2xLead and pme-DPC2xLead were replicated in mock-depleted or SPRTN-depleted extracts. Samples were analyzed as in Figure 3B. The mean of three

independent experiments is quantified. Error bars represent the SD.

(G) Samples from (F) were digestedwith FspI and AatII and separated on a denaturing polyacrylamide gel. The schematic depicts the nascent leading strands and

extension products liberated by FspI and AatII digestion (green hexamer, CMGhelicase; red lines, nascent DNA). The locations of the corresponding bands on the

gel are indicated by brackets. The �30 to �40 species, the �1,0,1 species, and extension products were quantified and plotted below. Quantification of each

species is plotted as a percentage of the entire signal of the lane. The quantification of a representative biological replicate is shown.
DPC,wefirst replicatedpDPC2xLead andanalyzednascent leading

strands on a denaturing polyacrylamide gel (Figure 4G) (Duxin

et al., 2014). In mock-depleted extracts, the nascent leading

strandfirst paused30 to40ntupstreamof theDPCdue to the foot-

print of CMG, which stalled at the DPC (fork stalling) (Figure 4G,

lanes 1–5). Subsequently, the nascent leading strand advanced

and stalled again at the lesion site (�1, 0, +1) before being

extended past the lesion via TLS polymerases REV1-Polz (exten-

sion) (Figures 4G and S4I for the annotation of �1, 0, and +1

products). SPRTN depletion did not inhibit leading strands from

reaching the lesion, but it did prolong the stalling observed
580 Molecular Cell 73, 574–588, February 7, 2019
at �1, 0, and +1 positions by �30 min, which correlated with a

delay in the appearance of the extension products (Figures 4G,

lanes 6–10, S4K, and S4M). This TLS defect was rescued by

SPRTN-WT but not SPRTN-EQ, which further inhibited synthesis

across the lesion (Figures S4J and S4K). The inhibitory effect of

SPRTN depletion was neutralized by pre-treatment of the DPC

with proteinase K (Figures S4L–S4N). We conclude that SPRTN-

mediated DPC proteolysis facilitates TLS past the lesion. In the

absence of SPRTN, the DPC is still degraded by the proteasome,

but TLS across the resultingpeptide adduct generated by the pro-

teasome is likely not as efficient.
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Figure 5. DPC Ubiquitylation and Degradation Can Occur in the Absence of the Replisome

(A) Schematic comparing pDPC and pDPCssDNA in non-licensing egg extracts.

(B) pDPC and pDPCssDNA were incubated in non-licensing egg extracts. DPCs were recovered and monitored as in Figure 1B. Note that time 0 was withdrawn

before incubating plasmids in egg extracts, which explains the absence of ORC2 input in lanes 1 and 5.

(C) pDPCssDNA was incubated in mock-depleted and SPRTN-depleted non-licensing extracts in the presence of 200 mM MG262 where indicated. DPCs were

monitored as in Figure 1B.

(D) Schematic comparing the fate of pDPCssDNA in the presence or absence of gap-filling synthesis.

(E) pDPCssDNA was incubated in non-licensing egg extracts in the presence of [a-32P]dATP. Extracts were supplemented with 700 mM aphidicolin and 1 mM

araCTP where indicated. Samples were analyzed as in Figure 3B.

(F) Samples from (E) were digested with PvuII and NdeI and separated on a denaturing polyacrylamide gel. The different extension products are depicted in the

upper scheme.

(G) Samples from (E) were used to monitor DPC ubiquitylation and degradation as in Figure 1B.
We next investigated the role of SPRTN in facilitating replica-

tion across the methylated DPC, which cannot be acted on by

the proteasome. In this context, SPRTN depletion also induced

a marked TLS defect, as seen by the prolonged stalling of lead-

ing strands at the DPC (Figure 4G, lanes 16–20). Despite the

absence of DPC proteolysis, the approach of leading strands

to the lesion was unaffected (Figure 4G, see disappearance

of �30 to �40 products), demonstrating that CMG disappears

from the DPC on schedule. This loss of the CMG footprint is

due to CMG bypass of the intact DPC (Sparks et al., 2018).

Thus, in the presence and absence of the proteasome pathway,

SPRTN is required to facilitate TLS across the lesion.

SPRTN and the Proteasome Can Degrade DPCs in the
Absence of the Replisome
We next addressed how SPRTN and proteasome activities are

coupled to DNA replication. In one scenario, the replisome re-

cruits or activates these proteases. Alternatively, DNA replica-
tion generates a structure that targets the proteases to DPCs.

To distinguish between the two models, we tested whether

ssDNA could trigger DPC degradation in the absence of the re-

plisome. To this end, we generated a plasmid in which M.HpaII

is linked to one strand across from a 29-nt gap (pDPCssDNA; Fig-

ure 5A). We then monitored M.HpaII degradation on pDPCssDNA

in extracts that do not support MCM2–7 loading or replication

initiation (non-licensing extracts). In this setting, pDPCssDNA trig-

gered rapid polyubiquitylation and degradation of M.HpaII,

whereas pDPC did not (Figure 5B, lanes 1–4 and 6–9). In addi-

tion, on pDPCssDNA, ubiquitylated M.HpaII species were stabi-

lized most by the combined inhibition of the proteasome and

depletion of SPRTN (Figures 5C, lanes 10–12, and S5A–S5C).

Therefore, both SPRTN and the proteasome can degrade

DPCs in the absence of a full replisome when the lesion resides

on ssDNA. Consistent with this conclusion, purified Wss1 and

SPRTN are activated by ssDNA (Balakirev et al., 2015; Stingele

et al., 2016).
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Figure 6. SPRTN-Dependent DPC Degradation Requires Nascent Strand Extension to the Lesion

(A) Schematic comparing the fate of pme-DPCssDNA in the presence and absence of gap-filling synthesis.

(B) pme-DPCssDNA was incubated in non-licensing egg extracts supplemented with 700 mMaphidicolin and 1mMaraCTPwhere indicated. DPC degradation was

monitored as in Figure 1B. The asterisk denotes a crosslinked methyl-M.HpaII species generated on the GAP substrate, likely caused by the incomplete

degradation of ssDNA by benzonase.

(C) Samples from (B) were analyzed as in Figure 5F.

(D) Depiction of pme-DPC+peptide replication.

(E) pme-DPC and pme-DPC+peptide were replicated in REV1-depleted extracts in the presence of [a-32P]dATP. Samples were digested with Nb.BsmI, which cuts

the leftward leading strand, as depicted in (D). Nascent leading strands were then separated on a polyacrylamide denaturing gel.

(F) Samples from (E) were used to monitor DPC degradation as in Figure 1B.
Polymerase Extension Controls SPRTN-Mediated DPC
Degradation
When pDPCssDNA was incubated in non-licensing extracts, we

detected a small amount of DNA synthesis that was absent on

pDPC (Figures S5D and S5E). This synthesis reflected extension

of the free 30 end to the DPC, followed by TLS past the lesion

(Figure S5F). We asked whether this gap-filling synthesis is

required to trigger DPC ubiquitylation and degradation (Fig-

ure 5D). To this end, we treated egg extracts with aphidicolin,

which greatly diminished gap filling, or with a combination of

aphidicolin and the chain terminator ara-cytidine-50-triphos-
phate (araCTP), which inhibited gap filling almost completely

(Figures 5E and 5F). As shown in Figure 5G, aphidicolin or aphi-

dicolin and araCTP impaired DPC proteolysis, although M.HpaII

ubiquitylation occurred normally. Thus, efficient DPC proteolysis

but not DPC ubiquitylation requires gap-filling synthesis.

Given that DPC degradation but not ubiquitylation was de-

layed, we reasoned that DPC proteolysis by SPRTN but not

the proteasome requires gap-filling synthesis. To monitor

SPRTN activity, we examined a gapped substrate containing

methylated M.HpaII (Figure 6A). As seen during DNA replication,

methylated M.HpaII underwent ubiquitylation-independent
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degradation, giving rise to the SPRTN-dependent proteolytic

fragment (Figure S5G). The efficiency of proteolysis and appear-

ance of the DPC fragment correlated with the amount of gap-

filling synthesis, as these were partially inhibited by aphidicolin

(Figures 6B, lanes 5–8, and 6C, lanes 6–10) and completely

blocked by the combination of aphidicolin and araCTP (Figures

6B, lanes 9–12, and 6C, lanes 11–15). In contrast, if aphidicolin

and araCTP were added at 3 min, when the majority of 30 ends
had reached the crosslink (Figures S6A–S6C) but before the

marked accumulation of the DPC fragment, M.HpaII degradation

occurred normally (Figure S6D, lanes 5–8). We conclude that

nascent strand extension to the immediate vicinity of the DPC

is a prerequisite to trigger SPRTN-mediated DPC degradation

in the context of pDPCssDNA.

To test whether strand extension triggers SPRTN activity at a

replication fork, a short peptide adduct was placed 16 nt up-

stream of the methylated DPC, yielding pme-DPC+peptide (Fig-

ure 6D). The peptide should inhibit polymerase extension while

having no impact onCMGprogression. To ensure that no leading

strands reached the DPC, pme-DPC+peptide was replicated in

REV1-depleted extracts. Amatched pme-DPC substrate lacking

the peptide served as a control. As seen in Figure 6E, after first



pausing at the �30 to �40 positions due to CMG collision with

the DPC, leading strands on pme-DPC+peptide were extended

but then permanently stalled at the upstream peptide adduct

(lanes 5–8, �17 position). Under these conditions, methylated

M.HpaII persisted, and the SPRTN-mediated proteolytic frag-

ment never appeared (Figure 6F, lanes 5–7). In contrast, M.HpaII

proteolysis proceeded normally on pme-DPC (Figure 6F, lanes

1–4), where leading strands were allowed to reach the DPC (Fig-

ure 6E, lanes 1–4). These results demonstrate that in the context

of replication, CMG-DPC collision is insufficient to activate

SPRTN. Instead, SPRTN activity is strictly dependent on the sub-

sequent extension of a nascent strand to the lesion, which can

only occur once the CMG helicase has dissociated or moved

past the protein adduct.

Having defined the requirements for SPRTN proteolysis, we

repeated the experiment with unmethylated M.HpaII, which

should be ubiquitylated and therefore degraded by the protea-

some in the absence of polymerase extension. To this end, we

replicated pDPC+peptide in REV1-depleted extracts in the pres-

ence or absence of MG262 (Figure S6E). Unmethylated M.HpaII

underwent rapid polyubiquitylation and degradation, although

leading strands never reached the lesion (Figures S6F and

S6G). In this context, MG262 stabilized polyubiquitylated

M.HpaII (Figure S6G). Thus, DPC ubiquitylation and degradation

by the proteasome do not require polymerase advancement to

the lesion site.

TRAIP Stimulates DPC Ubiquitylation and Proteasome
Targeting
Finally, we addressedwhich E3 ligase ubiquitylates theDPC.Our

PP-MS analysis identified several ubiquitin ligases that were

enriched on replicating pDPC2xLead (Figure 7A). Among these,

TRAIP was a good candidate because it was strongly enriched

early in the reaction at the onset of DPC ubiquitylation (Figure 7A,

12 and 20 min), and its recruitment to chromatin depended on

replication (Figure 7A, ±Geminin). Moreover, TRAIP-deficient

cells exhibit impaired replication fork progression upon stress

and sensitivity to crosslinking agents (Feng et al., 2016; Harley

et al., 2016; Hoffmann et al., 2016). To clearly monitor DPC ubiq-

uitylation and proteasome-mediated DPC degradation, we per-

formed experiments in the absence of SPRTN. In this setting,

TRAIP depletion delayed DPC ubiquitylation and degradation

by 10–15 min compared to the mock reaction (Figures 7B, 7C,

lanes 1–12, S7A, and S7B) without affecting DNA replication ki-

netics (Figure S7C). Both DPC ubiquitylation and proteolysis

were largely restored by recombinant wild-type (WT) TRAIP (Fig-

ures 7B and 7C, lanes 13–18), but not a TRAIP mutant harboring

an amino acid substitution in the RING domain (R18C) (Figures

7B and 7C, lanes 19–24) that causes primordial dwarfism (Harley

et al., 2016). In contrast, when pDPCssDNA was incubated in non-

licensing extracts depleted of TRAIP, M.HpaII ubiquitylation was

unaffected (Figure S7D), suggesting the existence of a second

E3 ligase that operates on the DPC in the context of ssDNA.

These results indicate that TRAIP promotes DPC ubiquitylation

and proteolysis by the proteasome during replication.

We recently demonstrated that in the absence of DPC prote-

olysis, CMG bypasses an intact DPC, and this bypass is

required for efficient DPC proteolysis (J.L.S., unpublished
data). Moreover, we showed that bypass requires the DNA heli-

case regulator of telomere elongation helicase 1 (RTEL1). In the

absence of RTEL1, ubiquitin chains form on the DPC with

normal kinetics, but they are shorter, indicating that the DPC

can be ubiquitylated even before CMG has bypassed the lesion

(Figure S7E, compare lanes 2–3 and 8–9 and J.L.S., unpub-

lished data). Based on these findings, we postulated that TRAIP

promotes DPC ubiquitylation upon replisome collision with the

DPC and that subsequent CMG bypass generates ssDNA sur-

rounding the DPC, stimulating DPC ubiquitylation by the sec-

ond, ssDNA-activated E3 ligase. If this is the case, then the

dependence of DPC ubiquitylation on TRAIP should be more

pronounced in the absence of RTEL1. In RTEL1- and SPRTN-

depleted extracts, TRAIP depletion delayed M.HpaII ubiquityla-

tion by up to 30 min (Figures 7D, lanes 7–12, and S7E), and this

effect was rescued by TRAIP WT but not TRAIP R18C (Fig-

ure 7D, lanes 13–24). Consistent with the inhibition in DPC

ubiquitylation, TRAIP depletion in the absence of RTEL1 de-

layed proteasome recruitment to chromatin (Figure 7E,

compare lanes 3–8 and lanes 9–14), which was partially

rescued by TRAIP WT (Figure 7E, lanes 15–20). While DNA

replication kinetics were unaffected by TRAIP depletion (Fig-

ures S7C and S7F), both in the presence and absence of

RTEL1, TRAIP depletion delayed the disappearance of the

CMG footprint at the DPC, which is consistent with a defect

in CMG bypass (Figures 7F, lanes 1–12 and 13–24, and 7G).

This effect on CMG bypass was not observed in methylated

DPC (Figure S7G), strongly suggesting that the relevant target

of TRAIP ubiquitylation is the DPC. We conclude that DPC

ubiquitylation and proteasome targeting occurs in two stages:

first, when forks collide with a DPC, TRAIP-dependent DPC

ubiquitylation promotes CMG bypass, and second, CMG

bypass creates ssDNA surrounding the DPC that enables

further DPC ubiquitylation by a second, unknown E3 ubiquitin

ligase.

DISCUSSION

We previously demonstrated that DPCs are degraded in a repli-

cation-dependent process, but how this occurs was unclear

(Duxin et al., 2014). Using a newly developed PP-MS proteomic

workflow, we identified SPRTN and the proteasome as two pro-

teases that are recruited to a DPC lesion during DNA replication.

We further demonstrate that SPRTN and the proteasome oper-

ate in different pathways that are differentially activated by

DNA replication (Figure 7H). The implications of these findings

are discussed below.

Polymerase Approach Targets SPRTN
Our results raise the possibility that the stalling of a DNA poly-

merase at a DPC targets and activates SPRTN. Previous studies

reported direct interactions between SPRTN and DNA polymer-

ase delta subunit 3 (POLD3), one of the accessory subunits of

DNA Pold (Ghosal et al., 2012; Kim et al., 2013), suggesting

that Pold may direct SPRTN to the DPC. To date, we have not

been able to achieve sufficient depletion of Pold from egg

extracts to prevent gap-filling synthesis (data not shown), pre-

cluding a direct test of this model. Purified SPRTN is activated
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Figure 7. TRAIP Ubiquitin Ligase Stimulates DPC Ubiquitylation and Proteasome Targeting

(A) Heatmap showing the mean of the Z scored log2 LFQ intensity of potential E3 ubiquitin ligases. Proteins with similar intensities in the geminin or mock control

lacking the DNA substrate were excluded.

(B) Extracts were depleted with SPRTN and either control immunoglobulin G (IgG) or TRAIP antibodies and blotted for TRAIP and RTEL1 (loading control). TRAIP-

depleted extracts were supplemented with buffer (+Buf), recombinant TRAIP(WT), or TRAIP(R18C).

(C) Extracts from (B) were used to replicate pDPC2xLead. DPCs were monitored as in Figure 1B.

(D) SPRTN- and RTEL1-depleted extracts were either mock depleted or TRAIP depleted. TRAIP-depleted extracts were supplemented with buffer (+Buf),

recombinant TRAIP(WT), or TRAIP(R18C). These extracts were used to replicate pDPC2xLead, and DPCs were monitored as in Figure 1B.

(E) The indicated extracts were used to replicate pDPC2xLead. Recruitment of the indicated proteins to the plasmid was monitored as in Figure 3G.

(F) Extracts described in (D) were used to replicate pDPC2xLead in the presence of [a-32P]dATP, and nascent strand intermediates were analyzed as in Figure 4G.

CMG bypass was measured based on the disappearance of the �30 to �40 CMG footprint (Sparks et al., 2018). The mean of three independent experiments is

graphed for mock-, TRAIP-, and RTEL1-TRAIP-depleted samples. Error bars represent the SD. The TRAIP-RTEL1-depleted samples supplemented with

TRAIP(WT) represents the mean of two experiments and plotted without error bars.

(G) Samples from (F) were blotted with TRAIP, RTEL1, or SLD5 (loading control) antibodies.

(H) Model for replication-coupled DPC proteolysis in Xenopus egg extracts. Black lines, parental DNA; red lines, nascent DNA; green hexamers, CMG helicase;

blue spheres, replicative polymerases; yellow spheres, TLS polymerase; gray sphere, DPC; orange, SPRTN; yellow and blue, the proteasome; dark green, TRAIP-

dependent ubiquitin chains; light green, ubiquitin chains deposited by a second E3 ligase activated by ssDNA.
by DNA in vitro (Lopez-Mosqueda et al., 2016; Mórocz et al.,

2017; Stingele et al., 2016; Vaz et al., 2016), with ssDNA being

particularly potent (Stingele et al., 2016). We therefore speculate
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that SPRTN activation requires the presence of a DNA polymer-

ase on one side of a DPC and a short tract of ssDNA on the other

side. This dual requirement would specifically target SPRTN to



DPCs during replication and avoid indiscriminate destruction of

replisome components or other chromatin proteins.

A model of SPRTN activation by polymerase-DPC collision

has numerous implications. First, because CMG blocks the abil-

ity of leading strands to reach a DPC on the leading strand tem-

plate, our data imply that proteolysis by SPRTN can only occur if

CMG is no longer present in front of the DPC (Figure 7F). Accord-

ingly, we show that the CMG helicase readily bypasses leading

strand DPCs and that this process requires the helicase activity

of RTEL1 (Sparks et al., 2018). Consistent with a requirement for

leading strand extension in SPRTN activity, in the absence of

RTEL1-mediated DPC bypass, DPC proteolysis by SPRTN is

impaired. Second, SPRTN-dependent DPC proteolysis can

likely be uncoupled from the replication fork. Supporting this

idea, we show that SPRTN efficiently degrades a DPC linked

to ssDNA in the absence of the replisome via a process that

mimics post-replicative repair (Figures 6A–6C). By restricting

SPRTN to act behind the replication fork, cells ensure that irre-

placeable replisome factors such as CMG are not accidentally

degraded during replication. Finally, SPRTN activation by poly-

merase-DPC collision suggests a common mechanism of DPC

degradation on the leading and lagging strands; if Polε remains

associated with CMG during DPC bypass, this would liberate

the leading strand for Pold recruitment. In this way, both leading-

and lagging-strand DPC proteolysis would be triggered by the

collision of Pold with the adduct.

SPRTN contains C-terminal domains that interact with p97,

PCNA, and ubiquitin, but their importance in SPRTN activity is

unclear. While some reports suggested that these domains are

not essential (Maskey et al., 2014; Stingele et al., 2016), more

recent evidence indicates that both the ubiquitin and PCNAbind-

ing interactions of SPRTN are important for its role as a DPC

protease in human cells (Mórocz et al., 2017). In Xenopus egg ex-

tracts, the ubiquitin binding domain of SPRTN is important for

efficient DPC proteolysis, even in the absence of DPC ubiquity-

lation, suggesting that SPRTN interacts with another ubiquity-

lated protein near the lesion. Given our model that polymerase-

DPC collision triggers SPRTN activity, a possible candidate is

PCNA, which is ubiquitylated during post-replicative repair

(Hoege et al., 2002). Consistent with this idea, RAD18 is epistatic

to SPRTN for DPC repair (Mórocz et al., 2017). Although the PIP

motif was not required for SPRTN activity in egg extracts, this

may reflect the presence of tandem UBZ domains in Xenopus

SPRTN that could compensate for reduced PCNA binding.

DPC Ubiquitylation Promotes Proteasome-Mediated
DPC Degradation
It was previously proposed that the proteasome can degrade

DPCs, but evidence that this process occurs during DNA repli-

cation was lacking. Our work in Xenopus egg extracts shows

that replication triggers rapid polyubiquitylation of a type I

DPC. When DPC ubiquitylation is prevented via lysine methyl-

ation of the DPC, proteasome recruitment is abolished, strongly

supporting a role for DPC ubiquitylation in proteasome target-

ing. Although the interplay between TRAIP and the second E3

ubiquitin ligase and their specific functions in proteasome tar-

geting are unclear at present, a comprehensive model for

replication-coupled DPC ubiquitylation is starting to emerge
(Figure 7H). Our data suggest that one of the earliest events

following the replisome-DPC encounter is TRAIP-mediated

ubiquitylation of the DPC (Figure 7H, i–ii). Three observations

support this notion. First, TRAIP is enriched on the DPC

plasmid early in the reaction before CMG bypass (already pre-

sent at 12 min, before CMG bypass is observed [Figure S2C]).

Second, TRAIP-dependent DPC ubiquitylation is independent

of RTEL1 and therefore does not require CMG bypass (Fig-

ure 7D). Third, TRAIP depletion delayed CMG bypass, and

this effect was abrogated by the methylation of the DPC (Fig-

ures 7F and S7G). Following CMG bypass, ssDNA surrounding

the DPC likely stimulates the activity of the second E3 (Fig-

ure 7H, iii). Supporting this idea, we show here that when the

DPC is linked to ssDNA, DPC ubiquitylation and proteasome-

dependent DPC degradation occurs independently of the repli-

some or TRAIP (Figures 5 and S7D). Whether TRAIP-dependent

DPC ubiquitylation promotes proteasome targeting indepen-

dently of CMG bypass is an interesting question. For example,

TRAIP ubiquitylation of impassable DPCs may gradually stimu-

late their processing by the proteasome to facilitate CMG

bypass. The role of TRAIP in promoting efficient CMG bypass

predicts that TRAIP should also be required for optimal SPRTN

activity. TRAIP mutations in humans induce microcephalic pri-

mordial dwarfism (Harley et al., 2016). Future work will be

required to address whether this phenotype is attributable to

defective replication bypass and degradation of DPCs or other

functions of TRAIP.

SPRTN and the Proteasome Are Not Redundant DPC
Proteases
How do our findings relate to the defective replication fork pro-

gression and formaldehyde sensitivity observed in SPRTN-defi-

cient cells (Lessel et al., 2014; Vaz et al., 2016)? We showed that

SPRTN depletion delays TLS, indicating that SPRTN and the

proteasome are not redundant. We speculate that SPRTN is

able to degrade DPCs to peptide adducts that are sufficiently

small for efficient TLS. The protease active site of Wss1 is highly

solvent exposed, suggesting that it should be able to cleave

DPCs close to the DNA attachment site (Stingele et al., 2016).

In contrast, the active sites of the proteasome are buried inside

the 20S core particle. Threading of the unfolded DPC through

the cylindrical 20S particle would likely be interrupted upon its

encounter with the attached DNA, resulting in a larger peptide

adduct. Thus, when DPCs are channeled into the proteasomal

pathway, SPRTN may still be required in a second proteolytic

step to reduce the peptide adduct to a few amino acids. Our

findings predict that in SPRTN-deficient cells, CMG becomes

uncoupled from the leading strand due to defective TLS. In bac-

teria, helicase uncoupling greatly slows the rate of DNA unwind-

ing (Kim et al., 1996), and this is also true in vertebrates (J.L.S.,

unpublished data). Therefore, we speculate that defective fork

progression in SPRTN-deficient cells reflects slow unwinding

by uncoupled CMG. Defective TLS may also contribute to the

formaldehyde sensitivity of SPRTN-deficient cells, as REV1-

and REV3-deficient cells are also sensitive to formaldehyde

treatment (Ridpath et al., 2007).

DPCs are expected to exhibit great variability in size, struc-

ture, and attachment chemistry. While agents such as
Molecular Cell 73, 574–588, February 7, 2019 585



formaldehyde crosslink proteins to duplex DNA, abortive reac-

tions by topoisomerase form DPCs that are flanked by a DNA

break. Hence, while both SPRTN and the proteasome readily

degrade M.HpaII, it is conceivable that other crosslinked pro-

teins are preferentially processed by one or the other protease.

For example, SPRTN is expected to be particularly critical for

DPCs that lack available lysines and therefore cannot be ubiq-

uitylated, which may account for the DPCs that accumulate in

SPRTN-deficient cells (Stingele et al., 2016; Vaz et al., 2016). In

contrast, the proteasome may be essential for very large DPCs

that cannot be bypassed by the replication fork and require

‘‘pre-trimming’’ by the proteasome. Alternatively, the protea-

some may be critical in removing DPCs flanked by DNA breaks

outside of replication or when DPCs are encountered by the

transcription machinery. The use of at least two DPC proteases

with orthogonal mechanisms and triggers represents a versa-

tile system to degrade a wide variety of DPCs.
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Antibodies

Rabbit polyclonal anti-Rev1-N Budzowska et al., 2015 N/A

Rabbit polyclonal anti-Rev1-C Budzowska et al., 2015 N/A

Rabbit polyclonal anti-Orc2 Fang and Newport, 1993 N/A

Rabbit polyclonal anti-Cdc45 Mimura and Takisawa, 1998 N/A

Rtel1 Sparks et al., 2018 N/A

Sld5 Dewar et al., 2017 N/A

Rabbit polyclonal anti-Psma1 New England Peptides 3514

Rabbit polyclonal anti-Psma3 New England Peptides 3516

Rabbit polyclonal anti-Sprtn New England Peptides 3703

Rabbit polyclonal anti-Traip New England Peptides 3472

Rabbit polyclonal anti-MCM6 New England Peptides 2926

Rabbit polyclonal anti-Sprtn-N Pocono Rabbit Farm and

Laboratory

Rabbit # 31053

Rabbit polyclonal anti-M.HpaII Pocono Rabbit Farm and

Laboratory

Rabbit # 31495 and 31496

Rabbit polyclonal anti-H3 Cell Signaling Cat# 9715S; RRID:AB_331563

Bacterial and Virus Strains

E. coli T7 express New England Biolabs C2566H

E. coli Rosetta 2 (DE3) pLysS Novagen 71-401-3

Chemicals, Peptides, and Recombinant Proteins

Geminin McGarry and Kirschner, 1998 N/A

LacI-biotin Duxin et al., 2014 N/A

M.HpaII Duxin et al., 2014 N/A

xlSPRTN-WT This study N/A

xlSPRTN-EQ This study N/A

xlSPRTN-SHPx This study N/A

xlSPRTN-PIPx This study N/A

xlSPRTN-UBZx This study N/A

xlSPRTN-1-435 This study N/A

xlTRAIP-WT This study N/A

xlTRAIP-R18C This study N/A

UbVS Boston Biochem U-202

Human Recombinant Ubiquitin Boston Biochem U-100H

Human Recombinant FLAG-Ubiquitin Boston Biochem U-120

dnUBC9 Azuma et al., 2003 N/A

Human chorionic ganotropin Sigma CG10-10VL

MG262 Boston Biochem I-120

Alpha-32P-deoxyadenosinetriphosphate Perkin Elmer BLU512H250UC

Gamma-32P-adenosinetriphosphate Perkin Elmer BLU502A100UC

Proteinase K, recombinant Roche 3115879001

Aphidicolin Sigma A0781-1MG

Ara-cytidine-50triphosphate Jena Bioscience NU-1170S

Exonuclease I New England Bioscience M0293S

Protein A Sepharose Fast Flow GE Health Care 17-1279-01
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RNase A Thermo Fisher EN0531

Gel Loading Dye II Invitrogen AM8547

EDTA-free Complete protease inhibitor cocktail Roche 11873580001

Anti-FLAG M2 affinity resin Sigma A2220-5ML

3xFLAG peptide Sigma F4766-4MG

Streaptavidin-coupled magnetic beads M-280 Invitrogen 11205D

Benzonase Novagen 70746-3

FLAG M2 magnetic beads Sigma M8823-1ML
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LysC Life Technologies 90051
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UbiCREST Boston Biochem K-400

Reductive Alkylation Kit Hampton Research HR2-434

Quickchange II mutagenesis kit Aglient 200523

Thermo Sequenase Cycle Sequencing kit USB 785001KT

Bac to Bac Expression System Thermo Fisher Scientific 10359016

Deposited Data

ProteomeXchange This study PXD008831

Experimental Models: Cell Lines

Sf9 Insect cells Thermo Fosher Scientific B82501

Experimental Models: Organisms/Strains

Xenopus laevis (females) Nasco LM0053MX

Xenopus laevis (males) Nasco LM00715MX
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This study Tag Copenhagen

Sequencing ladder: CATTCAGCTCCCGGAGACGGTC This study Tag Copenhagen

Primer A: 50 – GAT CGG ATC CAT GGA CTA CAA AGA CGA TGA CGA

CAA GGG TGA TAT GCA GAT GTC GGT AG – 30
This study IDT

Primer B: 50- GAT CCT CGA GTT ATT ATG TAT TGC AGT TTT GTA AGC

AGG TGT CTA AAT G �30
This study IDT

Recombinant DNA

pJLS2 This study N/A

pJLS3 This study N/A

pNBL104 This study N/A
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pFastBac1-xlSPRTN-WT This study N/A

pFastBac1- xlSPRTN-EQ This study N/A

pFastBac1-xlSPRTN-SHPx This study N/A

pFastBac1-xlSPRTN-PIPx This study N/A

pFastBac1-xlSPRTN-UBZx This study N/A

pFastBac1-xlSPRTN-1-435 This study N/A

pH6-SUMO-xlTRAIP-WT This study N/A

pH6-SUMO-xlTRAIP-R18C This study N/A

Software and Algorithms

ImageJ 1.51 NIH https://imagej.nih.gov/ij

MaxQuant Cox and Mann, 2008 http://www.coxdocs.org

Perseus 1.5.6.0 Tyanova et al., 2016 http://www.coxdocs.org
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Julien P. Duxin (julien.duxin@cpr.ku.dk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Egg extracts were prepared using Xenopus laevis (Nasco Cat #LM0053MX, LM00715MX). All experiments involving animals were

approved by the HarvardMedical Area Institutional Animal Care and UsedCommittee and by the Danish Animal Experiments Inspec-

torate, and are conform to relevant regulatory standards and European guidelines.

METHOD DETAILS

Xenopus Egg Extracts and DNA Replication
Preparation of Xenopus egg extracts was performed as described previously (Lebofsky et al., 2009; Walter et al., 1998). For high-

speed supernatant (HSS) preparation, 6 female frogs (Nasco) were primed by injection with 80 IU of human chorionic gonadotropin

(hCG, Sigma). 2-7 days after priming, frogs were injected with 625 IU of hCG and placed in individual tanks containing 100 mMNaCl.

18-20 hours post injection, eggs were collected and used for extract preparation. Eggs were first dejellied in cysteine buffer for 7 min

(2.2% cysteine-HCl, pH 7.7), washed 3 times in in 0.5X MMR buffer (final concentration: 50 mM NaCl, 1 mM KCl, 0.25 mM MgSO4,

1.25 mM CaCl2, 2.5 mM HEPES, 0.05 mM EDTA, pH 7.8) and washed 3 times in ELB sucrose buffer (2.5 mM MgCl2, 50 mM KCl,

10 mM HEPES, 250 mM sucrose, 1 mM DTT, 50 mg/mL cyclohexamide, pH 7.8). Eggs were packed for 1 min at 176 x g for 1 min

and crushed for 20 min at 20, 000 x g in a swing bucket rotor at 4�C in the presence of cytochalasin B (final concentration:

2.5 mg/mL), aprotinin (final concentration: 5 mg/mL) and leupeptin (final concentration: 5 mg/mL). Crude interphase extract was recov-

ered post-centrifugation and spun in ultracentrifuge for 90 min at 260,000 x g at 2�C following addition of cyclohexamide (final con-

centration: 50 mg/mL), DTT (final concentration: 1 mM), aprotinin (final concentration: 10 mg/mL), leupeptin (final concentration:

10 mg/mL) and cytochalasin B (final concentration: 5 mg/mL). Following centrifugation, the small lipid layer on top was removed.

The soluble HSS was harvested, snap frozen in 33 uL aliquots and stored at �80�C. For nucleoplasmic egg extract (NPE), 20 female

frogs were injected and the crude interphase extract was prepared in the samemanner than for HSS. Once collected the crude inter-

phase extract was supplemented with cyclohexamide (final concentration: 50 mg/mL), DTT (final concentration: 1mM), aprotinin (final

concentration: 10 mg/mL), leupeptin (final concentration: 10 mg/mL), cytochalasin B (final concentration: 5 mg/mL) and nocadazole

(final concentration: 3.3 ug/mL). The extract was spun at 20 000 x g at 4�C for 10 min. The lipid layer on top was removed and

the interphase extract decanted to a new tube. The interphase extract was supplemented with ATP (final concentration: 2mM), phos-

phocreatine (final concentration: 20 mM) and creatine phosphokinase (final concentration: 5 mg/mL) and nuclear assembly reactions

were initiated by adding demembranated sperm chromatin to a final concentration of 4,400/mL. The nuclear assembly reaction was

incubated at room temperature for 60-85 min, and then spun for 2 min at 20 000 x g in a swing-bucket rotor. The nuclear layer on top

was recovered and then spun in a swinging bucket rotor at 260,000 x g at 2�C for 30 min. Lipids on top were removed and the clear

soluble NPE was harvested. 10 mL NPE aliquots were snap-frozen and kept at �80�C.
For DNA replication, plasmids were first incubated in HSS (final concentration: 7.5 ng DNA/mL HSS), supplemented with nocada-

zole (final concentration: 3 mg/mL) and ATP regeneration mix (final concentration: 20 mM phosphocreatine, 2 mM ATP, 5 mg/mL cre-

atine phosphokinase, for 20-30 min at room temperature to license the DNA. Two volumes of NPE supplemented with 4 mM DTT,
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20 mM phosphocreatine, 2 mM ATP, 5 mg/mL creatine phosphokinase were then added to 1 volume of licensing reaction to initiate

replication.Where indicated, HSSwas supplementedwith Geminin at a final concentration of 10 mMand incubated for 10min at room

temperature prior to addition of plasmid DNA. For replication in the presence of LacI, plasmid DNA (75 ng/uL) was incubated with an

equal volume of 12 mM LacI for 1 hr prior to HSS addition (Duxin et al., 2014). For UbVS treatment, NPE was supplemented with

22.5 mM ubiquitin vinyl sulfone (UbVS) (Boston Biochem) and incubated for 15 min prior to mixing with HSS (15 mM final concentra-

tion). Where indicated, recombinant ubiquitin or FLAG-ubiquitin (Boston Biochem) were added to NPE at a concentration of 120 mM

(80 mMfinal concentration). For SPRTN depletion-rescue experiments, NPE was supplemented with 30 nM recombinant wild-type or

mutant Xenopus SPRTN. For TRAIP depletion-rescue experiments, NPEwas supplemented with 100 nMof recombinant wild-type or

R18C Xenopus TRAIP. To block de novo SUMOylation, dnUBC9 was added to extracts to a final concentration of 10 mM (Azuma

et al., 2003).Where indicated, proteasome activity was inhibited via the addition of 200 mMMG262 (Boston Biochem) to extracts (final

concentration). For DNA labeling, reactions were supplemented with [a-32P]dATP. To analyze plasmid replication intermediates, 1 mL

of each reaction was added to 5 mL of replication stop solution A (5% SDS, 80 mM Tris pH 8.0, 0.13% phosphoric acid, 10% Ficoll)

supplemented with 1 mL of Proteinase K (20 mg/ml) (Roche). Samples were incubated for 1 hr at 37�C prior to separation by 0.9%

native agarose gel electrophoresis and visualization using a phosphorimager (Lebofsky et al., 2009). For analysis of nascent leading

strand products, 3-4 mL of each replication reaction was added to 10 volumes of 50 mM Tris pH 7.5, 0.5% SDS, 25 mM EDTA, and

replication intermediates were purified by phenol chloroform extraction. For incubation in non-licensing extracts, one volume of HSS

and two volumes of NPEwere premixed prior to the addition of plasmid DNA (final concentration of 10 ng/mL). Where indicated, aphi-

dicolin (Sigma) and ara-cytidine-50-triphosphate (araCTP) (Jena Bioscience), were added to a final concentration of 700 mM and

1 mM, respectively. All experiments were performed at least in duplicate and a representative experiment is shown. Radioactive

signal was quantified using ImageJ (NIH, USA).

Preparation of DNA constructs
To generate pDPC we first created pJLS2 by replacing the AatII-BsmBI fragment from pJD2 (Duxin et al., 2014) with the following

sequence:

50-GGGAGCTGAATGCCGCGCGAATAATGGTTTCTTAGACGT-30 which contains a Nb.BsmI site.

To generate pDPC2xLead, the SacI-BssHII fragment from pJLS2 was replaced with the following sequence:

50CATCCACTAGCCAATTTATGCTGAGGTACCGGATTGAGTAGCTACCGGATGCTGAGGGGATCCACTAGCCAATTTATCATGG-30.

pJLS2 or pJLS3 were nicked with Nt.BbvcI and ligated with the following oligo containing a fluorinated cytosine: 50-TCAG
CATCCGGTAGCTACTCAATC[C5-Fluro dC]GGTACC-30 and subsequently crosslinked to M.HpaII-His6 to generate pDPC or

pDPC2xLead, respectively, as previously described (Duxin et al., 2014). To this end, the modified fluorinated DNA was gel purified

and mixed with M.HpaII-His6 in reaction buffer (50 mM Tris-HCl pH 7.5, 5 mM 2-mercaptoethanol, 10 mM EDTA) supplemented

with 100 mMof S-adenosylmethionine (NEB) for 12 hr at 37�C. To generate pDPCPK, pDPCwas treated with Proteinase K (37�C over-

night in presence of 0.5% SDS) to reduce the DPC to a 4 amino acids peptide adduct. The plasmid was subsequently recovered by

phenol/chloroform extraction. To generate pDPC+peptide the ApoI-NdeI fragment of pJLS2was replaced with the following sequence:

50- AATTCCTCAGCATCCGGTTCGAACTCAATAGCTTACCTCAGCCA-30, generating pNBL104. pNBL104 was nicked with Nt.BbvCI

and ligated with the following oligo containing both a fluorinated AluI site and a fluorinated M.HpaII site: 50- TCAGCATC[C5-FlurodC]

GGTTCGAACTCAATAG[C5-FlurodC]TTACC-30. AluI Methyltransferase (New England BioLabs) was first crosslinked to the plasmid,

degraded with Proteinase K (37�C overnight in presence of 0.5% SDS) and the plasmid was recovered by phenol/chloroform extrac-

tion. The peptide-containing plasmid was then crosslinked to M.HpaII-His6 as described above. To generate pDPCssDNA, pJLS2

was nicked with Nb.BbvCI and ligated with the following fluorinated oligo: 50-TGAGGTAC[C5-FlurodC]GGATTGAGTAGCTACCG

GATGC-30. The dFdC-containing plasmid was cut with Nt.BbvCI and the resulting 31bp fragment was melted off and captured by

annealing to an excess complimentary oligo 50-GGTACCGGATTGAGTAGCTACCGGATGCTGA-30. Excess oligos were then

degraded by Exonuclease I (New England BioLabs) treatment. The gapped plasmid was then recovered by phenol/chloroform

extraction and crosslinked to M.HpaII-His6 as described above.

Antibodies and Immunodepletion
The following antibodies used were described previously: REV1 (Budzowska et al., 2015), ORC2 (Fang and Newport, 1993). M.HpaII

antibody was raised against full lengthM.HpaII-His6 expressed and purified from bacteria under denaturing conditions (Pocono Rab-

bit Farm & Laboratory). PSMA1, PSMA3, SPRTN, TRAIP and MCM6 antibodies were raised by New England Peptide by immunizing

rabbits with Ac-CAEEPVEKQEEPMEH-OH, Ac-CKYAKESLEEEDDSDDDNM-OH, Aoa-DVLQDKINDHLDTCLQNCNT-OH, Ac-

CTSSLANQPRLEDFLK-OH and Ac-CLVVNPNYMLED-OH, respectively. SPRTN-N antibody was raised against a fragment of

Xenopus laevis SPRTN encompassing amino acids 67-287 which was tagged on N terminus with His6. The protein fragment was

purified from bacteria under denaturing conditions and the antibody was raised by Pocono Rabbit Farm & Laboratory. Western blot-

ting analysis for H3 was carried out with commercial antibody from Cell Signaling (Cat #9715S).
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To immunodeplete SPRTN from Xenopus egg extracts, one volume of Protein A Sepharose Fast Flow (PAS) (GE Health Care) was

mixed with 4 volumes of affinity purified SPRTN peptide antibody (1 mg/mL) and incubated overnight at 4�C. The beads were then

washed twice with 500 mL PBS, once with ELB (10 mMHEPES pH 7.7, 50 mMKCl, 2.5 mMMgCl2, and 250mM sucrose), three times

with ELB supplemented with 0.5 M NaCl, and twice with ELB. One volume of precleared HSS or NPE was then depleted by mixing

with 0.2 volumes of antibody-bound beads then incubating at room temperature for 20 min. The depletion procedure was repeated

once. To immunodeplete PSMA1, one volume of PAS beads was mixed with 10 volumes of affinity purified PSMA1 peptide antibody

(1mg/mL). The beadswerewashed as described above, and one volume of precleared HSSor NPEwas then depleted bymixingwith

0.2 volumes of antibody-bound beads and then incubating at room temperature for 20 min. The depletion procedure was repeated

three times for HSS and twice for NPE. For SPRTN and PSMA1 combined depletion, one volume of PAS beads was mixed with 4

volumes of affinity purified SPRTN peptide antibody and 10 volumes of affinity purified PSMA1 peptide antibody. The beads were

washed and depletion was performed as described for PSMA1 immunodepletion. The immunodepletion of REV1 was performed

as previously described (Budzowska et al., 2015). To immunodeplete TRAIP, one volume of Protein A Sepharose Fast Flow (PAS)

(GEHealth Care) wasmixedwith 2.5 volumes of affinity purified TRAIP antibody (1mg/mL) and incubated overnight at 4�C. The beads
were washed as described above, and one volume of precleared HSS or NPE was then depleted by mixing with 0.2 volumes of anti-

body-bound beads and then incubating at room temperature for 20 min. The depletion procedure was repeated twice for HSS and

twice for NPE. Experiments in Figures 7 and S7E–S7G were performed using the SPRTN-N antibody where one volume of PAS was

mixed with 3 volumes of SPRTN-N serum and incubated overnight at 4�C. The beads were washed as described above, and one

volume of precleared HSS or NPE was then depleted by mixing with 0.2 volumes of antibody-bound beads and then incubating

at room temperature for 20 min. The depletion procedure was repeated once.

Nascent-Strand Analysis
Nascent strand analysis was performed as previously described (R€aschle et al., 2008). Briefly, purified DNA was digested with the

indicated restriction enzymes followed by addition of 0.5 volumes of Gel Loading Dye II (Denaturing PAGE) (Life Technologies).

DNA fragments were subsequently separated on 5% or 7% denaturing polyacrylamide gels, transferred to filter paper, dried, and

visualized using a phosphorimager. Radioactive signal was quantified using ImageJ (NIH, USA).

Reference oligo used in Figure S4I: 50-CATTCAGCTCCCGGAGACGGTCACAGCTTG TCTGTAAGCGGATGCCGGGAGCAGA

CAAGCCCGTCAGGGCGCGTCAGCGGGTGTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGA

GTGCACCATATGGCTGAGGTACCG-30.
Primer used for dideoxy-sequencing ladder in Figure S4I: 50- CAT TCA GCT CCC GGA GAC GGT C – 30.

Protein Expression and Purification
M.HpaII-His6 was expressed and purified as previously described (Duxin et al., 2014). Briefly, pHpaII-Avitag-His6 was transformed in

T7 Express Competent E.coli cells (NEB), cells cultured in the presence of 100 mg/mL ampicillin until the OD600 reached 0.7. The cul-

ture was supplemented with 0.5 mM IPTG for 3 hours, collected by centrifugation and resuspended in 15mL Lysis Buffer (20 mMTris

pH 8.5, 500 mM KCl, 10% glycerol, 10 mM imidazole and protease inhibitors (Roche)). Cells were lysed by sonication and cleared by

centrifugation at 20, 000 x g for 30 min. Cleared lysate was applied onto Ni-NTA resin (QAGEN). The resin was washed with 25 mL of

Lysis Buffer containing 30mM imidazole and the protein eluted with Elution Buffer (20mMTris pH 8.5, 100mMKCl, 10%glycerol and

250 mM imidazole). Eluate was dialyzed overnight in Storage Buffer (20 mM Tris pH 8.5, 100 mM KCl, 1 mM DTT, 30% glycerol) and

protein aliquots snap frozen and kept at�80�C. To generate lysine-methylated M.HpaII, purifiedM.HpaII-His6 was first denatured by

dialyzing against 20 mM HEPES pH 7.5, 100 mM KCl, 6M Guanidine HCl, 10% glycerol. Denatured M.HpaII protein was then meth-

ylated using Reductive Alkylation Kit (Hampton Research) via the addition of dimethylamine borane and formaldehyde according to

the manufacturer’s protocols. The methylation reaction was stopped by addition of 100 mM Tris pH 7.5 and 5 mM DTT (final con-

centrations). Methylated M.HpaII was then renatured by sequentially dialyzing against Renaturing Buffer (20 mM Tris pH 8.5,

100mM KCl, 1mM DTT, 10% glycerol) supplemented with 4, 2, and 0 M Guanidine HCl for 1 hr each at 4�C. The renatured protein

was then dialyzed against storage buffer (20 mM Tris pH 8.5, 100 mM KCl, 1 mM DTT, 30% glycerol) and stored at �80�C.
LacI-biotin protein was purified from T7 Express Competent cells (NEP) (Duxin et al., 2014). Briefly, pET11a-LacI and pBirAcm

(Avidity) were co-transformed and cells cultured in the presence of 100 mg/mL ampicillin and 34 mg/mL chloramphenicol at 37�C until

OD600 reached 0.6. The culture was supplemented with 1 mM IPTG and 50 mM biotin for 2 hours. Cells were collected by centrifu-

gation and resuspended in Buffer 1 (50 mM Tris pH 7.5, 5 mM EDTA, 100 mM NaCl, 10% sucrose, 1 mM DTT, protease inhibitors

(Roche), 0.2 mg/mL lysozyme (Sigma), 0.1% Brij 58) and rotated for 30 min at room temperature. The cell lysate was pelleted by

centrifugation for 60 min at 20, 000 x g and the insoluble pellet was resuspended in 10 mL of Extraction Buffer (50 mM Tris pH

7.5, 5mMEDTA, 1MNaCl, 30mM IPTG, 1mMDTT and protease inhibitors). The resuspended pellet was homogenized by sonication

and pelleted again for 60 min at 20, 000 x g. The supernatant was collected and 1% polymin P was added to 0.045%. Lysate was

rotated for 30min at 4�C and pelleted at 20, 000 x g for 20min. The supernatant was transferred to a new tube and ammonium sulfate

was added to a final saturation of 37% followed by rotation for 30 min at 4�C. The pellet was recovered and resuspended in 2 mL of

Wash Buffer (50 mM Tris pH 7.5, 1 mM EDTA, 100 mM NaCl, 1 mM DTT and protease inhibitors). The resuspension was applied to a

column containin 1 mL of softlink avidin resin and inbutated for 1 hour at 4�C. The column was washed with 15 mL of Wash Buffer,

and the protein eluted with Elution buffer (50 mM Tris pH 7.5, 1 mM EDTA, 100 mM NaCl, 1 mM DTT and 5 mM biotin). Protein was
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dialyzed overnight with Dialysis Buffer (50 mM Tris pH 7.5, 1 mM EDTA, 150 mM NaCl, 1 mM DTT and 30% glycerol) and stored

at �80�C.
Xenopus SPRTNwith an N-terminal FLAG tagwas cloned into pFastBac1 (Thermo Fisher Scientific) using primers A and B. SPRTN

mutations were introduced via Quikchange mutagenesis and confirmed by Sanger sequencing. SPRTN Baculoviruses were pre-

pared using the Bac-to-Bac system (Thermo Fisher Scientific) according to the manufacturer’s protocols. SPRTN was expressed

in 250 mL suspension cultures of Sf9 insect cells (Thermo Fisher Scientific) by infection with SPRTN baculovirus for 48 hr. Sf9 cells

were subsequently collected via centrifugation and resuspended in Lysis Buffer (50 mM Tris pH 7.5, 500mMNaCl, 10%Glycerol, 1X

Roche EDTA-free Complete protease inhibitor cocktail, 0.5 mM PMSF, 0.2% Triton X-100). To lyse cells, the suspension was sub-

jected to three freeze/thaw cycles, passed through a 21 g needle, and then sonicated. The cell lysate was spun at 25000 rpm in a

Beckman SW41 rotor for 1hr. The soluble fraction was collected and then incubated with 200 mL anti-FLAG M2 affinity resin (Sigma)

for 90min at 4�C. The resin was then washed once with 10mL Lysis Buffer, twice withWash Buffer (50mMTris pH 7.5, 500mMNaCl,

10%Glycerol, 0.2%Triton X-100), and three timeswith Buffer A (50mMTris pH 7.5, 500mMNaCl, 10%Glycerol). FLAG-SPRTNwas

eluted with Buffer A supplemented with 100 mg/mL 3xFLAG peptide (Sigma). Elution fractions containing FLAG-SPRTN protein were

pooled and dialyzed against 20 mM Tris pH 7.5, 300 mM NaCl, 10% Glycerol, 1mM DTT at 4�C for 12 hr and then dialyzed against

Storage Buffer (20mMTris pH 7.5, 150mMNaCl, 10%Glycerol, 1mMDTT) at 4�C for 3 hr. Aliquots of FLAG-SPRTNwere then stored

at �80�C.
Xenopus recombinant TRAIP wild-type (WT) and TRAIP R18C were expressed and purified with a 6xHis-SUMO tag in bacteria.

Briefly, Rosetta 2 (DE3) pLysS competent cells (Novagen) were transformed with pH6-SUMO-TRAIP WT or pH6-SUMO TRAIP

R18C and cells grown in the presence of 100 mg/mL ampicillin and 27 mg/mL chloramphenicol at 37�C until OD600 reached 0.6. Cells

were then transferred to 16�C for 30min and supplemented with 0.1mM IPTG and 50 mMZnSO4 overnight. The culture was collected

by centrifugation and resuspended in Lysis Buffer (20 mM HEPES pH 7.5, 400 mM sodium acetate, 10% glycerol, 20 mM imidazole,

10 mM ZnSO4, 0.1% NP-40, 1 mM DTT and protease inhibitors). The lysate was sonicated, and ammonium sulfate and polyethyle-

neimine were added to final concentrations of 300 mM and 0.45%, respectively, and incubated for 15 min at 4�C. The lysate was

centrifuged at 40, 000 x g for 45 min and the soluble fraction recovered and precipitated with ammonium sulfate. The precipitated

fraction was collected by centrifugation at 40,000 x g for 45 min and resuspended in Lysis Buffer and rotated for 30 min with NiNTA

resin at room temperature. The resin waswashed three timeswithWash Buffer (20mMHEPES pH 7.5, 400mMsodium acetate, 10%

glycerol, 20 mM imidazole, 10 mM ZnSO4, 0.01% NP-40, 1 mM DTT and protease inhibitors) and the protein was eluted from resin

with Elution Buffer (20 mM HEPES pH 7.5, 400 mM sodium acetate, 10% glycerol, 120 mM imidazole, 10 uM ZnSO4, 0.01% NP-40,

1 mM DTT). The eluate was then dialized with Dialysis Buffer (20 mM HEPES pH 7.5, 400 mM sodium acetate, 120 mM imidazole,

10% glycerol) overnight at 4�C in the presence of 0.03 mg/mL Ulp1. Aliquots were flash frozen and stored at �80�C.
Xenopus recombinant 6xHis-Geminin was expressed and purified as previously described (McGarry and Kirschner, 1998). Briefly,

BL21 cells were transformedwith pET28a-His-Geminin and cultured until the OD600 reached 0.6. The culture was supplemented with

0.5 mM IPTG for 3 hours, collected by centrifugation and resuspended in 10 mL Buffer S (50 mM NaPi pH 7.6, 5 mM BME, 1 mM

PMSF and 2 mM benzamidine) containing 10 mg lysozyme and 1% Triton X-100. Cells were incubated for 10 min at room temper-

ature and supplemented with 1mL of 5MNaCl. Cells were then sonicated and pelleted at at 20, 000 x g for 30min. Cleared lysate was

supplemented with 20 mM imidazole and applied onto Ni-NTA resin (QAGEN) for 1 hour at 4C. The resin was washed with Buffer W

(50 mM NaPi pH 7.6, 0.5 M NaCl, 0.1% Triton X-100, 5 mM BME, 20 mM imidazole), and the protein eluted with Elution Buffer

(50 mMNaPi pH 7.6, 0.5MNaCl, 5 mMBME). The protein was dialyzed overnight with (10mM Tris pH 8, 0.5MNaCl and 5%glycerol).

Aliquots were flash frozen and stored at �80�C.
Primer A: 50 – GAT CGG ATC CAT GGA CTA CAA AGA CGA TGA CGA CAA GGG TGA TAT GCA GAT GTC GGT AG – 30

Primer B: 50- GAT CCT CGA GTT ATT ATG TAT TGC AGT TTT GTA AGC AGG TGT CTA AAT G �30

Plasmid Pull-Downs
Plasmid pull-down assays were performed as previously described (Budzowska et al., 2015). 6 mL/pull down of streptavidin-coupled

beads (DynabeadsM-280, Invitrogen) were washed three times with wash buffer 1 (50mM Tris pH7.5, 150mMNaCl, 1 mMEDTA pH

8, 0.02% Tween-20). Biotinylated LacI was added to the beads at 12 pmol/6 mL of beads, and incubated at RT for 1 hour. The beads

were washed four timeswith pull-down buffer (10mMHEPES pH 7.7, 50mMKCl, 2.5mMMgCl2, 250mMsucrose, 0.25mg/mL BSA,

0.02% Tween-20) and resuspended in 40 mL of the same buffer and stored on ice. At the indicated time point, 6 to 8 mL of reaction

samples were withdrawn and gently mixed with the beads. The suspension was rotated for 30 min at 4�C. The beads were then

washed 2 times with wash buffer 2 (10mMHEPES pH 7.7, 50mMKCl, 2.5 mMMgCl2, 0.25mg/mL BSA and 0.03% Tween-20). After

washing, beadswere resuspended in 40 mL of 2x Laemmli sample buffer and equal volume of protein samples were resolved on SDS-

PAGE gels. Proteins associated with the chromatin fraction were visualized by western blotting with the indicated antibodies and

developed using the chemiluminescence function on Amersham Imager 600 (GE Healthcare).

DPC Pull-Downs
We developed a modified plasmid pull-down protocol to specifically isolate M.HpaII DPCs from extracts (Figure 1A). Streptavidin-

coupled magnetic beads (Dynabeads M-280, Invitrogen; 5 mL per pull-down) were washed twice with 50 mM Tris pH 7.5,

150mMNaCl, 1mMEDTA pH 8, 0.02%Tween-20. Biotinylated LacI was added to the beads (1 pmol per 5 mL of beads) and incubated
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at room temperature for 40 min. The beads were then washed four times with DPC pull-down buffer (20 mM Tris pH 7.5,

150mMNaCl, 2 mMEDTA pH 8, 0.5% IPEGAL-CA630) and then stored in the same buffer on ice until needed. At the indicated times

during DNA replication or gap filling, equal volumes (2-10 mL) of reaction were withdrawn and stopped in 300 mL of DPC pull-down

buffer on ice. After all of the time points were taken, 5 mL of LacI-coated streptavidin Dynabeads were added to each sample and

allowed to bind for 30-60 min at 4�C rotating. 20 mL of pull-down supernatant was mixed with 20 mL of 2X Laemmli sample buffer

for input. The beads were subsequently washed four times with DPC pull-down buffer and then twice with Benzonase buffer

(20 mM Tris pH 7.5, 150 mM NaCl, 2 mMMgCl2, 0.02% Tween-20) before being resuspended in 15 mL Benzonase buffer containing

1 mL Benzonase (Novagen). Samples were incubated for 1hr at 37�C to allow for DNA digestion and DPC elution, after which the

beads were pelleted and the supernatant M.HpaII eluate was mixed with 2X Laemmli sample buffer for subsequent western blotting

analysis.

For FLAG immunoprecipitation analysis of isolated DPCs (Figure 1D), the M.HpaII eluate resulting from Benzonase treatment was

instead diluted to 300 mL in Benzonase buffer. FLAGM2magnetic beads (Invitrogen; 5 mL per pull-down) were added to each sample

and allowed to bind for 60 min at 4�C rotating. The beads were subsequently washed four times with Benzonase buffer. To elute

precipitated proteins, the beads were then resuspended in 0.1 M Glycine pH 3 and incubated with gentle shaking for 10 min at

room temperature. After pelleting the beads, the supernatant was neutralized with 10mM Tris pH 11 and mixed with 2X Laemmli

buffer.

For UbiCREST analysis of isolated DPCs (Figures S1E and S1F), pull down samples were washed with DPC pull-down buffer as

described initially but were instead then washed and resuspended in 1X DUB reaction buffer and treated with the indicated deubi-

quitinase(s) (Boston Biochem; Hospenthal et al., 2015) at 37�C for 30 min. The samples were subsequently washed twice with Ben-

zonase buffer and eluted with Benzonase treatment as previously described.

To monitor M.HpaII degradation pDPCLead or pDPCLag plasmids were pre-bound with purified LacI (untagged) for 60 min at RT as

previously described (Duxin et al., 2014). Pre-bound plasmids were replicated at 5 ng/mL final concentration in HSS/NPE, and reac-

tions stopped in DPC pull-down buffer. DPC plasmids were pulled down washed and benzonase treated as described above. After

elution with benzonase, the eluates were incubated with His-tag dynabeads to recover M.HpaII-His6 DPCs (Life Technologies) in HIS

wash buffer (50 mM sodium phosphate buffer, pH8, 150 mM NaCl, 0.02% Tween-20) for 10 minutes at 4�C. This step was added to

avoid cross reactivity between free LacI and the M.HpaII antibody. Beads were washed three times in HIS wash buffer and eluted in

HIS elution buffer (300mM imidazole, 50mM sodium phosphate buffer, pH8, 300mMNaCl, 0.01%Tween20) shaking at RT for 5min.

The supernatant M.HpaII-His6 eluate was mixed with 2X Laemmli sample buffer for subsequent western blotting analysis.

Plasmid Pull-down Mass Spectrometry (PP-MS)
Plasmid DNA was replicated in egg extracts at 5 ng/mL (final concentration). At the indicated time points, 8 mL of the reaction were

withdrawn and plasmids and associated proteins were recovered by plasmid pull down using LacI coated beads (Budzowska et al.,

2015). After 30min incubation at 4�C, sampleswerewashed twice in 10mMHEPESpH7.7, 50mMKCl, 2.5mMMgCl2, 0.03%Tween

20, and once in 10 mM HEPES pH 7.7, 50 mM KCl, 2.5 mM MgCl2. Samples were washed one additional time in 50 mL of 10 mM

HEPES pH 7.7, 50 mM KCl, 2.5 mM MgCl2 and transferred to a new tube to remove residual detergent. Beads were dried out

and resuspended in 50 mL denaturation buffer (8 M Urea, 100 mM Tris pH 8.0). Cysteines were reduced (1 mM DTT, 15 minutes

at RT) and alkylated (5 mM iodoacetamide, 45 min at RT). Proteins were digested and eluted from beads with 1.5 mg LysC (Sigma)

for 2.5 hr at RT. Eluted samples were transferred to a new tube and diluted 1:4 with ABC (50 mM ammonium bicarbonate). 2.5 mg

trypsin was added and incubated for 16 hours at 30�C. NaCl was added to 400 mM final concentration, and peptides were acidified

and purified by stage tipping on C18 material. Samples were analyzed on a Q Exactive HF Orbitrap mass spectrometer (Thermo Sci-

entific) and quantified by the label free algorithm implemented in the MaxQuant software, as previously described (R€aschle et al.,

2015). MS experiments were carried out in quadruplicates. A fifth replicate was used to isolate the DNA repair intermediates shown

in Figure 2A. The mass spectrometry data have been deposited to the ProteomeXchange repository with the dataset identifier

PXD008831.

QUANTIFICATION AND STATISTICAL ANALYSIS

All bioinformatics analysis was carried out with the Perseus software Version 1.5.6.0. For each comparison, the processed data was

filtered to contain at least 3 valid values in at least one of the replicate group. A modified, one-sided T-Test implemented in Perseus

(Tyanova et al., 2016) was carried out using a False Discovery Rate (FDR) cut-off of 0.01 and S0 = 4. Autoradiographs were quantified

using ImageJ. Error bars represent standard deviations.

DATA AND SOFTWARE AVAILABILITY

Perseus is provided by the group of J€urgen Cox at the MPI of Biochemistry and can be freely downloaded at: http://www.

coxdocs.org.
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