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Building on the recently established connection between the Hagedorn temperature and integrability [1], 
we show how the Quantum Spectral Curve formalism can be used to calculate the Hagedorn temperature 
of AdS5/CFT4 for any value of the ’t Hooft coupling. We solve this finite system of finite-difference 
equations perturbatively at weak coupling and numerically at finite coupling. We confirm previous 
results at weak coupling and obtain the previously unknown three-loop Hagedorn temperature. Our 
finite-coupling results interpolate between weak and strong coupling and allow us to extract the first 
perturbative order at strong coupling. Our results indicate that the Hagedorn temperature for large 
’t Hooft coupling approaches that of type IIB string theory in ten-dimensional Minkowski space.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The AdS5/CFT4 correspondence [2] provides an exact duality 
between two seemingly very different theories. On the one side, 
one has a four-dimensional gauge theory in the form of N = 4
super-Yang–Mills (SYM) theory on R × S3 with ’t Hooft coupling λ. 
On the other side, one has type IIB string theory on the ten-
dimensional target-space AdS5 × S5. This makes the AdS5/CFT4 cor-
respondence an important theoretical laboratory for understanding 
various interesting problems in physics. One such problem is the 
nature of the Hagedorn temperature in string theory. Tree-level 
string theory has an exponentially growing density of states at 
large energies, which leads to a singularity in the thermodynamic 
partition function defining the Hagedorn temperature. Since the 
AdS5/CFT4 correspondence provides a non-perturbative definition 
of string theory, it should enable one to study the Hagedorn tem-
perature and all its related phenomena.

In the AdS5/CFT4 correspondence, the Hagedorn singularity is 
connected to the Hawking–Page transition that occurs at a lower 
temperature where the black hole phase becomes thermodynam-
ically favorable over a gas of closed strings. On the gauge-theory 
side, this corresponds to the confinement–deconfinement transi-
tion, where the confined phase occurs due to the confinement of 
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the color degrees of freedom on a three-sphere [3–6]. However, 
in the limit of zero string coupling, or the strict limit of infinite 
colors on the gauge-theory side, this transition requires arbitrarily 
high energy to realize, and one is left with the Hagedorn tem-
perature as a maximal possible temperature on both sides of the 
correspondence. In this somewhat simpler setting, a starting point 
for further exploration of finite-temperature physics is to establish 
a quantitative interpolation of the Hagedorn temperature between 
the gauge-theory and string-theory sides.

However, it is only for certain precious cases that one has ex-
act methods available to make a quantitative interpolation from 
weak to strong ’t Hooft coupling. One such method is integrability, 
see Refs. [7,8] for reviews. Recently, we proposed a framework for 
calculating the Hagedorn temperature of AdS5/CFT4 using integra-
bility [1]. In this Letter, we take this a step further by exploiting 
this connection to compute the Hagedorn temperature at finite 
’t Hooft coupling. This enables us to interpolate all the way from 
zero ’t Hooft coupling to large ’t Hooft coupling where we find the 
Hagedorn temperature of type IIB string theory in flat space, in 
both cases matching a previous computation of Sundborg [5,9].

The proposal [1] for calculating the Hagedorn temperature of 
AdS5/CFT4 via integrability is as follows. Define F (T ) to be the free 
energy per unit classical scaling dimension in the limit of large 
classical scaling dimension of the spin chain associated with planar 
N = 4 SYM theory. Then the Hagedorn temperature TH in units of 
the S3 radius is determined by

F (TH) = −1 , (1)
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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for zero chemical potentials. This can be seen from the fact that 
Eq. (1) determines the temperature beyond which the planar par-
tition function of N = 4 SYM theory is singular. The free energy 
is computed from so-called Thermodynamic Bethe Ansatz (TBA) 
equations [1], which are an infinite system of integral equations. 
In Ref. [1], we have solved these equations perturbatively at weak 
coupling, reproducing the known tree-level result [5] and one-loop 
correction [10] as well as finding the previously unknown two-
loop correction. In principle, one can employ the TBA equations 
to compute higher order corrections to TH and to find TH numer-
ically at finite coupling as well. In practice, however, the nature 
of these equations massively complicates perturbative calculations 
and severely limits the numeric accuracy one can achieve at finite 
coupling.

The TBA equations for the spectral problem of N = 4 SYM the-
ory were recast into the form of the Quantum Spectral Curve (QSC) 
[11–13], see Refs. [14,15] for reviews. It consists of a finite sys-
tem of finite-difference equations, which allows for a very efficient 
evaluation both perturbatively at weak coupling [16–18] and nu-
merically at finite coupling [19,20]. The QSC was since used for the 
pomeron [21,22], cusped Wilson lines and the quark–antiquark po-
tential [23–25] as well as integrable deformations of N = 4 SYM 
theory [26–28].

In this Letter, we recast our TBA equations for the Hagedorn 
temperature TH of AdS5/CFT4 into the form of the QSC. Moreover, 
we solve these equations perturbatively at weak coupling and nu-
merically at finite coupling.

2. QSC equations for the Hagedorn temperature

QSC equations The TBA equations are an infinite system of integral 
equations given in terms of Y-functions. They can be recast into the 
form of the so-called Y-system and T-system, which are infinite 
systems of finite-difference equations, and subsequently into the 
form of the so-called Q-system, which is a finite system of finite-
difference equations also known as the Quantum Spectral Curve 
(QSC). Since we are setting all chemical potentials to zero, we are 
in a situation with so-called left-right symmetry, which is a sym-
metry between the two su(2|2) subalgebras of the superconformal 
symmetry algebra psu(2, 2|4). The QSC is then formulated in terms 
of the functions Pa(u), Qi(u) and Q a|i(u), where a, i = 1, 2, 3, 4
and u is the spectral parameter. They satisfy the finite-difference 
equations

Q +
a|i − Q −

a|i = PaQi , (2)

Pa = −Qi Q +
a|i , (3)

where f ±(u) = f (u ± i
2 ). The functions Q a|i are orthonormal in 

the sense that

Q a|i Q b|i = δb
a , Q a|i Q a| j = δ

j
i . (4)

Here the functions with upper indices are defined as

Pa = χabPb , Qi = χ i jQ j , Q a|i = χabχ i j Q b| j , (5)

where the non-zero entries of χ are χ14 = χ32 = −1, χ23 =
χ41 = 1. The Eqs. (2)–(4) reflect the psu(2, 2|4) symmetry of 
N = 4 SYM theory, where Pa(u) (Qi(u)) is associated to the con-
formal symmetry su(2, 2) (R-symmetry su(4)). They are universal 
in the sense that they do not depend on the specific physical ob-
servable that one is computing but are common to all cases so far 
investigated. In order to specify a particular physical observable, 
these universal equations have to be supplemented by the asymp-
totic behavior of the functions at large spectral parameter u, by the 
location of the branch cuts and by the discontinuities across these 
branch cuts.

Asymptotic behavior We can infer the asymptotic behavior of 
Pa(u) and Qi(u) at large spectral parameter u from the asymp-
totic behavior of the Y-functions found in Ref. [1]. At large u, 
the Y-functions asymptote to constants determined from a one-
parameter family of constant T-systems with parameter z, see 
Eqs. (26)–(27) in Ref. [1]. Using the TBA equations, we show in 
Ref. [29] that F (T ) = −4T arctanh z. Since the Hagedorn temper-
ature TH satisfies Eq. (1), this fixes z = tanh 1

4TH
. The asymptotic 

Y-functions are reproduced via1

P1(u) = A1
( − e

− 1
2TH

)−iu (
1 +O(u−1)

)
,

P2(u) = A2
( − e

− 1
2TH

)−iu
(

u +O(u0)
)

,

P3(u) = A3
( − e

− 1
2TH

)+iu (
1 +O(u−1)

)
,

P4(u) = A4
( − e

− 1
2TH

)+iu
(

u +O(u0)
)

(6)

and

Q1(u) = B1
(
1 +O(u−1)

)
, Q2(u) = B2

(
u +O(u0)

)
,

Q3(u) = B3

(
u2 +O(u1)

)
, Q4(u) = B4

(
u3 +O(u2)

)
,

(7)

with A1 A4 = A2 A3 = i
tanh2 1

4TH

and 3B1 B4 = B2 B3 = −8i cosh4 1
4TH

. 

The asymptotic behavior of Q a|i(u) then follows from Eq. (2).

Branch cut structure and ansatz We consider the so-called direct 
theory rather than the mirror theory; hence, we use the Zhukowski 
variable

x(u) = u

2g

⎛
⎝1 +

√
1 − 4g2

u2

⎞
⎠ , (8)

which has a ‘short’ branch cut at the interval (−2g, 2g), where 
g2 = λ

16π2 is the effective planar loop coupling. We work in a Rie-
mann sheet in which the four functions Qi(u) have one short cut 
at the interval (−2g, 2g), while Pa(u) and its analytic continua-
tion P̃a(u) have an infinite set of short cuts at (−2g, 2g) − in and 
(−2g, 2g) + in with n ∈ N≥0, respectively. Since Qi(u) has only a 
single short cut, we can make the ansatz

Qi(u) = Bi(gx(u))i−1

(
1 +

∞∑
n=1

ci,n(g)

(gx(u))2n

)
. (9)

For convenience, we choose the gauge c3,1 = 0 and B1 = B2 = 1.
The previous applications of the QSC formalism have all been 

in the mirror theory rather than in the direct theory that we con-
sider here. In the mirror theory, it is the four functions Pa(u) for 
which one can choose a Riemann sheet where they have only one 
short cut at the real axis. This means one makes an ansatz for 
the functions Pa(u) instead of the functions Qi(u) as we do in our 
case.

1 Interestingly, the asymptotics (6)–(7) are similar to the ones of the spectral 
problem of twisted N = 4 SYM theory [26]. Concretely, excluding the prefactors 
they are formally the same if we set the twists 1/x1 = 1/x2 = x3 = x4 = − e− 1

2TH , 
y1 = y2 = y3 = y4 = 1 and insert the Cartan charges � = S1 = S2 = J1 = J2 =
J3 = 0. This is related to how the constant T-system [1] is obtained from the gen-
eral psu(2, 2|4) character solution [43].
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Gluing conditions To close the system of QSC equations, one needs 
to impose so-called gluing conditions [14]. They relate the analytic 
continuation P̃a(u) through the short cut at the real axis to a lin-
ear combination of the complex conjugates of the Pb(u) functions. 
In our case, using the gauge choice A1 = i A2 = −A3 = −i A4 =
(tanh 1

4TH
)−1 for the asymptotics (6), the gluing conditions are

P̃a(u) = (−1)1+aPa(u) . (10)

Together with the QSC equations (2)–(4), the ansatz (9) for the 
functions Qi(u) and the large-u asymptotics (6)–(7), the gluing 
conditions (10) determine the Hagedorn temperature TH for any 
given value of g – which is one of the main results of this Letter. 
Another main result is that we will explicitly solve these equations 
perturbatively at weak coupling and numerically at finite coupling, 
as explained below.

3. Perturbative solution

To solve the QSC equations perturbatively at weak coupling, we 
start with the tree-level solution for g = 0. It can be obtained from 
Eqs. (6)–(7) by setting TH to the tree-level Hagedorn temperature 
T (0)

H = 1/(2 log(2 + √
3)) [5], which determines the leading coeffi-

cients. The only non-vanishing subleading coefficient at tree level 
is c4,1(0) = −1. Using the Eqs. (2)–(4), one finds the corresponding 
functions Q a|i(u) at tree level, which we denote below as Q (0)

a|i (u).
Knowing the tree-level solution, we can now solve the QSC 

equations (2)–(4) perturbatively following a slightly modified ver-
sion of the approach in Ref. [22]. Write the solution of Eq. (2) as

Q a|i = Q (0)
a|i + (ba

c)+ Q (0)
c|i . (11)

Then ba
c(u) satisfies the first order finite-difference equation

(ba
c)++ − ba

c = dSa|i(Q (0)c|i)− + (ba
b)++dSb|i(Q (0)c|i)− , (12)

where dSa|i is defined as

dSa|i ≡ Q (0)
a|i

+ − Q (0)
a|i

− + QiQ
j Q (0)

a| j
+ . (13)

Here, we use the ansatz (9) for Qi(u), in which the sum truncates 
for any given loop order �. Assume one has already determined 
the coefficients of Qi(u) in Eq. (9) at (� − 1)-loop order. Solving 
Eq. (12), we find ba

c(u) and hence Q a|i(u) at �-loop order in terms 
of the as yet undetermined parameters in the ansatz (9) as well as 
additional undetermined constant parameters from the homoge-
neous solution to Eq. (12). Because of the phases in Eq. (6), we 
encounter finite-difference equations of the type

zi f ++(u) − f (u) = h(u) , zi ∈ {1, (2 + √
3)±2} . (14)

The solution can be written in terms of the generalized η functions 
[23,26]

η
z1,...,zk
s1,...,sk

(u) ≡
∑

n1>n2>···>nk≥0

zn1
1 . . . znk

k

(u + in1)s1 . . . (u + ink)
sk

. (15)

Since in some cases zi = (2 + √
3)2, we have to use analytic con-

tinuation as a regularization. Note that this is a worse divergence 
than in the twisted QSC [26] since in that case zi is on the unit 
circle. Evaluated at u = i, the generalized η functions are propor-
tional to multiple polylogarithms

Lis1,...,sk (z1, . . . , zk) ≡
∑ zn1

1 . . . znk
k

ns1
1 . . .nsk

k

, (16)

n1>n2>···>nk>0
in terms of which the result for the Hagedorn temperature is natu-
rally expressed. Note that the multiple polylogarithms have branch 
cuts on the real axis; for instance, classical polylogarithms have 
branch cuts between 1 and ∞. The ambiguity in evaluating these 
polylogarithms on the branch cut can be resolved by an iε pre-
scription.

The next step is to impose conditions to determine the un-
fixed parameters. To begin with, we impose Eq. (4) which fixes 
half of the coefficients from the homogeneous solution in Q a|i(u). 
By Eq. (3), we now find Pa(u). The gluing conditions (10) enter 
by imposing that Pa(u) + P̃a(u) and (Pa(u) − P̃a(u))/

√
u2 − 4g2 are 

regular at u = 0. Finally, we have to impose the asymptotic behav-
ior (6), which we implement by requiring that

P2(u)

P1(u)
= −iu +O(u0) . (17)

Up to a gauge choice, this fixes all parameters of the ansatz (9) at 
�-loop order, including the Hagedorn temperature TH.2

We find, up to three-loop order,

TH(g) = 1

2 log(2 + √
3)

+ g2 1

log(2 + √
3)

+ g4

(
48 − 86√

3
−

48Li1

(
1

(2+√
3)2

)
log(2 + √

3)

)

+ g6

(
624Li2

(
1

(2+√
3)2

)

+
432Li1

(
1

(2+√
3)2

)2

log(2 + √
3)

+
312Li3

(
1

(2+√
3)2

)
log(2 + √

3)

+
(

384
√

3 − 864 + 416 log(2 + √
3)

)
Li1

(
1

(2+√
3)2

)

− 20√
3

+
(

1900

3
− 384

√
3

)
log(2 + √

3)

)
+O(g8)

≈ (0.3796628588 . . . ) + (0.7593257175 . . . )g2

+ (−4.367638556 . . . )g4 + (37.22529358 . . . )g6

+O(g8) . (18)

This agrees with the previously known results at tree level [5], 
one-loop order [10] and two-loop order [1]. In an upcoming pub-
lication [29], we will also present the result at four-loop order and 
beyond.

4. Numerical solution

The QSC can also be solved numerically at finite values of g . 
Concretely, it can be reduced to a minimization problem that can 
be solved iteratively. We use a modified version of the approach in 
Ref. [19], see also Refs. [14,30].

Each iteration starts at some values for the Hagedorn temper-
ature TH and the coefficients c1,n , c2,n for n = 1, . . . , K , c3,n for 
n = 2, . . . , K and c4,n for n = 3, . . . , K in the ansatz (9), which 
is truncated at some finite K . We make an ansatz for Q a|i(u) at 
large u:

Q a|i(u) =
(

− e
− 1

2TH

)−saiu
upa|i

N∑
n=0

Ba|i,n
un

, (19)

2 In contrast, the �-loop anomalous dimension in the spectral problem is only 
fixed at the (� + 1)th order.
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Fig. 1. Numeric results and weak coupling approximation at various loop orders for 
the Hagedorn temperature as a function of g2.

which is truncated at some finite order depending on N . Here, we 
have used sa = 1 and pa|i = a + i −2 for a = 1, 2 as well as sa = −1
and pa|i = a + i − 4 for a = 3, 4. We solve for the remaining coeffi-
cients Ba|i,n by imposing Eqs. (4) and (2) where Pa(u) is eliminated 
using Eq. (3). In particular, this also fixes c4,1 and c4,2.

Starting at some finite but large imaginary value of u, we can 
shift Q a|i towards the real axis in steps of i using

Q −
a|i = Q +

a|i + QiQ
j Q +

a| j , (20)

which follows from Eqs. (2)–(3). We can now reconstruct Pa and 
its analytic continuation

P̃a = −Q̃i Q +
a|i (21)

on the real axis, where Q̃i is obtained from the ansatz (9) via x̃ =
1/x. Note that this is however only possible for a = 1, 2, as in this 
case Q +

a|i is exponentially small for large imaginary u, while it is 
exponentially large for a = 3, 4.

Now we can define a function F that vanishes for an exact so-
lution of the gluing conditions (10):

F (TH, {ci,n}) =
2∑

a=1

P∑
j=1

∣∣∣∣∣Pa(pi)

P̃a(pi)
+ (−1)a

∣∣∣∣∣
2

, (22)

where pi are P points in the interval (−2g, 2g). We can find 
an approximate solution for TH and the coefficients ci,n by min-
imizing F iteratively, using for instance Newton’s method or the 
Levenberg–Marquardt algorithm.

We have plotted our numeric results for the Hagedorn tem-
perature TH as a function of g2 for 0 ≤ g2 ≤ 0.1 in Fig. 1. In 
addition, Fig. 1 contains the perturbative approximation to the 
non-perturbative results up to three-loop order. As expected, the 
perturbative series converges towards the exact results for suffi-
ciently small values of g2.

Fig. 2 shows our numeric data for TH as a function of 
√

g for 
0 ≤ √

g ≤ 1.8. In particular, we see that TH tends towards a lin-
ear function in 

√
g at strong coupling. Using a sixth-order fit in 

1/
√

g, we find the following approximate result for the leading 
coefficient:

TH(g) = (0.399 . . . )
√

g +O(g0) , (23)
Fig. 2. Numeric results and leading strong coupling approximation for the Hagedorn 
temperature as a function of √g .

where the uncertainty is in the last digit.3 At the given accuracy, 
this agrees with the expectation that the Hagedorn temperature 
measured in units of the S3 radius R approaches the behavior

TH(g) 

√

g

2π
≈ (0.3989422804 . . . )

√
g (24)

for large ’t Hooft coupling. This corresponds to the Hagedorn tem-
perature of tree-level type IIB string theory on ten-dimensional 
Minkowski space [9]. One can see this explicitly by reinstating 1/R
using the AdS5/CFT4 dictionary. In terms of this, the S3 radius R
corresponds on the string-theory side to the radius R = λ1/4ls of 
AdS5 and S5, where ls is the string length. Hence, Eq. (24) be-
comes

TH(g) 
 1√
8π ls

. (25)

The reason that one expects this to be the Hagedorn temperature 
for large ’t Hooft coupling is as follows. Consider a string with 
energy ls E in string units. If this energy is sufficiently high, also 
compared to the angular momenta on AdS5 × S5, a particle mode 
of the string is probing distances shorter than the radius R of AdS5
and S5. Moreover, if 

√
ls E � R/ls , the extension of the string is 

much smaller than the radius R . Thus, there is an intermediate 
regime in which the spectrum of a string behaves as in flat space. 
As λ → ∞, this means that the Hagedorn temperature approaches 
that of flat space.

5. Conclusion and outlook

In this Letter, we have derived integrability-based QSC equa-
tions that determine the Hagedorn temperature of planar N = 4
SYM theory – and equally of type IIB string theory on AdS5 × S5 – 
at any value of the ’t Hooft coupling. We have solved these equa-
tions perturbatively at weak coupling, reproducing known results 
up to two-loop order and obtaining the previously unknown three-
loop result (18). The same algorithm can also be used at higher 
orders, as we will demonstrate in an upcoming publication [29]. 
Moreover, we have solved the QSC numerically at finite coupling, 

3 In a certain exactly solvable pp-wave limit of string theory, the leading contri-
bution to the Hagedorn temperature is of order λ1/3 with corrections in 1/λ1/3 [35]. 
In the present case, the leading contribution is of order λ1/4 and we thus expect the 
corrections to be in 1/λ1/4.
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allowing for an interpolation between weak and strong coupling. 
From our numeric results, we have read off the first coefficient in 
the strong coupling expansion. It would be interesting to increase 
the numeric precision even further using a C++ implementation 
following Ref. [20] to obtain further coefficients in the strong cou-
pling expansion.

We have found evidence that the Hagedorn temperature, which 
marks the temperature beyond which the planar partition function 
is singular, asymptotes to the Hagedorn temperature of type IIB 
string theory in ten-dimensional Minkowski space for large g . This 
is in line with the expectation that for large g the spectrum should 
approach that of type IIB string theory on flat space, as explained 
above. To test further that the spectrum approaches flat space, one 
could possibly use the techniques of this Letter to study the critical 
behavior of the partition function close to the Hagedorn singular-
ity for large g . If the critical behavior matches the one of flat-space 
string theory, it would confirm that there is a regime of strongly 
coupled N = 4 SYM theory in which the spectrum is that of tree-
level type IIB string theory in ten-dimensional Minkowski space. 
Thus, this Letter opens up an interesting new regime in which one 
can explore the AdS5/CFT4 correspondence.

Note finally that while we have restricted ourselves to vanishing 
chemical potentials, the case of non-vanishing chemical potentials 
can be treated in a similar way [29]. This could provide a connec-
tion to the cases of the Hagedorn temperature in the pp-wave or 
spin-matrix-theory limits [31–40]. Moreover, it would be interest-
ing to consider the Hagedorn temperature for integrable deforma-
tions of N = 4 SYM theory (see [41] for one-loop results) and for 
the three-dimensional N = 6 superconformal Chern–Simons the-
ory, for which a QSC formulation for the spectral problem exists as 
well [42]. In particular, it would be intriguing to study what hap-
pens at strong coupling in these cases.

Acknowledgements

We thank Simon Caron-Huot, Marius de Leeuw, Claude Duhr, 
Nikolay Gromov, Sebastien Leurent, Fedor Levkovich-Maslyuk, 
Christian Marboe, Andrew McLeod, Stijn van Tongeren, Matt von 
Hippel and Konstantin Zarembo for very useful discussions. We 
thank Nikolay Gromov for sharing his Mathematica implementa-
tion of the algorithm in Ref. [19]. M.W. thanks the Institute for 
Advanced Study in Princeton for kind hospitality. T.H. acknowl-
edges support from FNU grant number DFF-6108-00340. M.W. was 
supported in part by FNU through grant number DFF-4002-00037, 
the ERC starting grant number 757978, the Danish National Re-
search Foundation (grant number DNRF91) and the Villum Fonden.

References

[1] T. Harmark, M. Wilhelm, The Hagedorn temperature of AdS5/CFT4 via integra-
bility, Phys. Rev. Lett. 120 (2018) 071605, arXiv:1706 .03074 [hep -th].

[2] J.M. Maldacena, The large N limit of superconformal field theories and su-
pergravity, Int. J. Theor. Phys. 38 (1999) 1113–1133, arXiv:hep -th /9711200
[hep -th], Adv. Theor. Math. Phys. 2 (1998) 231.

[3] J.J. Atick, E. Witten, The Hagedorn transition and the number of degrees of 
freedom of string theory, Nucl. Phys. B 310 (1988) 291–334.

[4] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement 
in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505–532, arXiv:hep -th /
9803131 [hep -th].

[5] B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, 
Nucl. Phys. B 573 (2000) 349–363, arXiv:hep -th /9908001 [hep -th].

[6] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M. Van Raamsdonk, The 
Hagedorn – deconfinement phase transition in weakly coupled large N gauge 
theories, Adv. Theor. Math. Phys. 8 (2004) 603–696, arXiv:hep -th /0310285
[hep -th].

[7] N. Beisert, et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 
99 (2012) 3–32, arXiv:1012 .3982 [hep -th].
[8] D. Bombardelli, A. Cagnazzo, R. Frassek, F. Levkovich-Maslyuk, F. Loebbert, S. 
Negro, I.M. Szécsényi, A. Sfondrini, S.J. van Tongeren, A. Torrielli, An integrabil-
ity primer for the gauge-gravity correspondence: an introduction, J. Phys. A 49 
(2016) 320301, arXiv:1606 .02945 [hep -th].

[9] B. Sundborg, Thermodynamics of superstrings at high-energy densities, Nucl. 
Phys. B 254 (1985) 583–592.

[10] M. Spradlin, A. Volovich, A pendant for Polya: the one-loop partition function 
of N = 4 SYM on R × S3, Nucl. Phys. B 711 (2005) 199–230, arXiv:hep -th /
0408178 [hep -th].

[11] N. Gromov, V. Kazakov, S. Leurent, D. Volin, Quantum Spectral Curve for planar 
N = super-Yang–Mills theory, Phys. Rev. Lett. 112 (2014) 011602, arXiv:1305 .
1939 [hep -th].

[12] N. Gromov, F. Levkovich-Maslyuk, G. Sizov, S. Valatka, Quantum spectral curve 
at work: from small spin to strong coupling in N = 4 SYM, J. High Energy 
Phys. 07 (2014) 156, arXiv:1402 .0871 [hep -th].

[13] N. Gromov, V. Kazakov, S. Leurent, D. Volin, Quantum spectral curve for arbi-
trary state/operator in AdS5/CFT4, J. High Energy Phys. 09 (2015) 187, arXiv:
1405 .4857 [hep -th].

[14] N. Gromov, Introduction to the spectrum of N = 4 SYM and the Quantum 
Spectral Curve, arXiv:1708 .03648 [hep -th], 2017.

[15] V. Kazakov, Quantum Spectral Curve of γ -twisted N = 4 SYM theory and fish-
net CFT, arXiv:1802 .02160 [hep -th], 2018.

[16] C. Marboe, D. Volin, Quantum spectral curve as a tool for a perturbative quan-
tum field theory, Nucl. Phys. B 899 (2015) 810–847, arXiv:1411.4758 [hep -th].

[17] C. Marboe, V. Velizhanin, D. Volin, Six-loop anomalous dimension of twist-two 
operators in planar N = 4 SYM theory, J. High Energy Phys. 07 (2015) 084, 
arXiv:1412 .4762 [hep -th].

[18] C. Marboe, D. Volin, The full spectrum of AdS5/CFT4 I: representation theory 
and one-loop Q-system, arXiv:1701.03704 [hep -th], 2017.

[19] N. Gromov, F. Levkovich-Maslyuk, G. Sizov, Quantum Spectral Curve and the 
numerical solution of the spectral problem in AdS5/CFT4, J. High Energy Phys. 
06 (2016) 036, arXiv:1504 .06640 [hep -th].

[20] Á. Hegedüs, J. Konczer, Strong coupling results in the AdS5/CFT4 correspon-
dence from the numerical solution of the quantum spectral curve, J. High 
Energy Phys. 08 (2016) 061, arXiv:1604 .02346 [hep -th].

[21] M. Alfimov, N. Gromov, V. Kazakov, QCD pomeron from AdS/CFT Quantum 
Spectral Curve, J. High Energy Phys. 07 (2015) 164, arXiv:1408 .2530 [hep -th].

[22] N. Gromov, F. Levkovich-Maslyuk, G. Sizov, Pomeron eigenvalue at three loops 
in N = 4 supersymmetric Yang–Mills theory, Phys. Rev. Lett. 115 (2015) 
251601, arXiv:1507.04010 [hep -th].

[23] N. Gromov, F. Levkovich-Maslyuk, Quantum Spectral Curve for a cusped Wilson 
line in N = 4 SYM, J. High Energy Phys. 04 (2016) 134, arXiv:1510 .02098 [hep -
th].

[24] N. Gromov, F. Levkovich-Maslyuk, Quark–anti-quark potential in N = 4 SYM, 
J. High Energy Phys. 12 (2016) 122, arXiv:1601.05679 [hep -th].

[25] A. Cavaglià, N. Gromov, F. Levkovich-Maslyuk, Quantum Spectral Curve and 
structure constants in N = 4 SYM: cusps in the ladder limit, arXiv:1802 .04237
[hep -th], 2018.

[26] V. Kazakov, S. Leurent, D. Volin, T-system on T-hook: grassmannian solution 
and twisted Quantum Spectral Curve, J. High Energy Phys. 12 (2016) 044, arXiv:
1510 .02100 [hep -th].

[27] R. Klabbers, S.J. van Tongeren, Quantum Spectral Curve for the eta-deformed 
AdS5 × S5 superstring, Nucl. Phys. B 925 (2017) 252–318, arXiv:1708 .02894
[hep -th].

[28] N. Gromov, V. Kazakov, G. Korchemsky, S. Negro, G. Sizov, Integrability of con-
formal fishnet theory, J. High Energy Phys. 01 (2018) 095, arXiv:1706 .04167
[hep -th].

[29] T. Harmark, M. Wilhelm, to appear.
[30] M. Alfimov, N. Gromov, G. Sizov, BFKL spectrum of N = 4 SYM: non-zero con-

formal spin, arXiv:1802 .06908 [hep -th], 2018.
[31] L.A. Pando Zayas, D. Vaman, Strings in RR plane wave background at finite 

temperature, Phys. Rev. D 67 (2003) 106006, arXiv:hep -th /0208066 [hep -th].
[32] B.R. Greene, K. Schalm, G. Shiu, On the Hagedorn behaviour of PP wave strings 

and N = 4 SYM theory at finite R charge density, Nucl. Phys. B 652 (2003) 
105–126, arXiv:hep -th /0208163 [hep -th].

[33] R.C. Brower, D.A. Lowe, C.-I. Tan, Hagedorn transition for strings on pp waves 
and tori with chemical potentials, Nucl. Phys. B 652 (2003) 127–141, arXiv:
hep -th /0211201 [hep -th].

[34] G. Grignani, M. Orselli, G.W. Semenoff, D. Trancanelli, The superstring Hage-
dorn temperature in a pp wave background, J. High Energy Phys. 06 (2003) 
006, arXiv:hep -th /0301186 [hep -th].

[35] T. Harmark, M. Orselli, Matching the Hagedorn temperature in AdS/CFT, Phys. 
Rev. D 74 (2006) 126009, arXiv:hep -th /0608115 [hep -th].

[36] T. Harmark, M. Orselli, Spin matrix theory: a quantum mechanical model of the 
AdS/CFT correspondence, J. High Energy Phys. 11 (2014) 134, arXiv:1409 .4417
[hep -th].

[37] D. Yamada, L.G. Yaffe, Phase diagram of N = 4 super-Yang–Mills theory with 
R-symmetry chemical potentials, J. High Energy Phys. 09 (2006) 027, arXiv:
hep -th /0602074 [hep -th].

http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A32303137797276s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A32303137797276s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D616C646163656E613A313939377265s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D616C646163656E613A313939377265s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D616C646163656E613A313939377265s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib417469636B3A313938387369s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib417469636B3A313938387369s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib57697474656E3A313939387A77s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib57697474656E3A313939387A77s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib57697474656E3A313939387A77s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53756E64626F72673A313939397565s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53756E64626F72673A313939397565s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib416861726F6E793A323030337378s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib416861726F6E793A323030337378s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib416861726F6E793A323030337378s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib416861726F6E793A323030337378s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426569736572743A323031306A72s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426569736572743A323031306A72s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426F6D62617264656C6C693A32303136727762s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426F6D62617264656C6C693A32303136727762s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426F6D62617264656C6C693A32303136727762s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426F6D62617264656C6C693A32303136727762s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53756E64626F72673A31393834756Bs1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53756E64626F72673A31393834756Bs1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53707261646C696E3A323030347070s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53707261646C696E3A323030347070s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53707261646C696E3A323030347070s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303133706761s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303133706761s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303133706761s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303134627661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303134627661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303134627661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303134636161s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303134636161s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303134636161s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303137626C6Ds1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303137626C6Ds1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4B617A616B6F763A32303138756768s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4B617A616B6F763A32303138756768s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D6172626F653A32303134676D61s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D6172626F653A32303134676D61s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D6172626F653A32303134737961s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D6172626F653A32303134737961s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D6172626F653A32303134737961s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D6172626F653A32303137646D62s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4D6172626F653A32303137646D62s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135776361s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135776361s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135776361s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib486567656475733A32303136656F70s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib486567656475733A32303136656F70s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib486567656475733A32303136656F70s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib416C66696D6F763A32303134627761s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib416C66696D6F763A32303134627761s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135767561s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135767561s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135767561s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135646661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135646661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303135646661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303136727270s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303136727270s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib43617661676C69613A323031386C7869s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib43617661676C69613A323031386C7869s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib43617661676C69613A323031386C7869s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4B617A616B6F763A32303135656661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4B617A616B6F763A32303135656661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4B617A616B6F763A32303135656661s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4B6C6162626572733A32303137767477s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4B6C6162626572733A32303137767477s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4B6C6162626572733A32303137767477s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303137636A61s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303137636A61s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A32303137636A61s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib416C66696D6F763A32303138636D73s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib416C66696D6F763A32303138636D73s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib50616E646F5A617961733A323030326868s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib50616E646F5A617961733A323030326868s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib477265656E653A323030326364s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib477265656E653A323030326364s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib477265656E653A323030326364s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib42726F7765723A323030327A78s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib42726F7765723A323030327A78s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib42726F7765723A323030327A78s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib477269676E616E693A323030336373s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib477269676E616E693A323030336373s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib477269676E616E693A323030336373s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A323030367461s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A323030367461s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A323031346D7061s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A323031346D7061s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A323031346D7061s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib59616D6164613A323030367278s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib59616D6164613A323030367278s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib59616D6164613A323030367278s1


58 T. Harmark, M. Wilhelm / Physics Letters B 786 (2018) 53–58
[38] T. Harmark, M. Orselli, Quantum mechanical sectors in thermal N = 4 super 
Yang–Mills on R × S3, Nucl. Phys. B 757 (2006) 117–145, arXiv:hep -th /0605234
[hep -th].

[39] R. Suzuki, Refined counting of necklaces in one-loop N = 4 SYM, arXiv:1703 .
05798 [hep -th], 2017.

[40] M. Gomez-Reino, S.G. Naculich, H.J. Schnitzer, More pendants for Polya: two 
loops in the SU(2) sector, J. High Energy Phys. 07 (2005) 055, arXiv:hep -th /
0504222 [hep -th].
[41] J. Fokken, M. Wilhelm, One-loop partition functions in deformed N = 4 SYM 
theory, J. High Energy Phys. 03 (2015) 018, arXiv:1411.7695 [hep -th].

[42] D. Bombardelli, A. Cavaglià, D. Fioravanti, N. Gromov, R. Tateo, The full Quan-
tum Spectral Curve for AdS4/C F T3, J. High Energy Phys. 09 (2017) 140, arXiv:
1701.00473 [hep -th].

[43] N. Gromov, V. Kazakov, Z. Tsuboi, PSU(2, 2|4) character of quasiclassical 
AdS/CFT, J. High Energy Phys. 07 (2010) 097, arXiv:1002 .3981 [hep -th].

http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A323030366469s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A323030366469s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib4861726D61726B3A323030366469s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53757A756B693A32303137697064s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib53757A756B693A32303137697064s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib476F6D657A5265696E6F3A323030356271s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib476F6D657A5265696E6F3A323030356271s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib476F6D657A5265696E6F3A323030356271s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib466F6B6B656E3A323031346D6F61s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib466F6B6B656E3A323031346D6F61s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426F6D62617264656C6C693A3230313776686Bs1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426F6D62617264656C6C693A3230313776686Bs1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib426F6D62617264656C6C693A3230313776686Bs1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A323031307662s1
http://refhub.elsevier.com/S0370-2693(18)30734-2/bib47726F6D6F763A323031307662s1

	The Hagedorn temperature of AdS5/CFT4 at ﬁnite coupling via the Quantum Spectral Curve
	1 Introduction
	2 QSC equations for the Hagedorn temperature
	3 Perturbative solution
	4 Numerical solution
	5 Conclusion and outlook
	Acknowledgements
	References


