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Abstract

The human 1q21.1 deletion of ten genes is associated with increased risk of schizophrenia.

This deletion involves the β-subunit of the AMP-activated protein kinase (AMPK) complex, a

key energy sensor in the cell. Although neurons have a high demand for energy and low

capacity to store nutrients, the role of AMPK in neuronal physiology is poorly defined. Here

we show that AMPK is important in the nervous system for maintaining neuronal integrity

and for stress survival and longevity in Drosophila. To understand the impact of this signal-

ing system on behavior and its potential contribution to the 1q21.1 deletion syndrome, we

focused on sleep, an important role of which is proposed to be the reestablishment of neuro-

nal energy levels that are diminished during energy-demanding wakefulness. Sleep distur-

bances are one of the most common problems affecting individuals with psychiatric

disorders. We show that AMPK is required for maintenance of proper sleep architecture and

for sleep recovery following sleep deprivation. Neuronal AMPKβ loss specifically leads to

sleep fragmentation and causes dysregulation of genes believed to play a role in sleep

homeostasis. Our data also suggest that AMPKβ loss may contribute to the increased risk

of developing mental disorders and sleep disturbances associated with the human 1q21.1

deletion.

Author summary

The human 1q21.1 chromosomal deletion is associated with increased risk of schizophre-

nia. Because this deletion affects only a small number of genes, it provides a unique oppor-

tunity to identify the specific disease-causing gene(s) using animal models. Here, we

report the use of a Drosophila model to identify the potential contribution of one gene

affected by the 1q21.1 deletion–PRKAB2 –to the pathology of the 1q21.1 deletion syn-

drome. PRKAB2 encodes a subunit of the AMP-activated protein kinase (AMPK) com-

plex, the main cellular energy sensor. We show that AMPK deficiency reduces lifespan
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and causes structural abnormalities in neuronal dendritic structures, a phenotype which

has been linked to schizophrenia. Furthermore, cognitive impairment and altered sleep

patterning are some of the most common symptoms of schizophrenia. Therefore, to

understand the potential contribution of PRKAB2 to the 1q21.1 syndrome, we tested

whether AMPK alterations might cause defects in learning and sleep. Our studies show

that lack of PRKAB2 and AMPK-complex activity in the nervous system leads to reduced

learning and to dramatic sleep disturbances. Thus, our data links a single 1q21.1-related

gene with phenotypes that resemble common symptoms of neuropsychiatric disorders,

suggesting that this gene, PRKAB2, may contribute to the risk of developing

schizophrenia.

Introduction

Recent genome-wide association studies have identified copy-number variants (CNVs) associ-

ated with high risk of schizophrenia and other neuropsychiatric disorders [1–4]. Sleep distur-

bance is one of the most common problems observed in individuals with psychiatric disorders

[5]. Although the 1q21.1 CNV deletion, spanning 10 genes over 1.35 million base pairs, has

been demonstrated to genetically predispose carriers to sleep disturbances, intellectual disabil-

ity, autism, and schizophrenia [4], the impact of individual genes in this interval on the devel-

opment of these disorders is unclear. PRKAB2, encoding a β-subunit of the AMP-activated

protein kinase (AMPK) complex, is located on the 1q21.1 chromosome arm and is a promising

candidate gene that may contribute to sleep disturbances and some of the behavioral effects

observed in 1q21.1 patients. The AMPK complex is the main cellular energy sensor, function-

ing as a metabolic master switch that is required for maintenance of energy homeostasis [6].

When activated as a response to increased energy demands, by detecting increased intracellu-

lar AMP:ATP and ADP:ATP ratios, AMPK upregulates catabolic processes that generate aden-

osine triphosphate (ATP) while downregulating anabolic processes to maintain energy

balance [7]. Interestingly, energy metabolism dysfunction is among the most consistent fea-

tures observed in psychiatric disorders and has been shown to include pathways for ATP pro-

duction [8]. The evolutionarily conserved AMPK complex that regulates ATP comprises a

catalytic (serine/threonine kinase) α-subunit, a scaffolding β-subunit, and a regulatory γ-sub-

unit [9, 10]. Unlike mammalian genomes, which encode multiple isoforms of each AMPK sub-

unit (α1, α2; β1, β2; γ1, γ2) that are, at least in part, functionally redundant, the genome of the

fruit fly Drosophila melanogaster contains only one gene encoding each subunit, encoded by

AMPKα, alicorn (alc), and SNF4Aγ, respectively, making this organism an ideal model in

which to study AMPK function [11].

While the function of AMPK in whole-body metabolism and cellular energy sensing is

well-known, its role in neuronal maintenance, and the manner in which nervous-system-spe-

cific effects of AMPK manifest in global phenotypes, are poorly defined. Neurons in particular

may be vulnerable to disturbances in AMPK function, as these cells have high metabolic

demands and are ineffective at storing energy [12]–the human nervous system accounts for at

least 20% of the body’s energy consumption while only making up 2% of the body’s mass [13].

Studies in mice have shown that AMPK is activated in the brain upon introduction of stresses

such as glucose deprivation, ischaemia, and hypoxia [14, 15]. Furthermore, loss of the

AMPKβ1 subunit in mice was shown to have strong effects on brain development and struc-

ture [16]. Studies using Drosophila have shown that the AMPK complex affects cellular

homeostasis, longevity, and neurodegeneration [17–19]. In Drosophila, upregulation of

AMPK signaling is required for neuronal and sleep maintenance
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AMPKα in the nervous system has been linked to a slowing of systemic aging and thus to pro-

longed lifespan [20], which indicates that AMPK function in the nervous system has a broad,

systemic impact. Furthermore, alc, encoding the single Drosophila AMPKβ homolog, has been

shown to have a neuroprotective role in the retina [19]. However, a more generic role for the

AMPK complex in the nervous system, and any downstream impacts on behavior, remain

largely unknown.

To investigate the potential contribution of PRKAB2 to the 1q21.1 CNV syndrome, and the

role of AMPK signaling in neuronal maintenance and sleep regulation, we examined the func-

tion of its Drosophila ortholog, Alc/AMPKβ, in the nervous system. Here, we show that alc
and AMPK signaling are required in the nervous system to maintain behaviors such as sleep

and learning. Specifically, we observed reduced learning in animals with neuronal knockdown

of alc. Furthermore, we find that neuronal knockdown of alc and loss of AMPK function cause

severe sleep fragmentation, and animals with reduced nervous-system alc expression are vul-

nerable to stress induced by sleep deprivation and show no sleep rebound. We suggest that

PRKAB2 is a promising candidate gene that may contribute to the behavioral disturbances

seen in 1q21.1 patients such as sleep disturbances and cognitive deficits related to learning.

Results

Reduced alc function in the nervous system shortens overall lifespan and

increases sensitivity to starvation

Although AMPK activity has been linked to lifespan, the effect on longevity of reducing

AMPK signaling specifically in the brain has not been reported. To determine whether neuro-

nal reduction of AMPK signaling impacts overall physiology and health in Drosophila, we used

the pan-neuronal elav-GAL4 (elav>) driver to express either RNAi against alc (alc-RNAi; two

independent constructs, in conjunction with Dicer-2) or overexpression of a kinase-dead

dominant-negative form of the AMPKα subunit (AMPKα-DN) [17], and we monitored sur-

vival for 89 days. Both manipulations resulted in reduced survival compared to the driver

(elav>Dcr-2/+) and corresponding RNAi (alc-RNAi/+) and AMPKα-DN/+ controls (Fig 1A).

To quantify lifespan, we fit the survival curves for individual experimental vials to a Weibull

distribution to obtain a Weibull scale parameter that is analogous to the median survival but

takes into account the increasing risk of mortality in aging systems (S1 Fig). Using this mea-

surement, we found a significant reduction of lifespan in animals with nervous-system-specific

knockdown of alc or overexpression of AMPKα-DN, conditions that reduce neuronal AMPK

signaling (Fig 1B). This shows that effects of AMPK on lifespan can be attributed to its func-

tion in the nervous system.

Several studies have reported an increased sensitivity to starvation in addition to decreased

longevity in animals with reduced AMPK signaling [17, 21]. This effect has been speculated to

involve AMPK-regulated metabolic pathways in adipose tissue, muscle, and intestine [22]. To

investigate whether this reduced survival under starvation stress can be attributed to effects of

AMPK in the nervous system, we measured the survival of animals with reduced neuronal

AMPK signaling (knockdown of alc or overexpression of AMPKα-DN) under starvation. As

we did in normal-lifespan measurements, we observed reduced starvation survival with pan-

neuronal alc-RNAi-mediated knockdown compared to controls (Fig 1C and 1D). Although

animals expressing AMPKα-DN in the nervous system exhibited reduced survival compared

to the AMPKα-DN/+ control, we observed no difference compared to the elav>Dcr-2/+ driver

control. Together our results show that AMPK-mediated neuronal homeostasis plays a signifi-

cant role in promoting organismal longevity and resistance to starvation. For the subsequent

experiments, we chose to use the UAS-alc-RNAi (KK) line, which reduces expression of alc by

AMPK signaling is required for neuronal and sleep maintenance
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~85% in heads, and more strongly than the alc-RNAi(8057R-2) (S2A and S2B Fig). To further

assess the specificity of this RNAi towards alc, and knockdown of the AMPK complex in gen-

eral, we examined levels of phosphorylated AMPKα (pAMPKα) subunit, a readout of AMPK-

complex activation. We found that neuronal knockdown of alc (AMPKβ) caused a ~60%

reduction in pAMPKα levels in the head, confirming that alc knockdown using this RNAi line

specifically reduces AMPK activity (S2C Fig).

alc function is required for maintenance of dendritic arbors

The reduced lifespan observed in animals with neuronal loss of AMPK signaling suggested

that lack of this activity may lead to impaired neuronal function and maintenance. Since

changes in neuronal dendritic branching and morphology are a hallmark of neuropsychiatric

disorders and have been suggested to alter the function of neuronal circuitry [23–26], we

chose to analyze the effect of alc manipulations on dendritic development and maintenance.

In Drosophila, the class-IV dendritic arborization (da) neurons are peripheral sensory neurons

that develop highly stereotyped dendritic processes, making them an ideal model for studying

changes in neuronal morphology [27]. Disruption of alc has been shown to cause progressive

Fig 1. Loss of AMPK in the nervous system reduces overall lifespan. (A) Survival graph showing overall survival for an 89-day

period, for male flies raised and kept on standard food. Results obtained from 10 replicates per genotype, each containing 30 flies. (B)

Quantification of overall survival. Knockdown of alc or overexpression of AMPKα-DN in the nervous system reduces overall

longevity. Survival analyzed using Kaplan-Meier nonparametric method. Survival quantified by fitting each replicate by a Weibull

distribution function, right-censoring animals alive at end of experiment. (C) Survival graph showing overall survival for an 80-hour

period, for 3-5-day-old male flies raised on normal food and starved on 2% agar alone. Results were obtained from 9–10 replicates

per genotype, each containing 30 flies (n> 270). (D) Quantification of survival following starvation. Pan-neuronal knockdown of alc
increases sensitivity to starvation. For controls, lines were crossed to w1118. Error bars indicate SEM. Kruskal-Wallis test with Dunn’s

post-hoc testing was used to determine statistical significance: �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001, versus the control.

https://doi.org/10.1371/journal.pgen.1007623.g001

AMPK signaling is required for neuronal and sleep maintenance
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and activity-dependent degeneration of photoreceptor neurons [19], but the impact of these

disruptions upon dendritic arborization has not been explored. To determine whether alc has

a role in dendrite development or maintenance, we reduced expression of alc using the da-

neuron-specific pickpocket (ppk)-GAL4 (ppk>) driver line while simultaneously expressing

GFP to visualize neuronal structures. We imaged individual class-IV da neurons in both large

feeding (~100 hours after egg lay) and wandering (~120 hours after egg lay) 3rd-instar larvae.

RNAi-mediated knockdown of alc caused a dramatic reduction of dendritic arborization in

feeding larvae, reducing the total dendrite length by 25% (Fig 2A and 2B) and branching order

by 14.5%, limiting dendrite structure to mainly primary and secondary branches (Fig 2C).

Knockdown of alc also led to 35% fewer dendritic branches yet did not alter the total area

spanned by individual neurons, compared to controls (Fig 2D and 2E). The severity of this

dendritic phenotype was progressive, appearing more severe in older (wandering) animals,

with a 44% reduction in total dendrite length (Fig 2B), 38% reduction in branch order (Fig

2C), and 68% reduction in branch number (Fig 2E). This observation suggests that AMPK is

required for the maintenance of dendritic structures, rather than for their formation. Further-

more, we observed a “beaded” dendritic morphology as well as thinned and fragmented pri-

mary dendritic branches, which are hallmarks of dendritic degeneration. Our AMPKβ
observations in da neurons are further supported by previous observations of similar dendrite-

morphological abnormalities associated with loss of AMPKα and AMPKγ subunit activity in

these cells [17]. Together these observations suggest that AMPK activity is necessary for the

Fig 2. alc/AMPKβ is required for maintenance of dendritic branching in Class-IV sensory neurons. (A) Representative images of

Class-IV pickpocket (ppk)>GFP-expressing neurons from abdominal segment A2 in control (top) and alc-RNAi knockdown third-

instar larvae. Individual neurons are outlined. Arrowheads point to beaded morphology of dendrites characteristic of reduced alc.

(B) Quantification of total dendrite length (mm) in both feeding (n = 10) and wandering (n = 3) third-instar larvae shows a

significant decrease in total dendrite length when alc is knocked down in class-IV neurons. (C-E) Quantification shows no

significant change in neuronal area (mm2) (D); however, knockdown of alc decreases both dendritic branching order (C) and

branch number (E). Quantification performed using the TREES Matlab toolbox. For controls, lines were crossed to w1118. Error bars

indicate SEM. Unpaired T-test was used to determine statistical significance: �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001, versus

the control.

https://doi.org/10.1371/journal.pgen.1007623.g002

AMPK signaling is required for neuronal and sleep maintenance
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maintenance of dendritic arbors. Since proper dendritic structure is required for a functional

nervous system, we then asked whether AMPK signaling, and specifically alc, might be

required for proper expression of behaviors relevant to the development of neurological

disorders.

alc is required for learning

Intellectual disability and general learning disabilities are prevalent in patients carrying the

1q21.1 CNV [4, 28]. We hypothesized that alc might also be important for behaviors such as

learning. In Drosophila, one simple behavioral assay that tests learning is courtship condition-

ing [29]. In this experiment, naïve male flies are presented with an non-receptive mated female

and soon associate her mating-associated olfactory and gustatory cues with the courtship-

rejection behaviors she expresses, leading the males to suppress futile courtship behavior

towards other mated females in the future. To determine whether alc is required for learning

following courtship conditioning, we conducted a courtship-conditioning assay with adult (4–

7 day old) flies. Following a 1-hour training session in which naïve males were presented with

a mated (non-receptive) female, individual naïve or trained males were introduced to a mated

female. Animal pairs were video-recorded using a custom recording setup in custom chambers

(S3 Fig), and stereotypical courtship behaviors were manually scored. Courtship indices (CIs)

were calculated as the fraction of time each male spent courting within the 10-minute record-

ing period. Males from control genotypes (elav>Dcr-2/+ and alc-RNAi/+) showed typical lev-

els of courtship suppression following training, compared to naïve flies exposed to a sham

training session (Fig 3A). In sharp contrast, there was no significant difference in CI between

naïve and trained elav>Dcr-2,alc-RNAi flies with reduced expression of alc in the nervous sys-

tem, indicating that pan-neuronal knockdown of alc results in an inability to learn to suppress

courtship behavior. The percentage reduction in CI of naïve versus trained flies is scored as the

learning index (LI), which is essentially zero in animals with reduced neuronal expression of

alc (Fig 3B). Naïve elav>Dcr-2,alc-RNAi males display normal levels of courtship compared to

controls, but fail to suppress courtship towards mated (non-receptive) females following train-

ing. This indicates that loss of alc in the nervous system specifically impairs learning and is not

reflecting a defect in courtship behavior. Thus, these data suggest that neuronal expression of

alc is required for learning during courtship conditioning.

Loss of alc in the nervous system disrupts sleep architecture

Patients with the 1q21.1 microdeletion also suffer from non-intellectual behavioral deficits,

one common manifestation being disrupted sleep patterning [30]. It has been suggested that

sleep is essential for the brain to replenish energy sources (ATP) depleted during wakefulness

[31]. Because one of the major roles of the AMPK complex is to upregulate processes that gen-

erate ATP, we asked whether knockdown of alc in the nervous system would impair sleep con-

solidation. We hypothesized that if sleep drive is associated with the depletion of energy stores

during metabolically demanding wakefulness, thereby stimulating AMPK-dependent signal-

ing, levels of activated AMPK would fall during sleep as ATP levels are restored. Under this

scenario, a decrease in AMPK activity would be associated with decreased sleep drive,

increased wakefulness, and reduced consolidation of sleep episodes. Sleep in Drosophila can be

measured using the Drosophila Activity Monitor (DAM) system (TriKinetics), an automated

beam-crossing locomotion assay that is the widely accepted standard in Drosophila sleep stud-

ies. It is well established in Drosophila that periods of locomotor quiescence of longer than 5

minutes indicate a sleep-like state exhibiting the hallmarks of mammalian sleep [32, 33]. To

determine whether loss of alc impairs sleep, we expressed alc-RNAi in the nervous system and

AMPK signaling is required for neuronal and sleep maintenance
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monitored sleep using the DAM system in a light/dark illumination-controlled incubator.

Animals with reduced alc expression in the nervous system exhibited significantly reduced

overall sleep compared to control genotypes, during both day and night phases. This is also

reflected in an overall increase in activity compared to controls (Fig 4A–4C). Thus reduced

“sleep,” defined as it is as long-term immobility, can be indicative of a hyperactivity phenotype.

To clarify whether we were observing differences in “sleep” or “activity”, we examined the

properties of activity bouts during sleep. Since Drosophila adults spend circadian light transi-

tion events in an elevated state of arousal during which foraging and courtship behaviors are

dominant, we separated these locomotion periods from more “steady state” periods. These

transitional periods were defined as consolidated periods of activity which include the ZT 0

and ZT 12 time-points. Activity during wakeful periods (number of beam crosses per minute

awake) that were not associated with light transitions (and thus reflective of sleep-time activity)

was significantly increased during the light phase, but not during the dark phase (Fig 4D).

Flies also demonstrated a significant increase in the duration of wakeful periods during light

(compared to both controls) and dark (compared to UAS-alc-RNAi/+ control only) (Fig 4E).

Interestingly, when we analyzed the periods around light-transition events we did not observe

increased level or duration of activity for elav>Dcr-2,alc-RNAi flies compared to controls (S4A

and S4B Fig), which indicates that the loss of alc causes a specific sleep phenotype that is not a

consequence of overall hyperactivity. For Drosophila sleep studies, sucrose-based medium is

Fig 3. Knockdown of alc/AMPKβ in the nervous system impairs courtship-conditioning learning. (A) A courtship-conditioning

assay was used to determine whether alc is required for courtship learning. Courtship index (percentage of time spent courting)

decreased after training (with a mated female) in control animals (77% decrease for elav>Dcr-2/+ and 67% decrease for UAS-alc-
RNAi/+), indicating learning in both genotypes. There was no significant difference between the performance of naïve and trained

animals lacking alc pan-neuronally. Mann Whitney test was used to determine statistical significance: ��p<0.01, ���p<0.001,
����p<0.0001, versus the control. Results were obtained from 11 experimental repeats for each genotype, using 3 animals trials each

(n = 33 animals). (B) Calculated learning index for alc knockdown and control animals. Error bars indicate SEM. Significance was

determined using a one-way ANOVA with Tukey’s post-hoc comparison: ��p<0.01 versus the control. For controls, lines were

crossed to w1118.

https://doi.org/10.1371/journal.pgen.1007623.g003

AMPK signaling is required for neuronal and sleep maintenance
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Fig 4. Knockdown of alc/AMPKβ in the nervous system disrupts sleep. (A-B) Activity (A) and sleep (B) profiles over a 24-hour

period for control genotypes elav>Dcr-2 (n = 128) and UAS-alc-RNAi/+ (n = 126) versus elav>Dcr-2, alc-RNAi (n = 126). All data

obtained from second 24-hour cycle to allow for acclimatization. Activity and sleep are shown in bins of 30 minutes. White and

black bars represent ZT time, 12 hours light and 12 hours dark, respectively. (C) Total sleep (min) in flies with pan-neuronal alc
knockdown compared to controls. Total sleep is significantly reduced when alc is knocked down in the nervous system. (D)

Comparison of activity outside sleep periods between alc knockdown animals and controls shows that pan-neuronal knockdown of

AMPK signaling is required for neuronal and sleep maintenance
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generally a standard diet. However, since AMPK is involved in intracellular energy sensing, we

also tested the phenotype on regular cornmeal-based food to see whether the observed effects

are related to this sucrose-based diet. Nervous-system-specific alc knockdown causes a loss-of-

sleep phenotype on regular cornmeal-based food, similar to what is observed on the standard

sucrose-based food used for sleep studies (S4C Fig). Together these data suggest that animals

with reduced expression of alc, and thus reduced AMPK activity, in the nervous system have

an increased drive for wakefulness and reduced sleep drive.

To further assess the sleep properties of animals with neuronal loss of alc function, we

investigated sleep-bout duration and number. Animals with reduced alc expression in the ner-

vous system showed an increase in sleep-bout number and a significant concomitant reduc-

tion in average sleep-bout length, indicating highly fragmented sleep (Fig 4F and 4G). The

average longest single sleep bout during both day and night was also greatly reduced compared

to control genotypes (Fig 4H). To more closely examine these sleep changes, we analyzed the

distribution of sleep episodes by binning them by duration and calculating the time spent in

each bin. Whereas control flies consolidated most of their daytime and nighttime sleep into

long sleep episodes of 150–499 minutes, animals with neuronal loss of alc demonstrated a

shifted sleep structure with significantly more time spent in short sleep bouts (binned into

5–14 and 15–50 minutes) (Fig 4I and 4J). In the aggregate, these data indicate that alc is neces-

sary for proper sleep architecture and consolidation in Drosophila.

Recent studies suggest that overall metabolic state, in particular when regulated within the

fat body (the adipose and liver tissue of Drosophila), may be an important regulator of complex

behaviors such as sleep, reflecting the need to modulate these behaviors according to internal

energy stores and availability of nutrients [34]. Ubiquitous AMPK down-regulation has previ-

ously been shown to increase overall dietary intake, yet flies with reduced AMPK activity have

reduced nutrient stores and display starvation-like lipid accumulation in the fat body which

suggests that they are in a persistent state of starvation [17]. Furthermore starvation is known

to suppress sleep in Drosophila, which indicates a higher demand for foraging behaviors [35].

Therefore, we sought to determine whether reducing alc in the fat body might have a distinct

phenotype from that which we observe in the nervous system by expressing alc-RNAi using

the fat body driver line CG-GAL4 (CG>). Interestingly, we observed a reduction in sleep spe-

cifically during the day, presumably when foraging behaviors are prevalent (S4E and S4F Fig).

This reduction is characterized by more sleep episodes of shorter duration (S4G and S4H Fig).

However, the length of the maximum sleep-bout duration is not reduced when compared with

driver control (S4I Fig). This indicates that although these animals spend more time locomot-

ing during the day, when they do enter a consolidated sleep episode, its duration is unaltered

by reduced alc in the fat body. Furthermore, total sleep and length of sleep episodes during the

night are not reduced when alc is reduced in the fat body. This indicates that the sleep frag-

mentation that we observe in this study is specific to AMPK signaling in the nervous system

and is separate from potential metabolic effects that are mediated within the fat body.

alc increases activity during daytime, but not nighttime. (E) Motion-bout length (min) is significantly increased during the day in alc
knockdown flies compared to controls. (F) Average sleep-bout length (min) is significantly reduced during both day- and night-time

in alc knockdown flies. (G) The number of sleep bouts per day and night increases when alc is knocked down in the nervous system.

(H) Duration of the longest sleep bout (min) is significantly shorter in alc knockdown animals than in controls. (I, J) Distribution of

length of sleep bouts for control genotypes elav>Dcr-2/+ and UAS-alc-RNAi/+ versus elav>Dcr-2, alc-RNAi during the day (I) and

during the night (J). Flies in which alc has been knocked down pan-neuronally only generate a small proportion of sleep bouts of

>150 min, whereas the majority of sleep bouts in controls are of>150 min. For controls, lines were crossed to w1118. Error bars

indicate SEM. Kruskal-Wallis test with Dunn’s post-hoc testing was used to determine statistical significance: ���p<0.001,
����p<0.0001, versus the control.

https://doi.org/10.1371/journal.pgen.1007623.g004
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Loss of AMPK signaling causes progressively worsening sleep

fragmentation

To confirm the reduced-sleep phenotype observed for pan-neuronal knockdown of alc, we

used a second, independent alc-RNAi line (8057R-2) and determined average sleep-bout dura-

tion and number during both day- and night-time. We observed similar reduced sleep and

sleep fragmentation characteristics with this alc-RNAi(8057R-2) line as with the alc-RNAi(KK)
line (Fig 5A and 5B and S5 Fig). Furthermore, we verified that the sleep phenotype observed

with the alc-RNAi(KK) line is caused specifically by loss of alc function. To do this, we tested

whether the phenotype might be rescued by expression of alc in the nervous system. As

expected, neuronal expression of alc rescues the loss-of-alc-function sleep phenotype, both for

the reduced total sleep as well as the sleep fragmentation (S6 Fig). Together this confirms that

the sleep phenotype caused by alc-RNAi in the nervous system can be attributed specifically to

reduced alc expression. To further examine whether this phenotype was specifically due to

altered AMPK signaling in the nervous system, we overexpressed AMPKα-DN to block

AMPK-complex activity via inhibition of the alpha subunit. Surprisingly, these animals ini-

tially exhibited no significant reduction in average sleep-bout duration or number. However,

over longer observation periods, sleep phenotypes arose that were similar to those displayed by

alc-knockdown animals—average sleep-bout duration significantly decreased over time, while

the number of sleep bouts significantly increased, during both day and night (Fig 5C and 5D).

This progressive deterioration in sleep consolidation over time was specific to reduced AMPK

signaling, since no significant changes in sleep-bout architecture were observed with control

genotypes aside from slightly increased daytime sleep-bout duration in one control line. Thus,

Fig 5. Neuronal loss of AMPK activity causes progressive sleep fragmentation. (A-B) Quantification of average bout durations

(A) and average bout numbers (B) during day and night for elav>Dcr-2/+ (n = 32), UAS-alc-RNAi(KK)/+ (n = 32), elav>Dcr-2, alc-
RNAi(KK) (n = 31), UAS-alc-RNAi(8057-R2)/+ (n = 32), elav>Dcr-2, alc-RNAi(8057-R2) (n = 32), UAS-AMPKα-DN/+ (n = 32),

elav>Dcr-2, AMPKα-DN (n = 31). Sleep was monitored over 10 days, and data from days 2 to 4 was used. Bout durations are

significantly reduced and bout numbers significantly increased when alc is knocked down in the nervous system compared to

control genotypes, for both RNAi lines. There is no initial difference in either parameter when dominant-negative AMPKα
(AMPKα-DN) is overexpressed in the nervous system. (C-D) Graphical representation of the fold change in bout duration (C) and

bout number (D) over time (3-day binned) during both day and night, indicated by white and black bars respectively. Shown are

data for elav>Dcr-2, alc-RNAi(KK) and elav>Dcr-2, AMPKα-DN compared to control genotypes. Bout duration significantly

decreases over time in both alc knockdown and AMPKα-DN overexpression flies. Bout number significantly increases over time for

both genotypes. Significance between days 8–10 and days 2–4 is shown. For controls, lines were crossed to w1118. Error bars indicate

SEM. Significance was determined using a Kruskal-Wallis test with Dunn’s post-hoc testing: �p<0.05, ��p<0.01, ���p<0.001,
����p<0.0001, versus the control.

https://doi.org/10.1371/journal.pgen.1007623.g005
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the loss of AMPK signaling in the nervous system causes sleep fragmentation that worsens

over time. This progressive deterioration is reminiscent of the morphological phenotypes

observed in larval class-IV da neurons. It is possible that a similar morphological deterioration

of sleep-regulatory neurons might underlie these defects.

To further determine whether the fragmented-sleep phenotype of animals deficient in alc is

due to hyperactive animals, we measured basal locomotion velocities. Behavior was recorded

in 37-mm behavioral chambers, and spontaneous velocity was quantified using the C-trax soft-

ware [36]. Example tracks for the wild-type Canton-S, control elav>Dcr-2/+, and animals with

reduced alc expression in the nervous system (elav>Dcr-2,alc-RNAi) are shown in Fig 6A.

Animals with reduced expression of alc in the nervous system (elav>Dcr-2,alc-RNAi) did not

show elevated velocities when compared to either control and spent less time locomoting,

resulting in a shorter total distance traveled over the observed 10- or 20-minute period. (Fig

6B–6D). This is consistent with the conclusion that the sleep phenotype of animals with

reduced neuronal alc is due to the fragmentation of sleep episodes and not elevated activity.

Animals defective in AMPK signaling are in a state of sleep deprivation

Since defective neuronal AMPK signaling due to tissue-specific alc knockdown resulted in

fragmented and reduced sleep, we suspected that these animals might therefore exhibit altered

expression of sleep-stress-response genes. To assess this possibility, we performed RNA

sequencing on adult head samples of animals with neuronal knockdown of alc versus controls.

Amylase has been identified as a biomarker for sleep drive in Drosophila, and another, previ-

ously uncharacterized gene, heimdall, has recently been linked to animals’ response to sleep

deprivation and starvation [37, 38]. Interestingly, both of these genes are significantly upregu-

lated in the heads of alc-knockdown flies–heimdall exhibited the greatest transcriptional up-

regulation of any gene, with a roughly 180-fold increase compared to control heads (Table 1

and S1 Table). Thus, alc-knockdown animals show a genetic response consistent with dis-

rupted sleep.

alc is required for initiation and maintenance of “recovery sleep” following

sleep deprivation

A major hallmark of sleep is homeostatic regulation, which is required for the recovery of lost

sleep after sleep deprivation (SD). To investigate whether AMPK might be important for the

homeostatic process of sleep regulation, we tested whether animals expressing neuronal alc
RNAi were defective in “recovery sleep” following deprivation. To assess recovery sleep follow-

ing SD in alc knockdown animals, we exposed elav>Dcr-2/+ control animals and elav>Dcr-2,

alc-RNAi animals to mechanical SD, using a vortex mounting plate (Trikinetics) that regularly

jostled the animals. Sleep deprivation was initiated during the second day of recording, for the

6 hours of the latter half of the dark phase immediately preceding “lights-on”. This resulted in

similar levels of sleep loss in alc knockdown and control animals (Fig 7A and 7B, S7A Fig).

However, whereas controls showed substantial subsequent sleep rebound following SD,

elav>Dcr-2,alc-RNAi animals did not show any such post-SD rebound (Fig 7B and 7C, S7A

and S7B Fig). Following relief from SD, control flies fell into extended sleep and entered their

longest consolidated sleep episode faster (Fig 7D), with an increase in average bout duration

initiated during the first two hours following SD (Fig 7E). In contrast, animals lacking alc in

the nervous system took significantly longer to reach a maximally consolidated sleep bout and

did not increase sleep bout duration following SD (Fig 7D and 7E). This indicates that animals

with impaired neuronal AMPK signaling not only fail to initiate rebound sleep, but also seem

to be generally impaired in their sleep following SD. To further examine this deprivation-
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Fig 6. Knockdown of alc/AMPKβ in the nervous system does not result in hyperactivity or hypersensitivity. (A) Example tracks

of individual animals over a 10-minute recording period. (B-D) Graphs showing average running velocity (>2mm/sec) (B), total

distance traveled (C), and fraction of time moving (velocity> 2 mm/sec) (D) for Canton-S, elav>Dcr-2/+, and elav>Dcr-2, alc-
RNAi animals for a 10 minute (n = 10) and 20 minute recording period (n = 30). Error bars indicate SEM. Mann Whitney or

Kruskal-Wallis test with Dunn’s post-hoc testing was used to determine statistical significance: ���p<0.001, ����p<0.0001, versus the

control. (E) Average baseline subtracted velocity for Canton-S, elav>Dcr-2/+, and elav>Dcr-2, alc-RNAi animals centered on

delivery of a five pulse mechanical stimulus (blue arrows). Inset box shows a magnified view of the response. N = 80 animals for each

genotype and data averaged over five pulse trains separated by 60 seconds.

https://doi.org/10.1371/journal.pgen.1007623.g006
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dependent shift in sleep architecture, we analyzed the distribution of sleep bouts during day

and night following the deprivation period. Directly following sleep deprivation, control ani-

mals spent more time in prolonged sleep episodes (500–720 min) compared to baseline peri-

ods, and returned to baseline sleep-length distribution in the following dark phase (Fig 7F). In

contrast, elav>Dcr-2,alc-RNAi animals displayed more-fragmented sleep immediately follow-

ing deprivation, indicative of an impaired sleep drive (Fig 7G). Surprisingly, this fragmentation

persisted into the following dark phase, indicating that SD of flies with altered AMPK signaling

has longer-term effects on sleep architecture (Fig 7G).

The defect in recovery sleep following sleep deprivation can be the result of animals that

become hyper-aroused following mechanical perturbation. To rule out this possibility, we

measured sleep latency following deprivation. We observed that both the control (elav>Dcr-2/
+) and alc knockdown (elav>Dcr-2,alc-RNAi) animals enter the first sleep episode faster fol-

lowing deprivation, indicating that they are not hyper-aroused (S7C Fig). To further assess the

sensitivity of animals with reduced alc expression, we measured the response of these animals

to a mechanical vibration stimulus. While a pulse train of five consecutive (1 sec apart) vibra-

tion stimuli induced elevated locomotion in all genotypes tested, animals with reduced neuro-

nal alc showed similar response to the Canton-S wild-type and reduced response compared to

the driver control (elav>Dcr-2/+) and return to baseline velocity at a similar or increased rate

compared to the two controls (Fig 6E). These results further support the conclusion that the

observed sleep-rebound phenotype is due to disruption of sleep architecture and not the result

of hyper-sensitivity.

To determine whether the apparent detrimental effect of sleep deprivation impacts survival,

we monitored sleep-deprived animals for 24 hours following sleep deprivation. We observed

increased mortality of elav>Dcr-2,alc-RNAi animals following sleep deprivation compared to

Table 1. alc-regulated genes in adult male fly heads. RNA-seq data for genes regulated in response to neuronal alc
knockdown Fold change in transcript levels for elav>Dcr2, alc-RNAi(KK) compared to the elav>Dcr2/+ controls.

Annotation Gene Name Fold Change P-Value

CG4500 heimdall 179.53 8.32E-257

Hsp70Bb Heat-shock-protein-70Bb 45.15 0

CG30059 - 34.17 4.03E-32

CR44994 - 33.82 2.66E-08

Mal-A8 Maltase A8 30.60 5.81E-12

CG34040 - 22.44 6.27E-06

Mal-A7 Maltase A7 20.80 4.81E-12

Cyp6d2 Cyp6d2 15.82 7.14E-45

lectin-24A lectin-24A 15.52 3.16E-07

squ squash 11.89 8.54E-22

Amy-p Amylase proximal 8.71 7.56E-09

alc alicorn -2.50 0

Obp56a Odorant-binding protein 56a -6.55 5.90E-161

CG32437 - -6.90 4.60E-07

CG8563 - -6.94 7.89E-15

Obp99d Odorant-binding protein 99d -14.39 2.68E-36

CG43291 - -18.69 9.75E-24

CG12971 - -35.38 1.26E-30

CG17242 - -40.90 2.58E-05

CR45600 - -62.45 0

https://doi.org/10.1371/journal.pgen.1007623.t001
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Fig 7. Alc/AMPKβ is required in the nervous system for recovery sleep following sleep deprivation. (A) Sleep profile for control

genotype elav>Dcr2/+ (n = 54) versus elav>Dcr2, alc-RNAi (n = 52) for a 72-hour period, showing sleep profiles for baseline, sleep

deprivation, and recovery days. White and black bars represent ZT time, 12 hours light and 12 hours dark, respectively. A 6-hour

sleep-deprivation period is illustrated using pink shading, typical recovery period illustrated with blue shading. (B) Quantification of

sleep debt (min) showed that control flies recovered lost sleep in the first 3 hours following sleep deprivation. Significance

determined by 2-way ANOVA with Sidak’s multiple comparisons test between control and alc-RNAi animals shown. Dashed line

shows maximum sleep debt. (C) Control animals showed a significant excess of sleep (80 minutes) compared to the same time

period of the baseline day while alc-RNAi animals did not. Pan-neuronal knock down of alc completely eliminates recovery sleep.

(D) Time to maximum sleep bout (hours) is significantly reduced in control flies following sleep deprivation, whereas it is

significantly increased in flies lacking alc in the nervous system. (E) Average bout duration in the first two hours of light phase was

significantly increased during recovery in control flies, but not in alc knockdown animals. (F-G) Distribution of length of sleep bouts

for control genotype elav>Dcr2/+ (F) versus elav>Dcr2, alc-RNAi (G) during the day and during the night, for baseline and

recovery days. Unlike control flies, which showed an increase in long sleep bouts (>150 minutes) during the day, alc knockdown

animals showed a decrease in long sleep bouts during both the day and the night, following sleep deprivation. For controls, lines

were crossed to w1118. Error bars indicate SEM. For C-E, Mann Whitney test was used to determine statistical significance. For F and

G, a 2-way ANOVA with Tukey’s post-hoc comparison was used: �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001, versus the control.

https://doi.org/10.1371/journal.pgen.1007623.g007
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both un-deprived age-matched elav>Dcr-2,alc-RNAi animals and SD and non-SD driver con-

trols (S8A Fig). To control for a possible elevated sensitivity to mechanical stress, we per-

formed a mechanical-stress assay in which flies were exposed to prolonged repeated

mechanical perturbation, and stress-induced mortality was assessed [39]. Knockdown of alc in

the nervous system did not result in a higher incidence of lethality over this period (S8B Fig),

which confirms that the observed lethality following sleep deprivation and the corresponding

deterioration of sleep architecture is the result of sleep loss rather than physical weakness of

the animals. Together, these data indicate that alc knockdown animals are incapable of consol-

idating rebound sleep and are highly sensitive to sleep deprivation, with long-lasting detrimen-

tal effects following SD. Our findings indicate that AMPK activity is required for rebound

sleep following deprivation, indicating that the AMPK complex is involved in the homeostatic

regulation of sleep. According to this view, AMPK activity would increase over periods of

wakefulness, when higher neuronal energy demands deplete cellular energy stores. Consistent

with this, we observed upregulation of pAMPKα levels in heads of control animals after 6

hours of SD, whereas this signal did not increase in animals with reduced neuronal alc expres-

sion (S8C Fig). Elevated pAMPKα levels were also observed in wild-type (Canton S) flies after

SD, confirming AMPK-complex activation following periods of SD in wild-type animals.

Discussion

The shortening of sleep-bout duration and the associated increase in their number is indicative

of a defect in sleep maintenance, in which sleep is both reduced and fragmented. Furthermore,

perturbations of sleep structure are a hallmark of many neuropsychiatric and neurodegenera-

tive disorders, and this type of perturbation is associated with the 1q21.1 deletion, which

includes PRKAB2/AMPKβ2 [1–4]. Here we show that Alc/AMPKβ and AMPK signaling are

necessary for sleep maintenance, with reduced AMPK-complex activity resulting in frag-

mented sleep episodes. Our findings indicate that animals with disrupted neuronal AMPK sig-

naling have an impaired ability to maintain the sleep state. The loss of post-deprivation

rebound sleep in animals lacking neuronal AMPK activity further suggests an effect on sleep

homeostasis. Because sleep serves beneficial biological functions, the persistent state of reduced

sleep might also explain the shortened lifespan of flies with reduced AMPK signaling in the

nervous system. The role of AMPK in stress resistance is well established [11]; however, its

role in the regulation of sleep and in the response to sleep deprivation has not been previously

reported. The disruption of sleep parameters following deprivation, and the associated high

level of mortality, indeed indicates a detrimental effect that may be associated with lack of

rebound sleep. As increased neuronal activity under reduced AMPK signaling has been shown

to result in degeneration of retinal photoreceptive neurons [19], it is possible that elevated

activity during sleep deprivation, without the neuroprotective mechanisms of AMPK, leads to

some degree of excitotoxicity. In any case, our Drosophila data suggest that AMPKβ2 may

underlie or contribute to the phenotypes observed in human 1q21.1 CNV syndromes. This

provides a molecular mechanism for understanding the link between the deletion and

increased risk of developing mental disorders associated with the 1q21.1 CNV, which may be

important for development of new strategies aimed at treating both mental disorders and sleep

disturbances.

Neuronal AMPK activity affects lifespan and stress resistance

AMPK signaling has been shown to play a critical role in aging and lifespan determination

[40]. Upregulation of AMPK signaling in Drosophila has been shown to extend lifespan by

mediating effects specifically in the intestine and the brain [20]. Furthermore, tissue-specific
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RNAi-mediated knockdown of AMPKα in the fat body and muscle was shown to reduce life-

span [41, 42]. We find that AMPK signaling in the nervous system affects longevity and sur-

vival under starvation stress. This indicates that non-metabolic pathways may contribute to

the impairment of survival upon loss of AMPK signaling. As non-cell-autonomous mecha-

nisms have been implicated in the regulation of longevity upon enhanced AMPK signaling in

the brain [20], it is possible that similar mechanisms are involved in the lifespan reduction we

observe. Interestingly, reduction of AMPK signaling in neuroendocrine cells releasing the

energy-mobilizing Adipokinetic Hormone resulted in a significant extension of life span

under starvation [43]. An intriguing possibility is that the starvation sensitivity that we

observed with nervous-system AMPK loss is mediated through effects on neuromodulatory or

neurohormonal systems.

AMPK is required for neuronal maintenance

The cellular mechanisms by which altered metabolism brings about neuropathology are not

clear. It is well established that neuronal morphogenesis defects may result from mitochondrial

dysfunction in various cell types [44, 45]. As mitochondria and AMPK are both involved in

maintaining levels of ATP, defects in these systems may phenocopy each other. In fact, it has

been shown that loss of AMPK activity enhances neurodegeneration in Drosophila models of

mitochondrial abnormalities [46]. Normal neuronal activity and synaptic transmission involve

molecular and cellular processes, such as maintenance of resting membrane potential and gen-

eration of action potentials, transporter activity, transmitter synthesis, and vesicle transport

and dynamics, that are energy-intensive. Therefore, a disruption of restorative AMPK signal-

ing that is required to replenish energy stores could result in a state of neuronal energy deple-

tion, which could lead to progressive degeneration. Here we show that knockdown of alc
results in progressive reduction of the dendritic arbors of class-IV da neurons, a phenotype

consistent with reduced AMPK activity [17, 47]. Reducing AMPK signaling by knockdown of

alc/AMPKβ specifically affects terminal dendrite branching, not the distance (reach) from the

soma. Our observations are consistent with previous reports showing that altered AMPK sig-

naling results in neurodegeneration [48, 49]. RNAi-mediated knockdown of the α- or γ-sub-

units of the AMPK complex in class-IV da neurons in Drosophila larvae causes aberrant

dendrite morphology, indicative of faulty neuronal development, neuronal damage, and

degeneration. In sum, this suggests that neuronal loss of AMPK activity is associated with pro-

gressive neurodegeneration, originating with insufficient energy to maintain neuronal struc-

tures. These results are also consistent with the emerging role of AMPK in neurodegenerative

diseases such as Alzheimer’s, Parkinson’s and Huntington’s [50].

Requirement of Alc/AMPKβ for learning

The role of AMPK in mediating the synaptic plasticity that underlies learning and memory

consolidation is unclear. One possibility to explain our observations would be that the neuro-

nal connections necessary for associative learning in the mushroom body of the insect brain

[51] have degenerated, thus resulting in a system incapable of forming, retaining, or recalling

memories. Another possibility is that loss of AMPK may impair cAMP second-messenger sig-

naling, which underlies the neuronal plasticity necessary for learning and memory [52, 53]. In

mammalian adipocytes, AMPK has been shown to be activated by intracellular cAMP levels

[54]; it is possible that a similar mechanism is present in neurons and is involved in mediating

neuronal activity and plasticity. Interestingly, in mice, treatment with the AMPK agonist

AICAR increases spatial memory in a Morris water maze [55, 56]. Our results suggest that Alc/

AMPKβ and thus the AMPK complex are required for learning, although further experiments

AMPK signaling is required for neuronal and sleep maintenance

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007623 December 19, 2018 16 / 26

https://doi.org/10.1371/journal.pgen.1007623


need to be conducted to evaluate the role of reduced AMPK signaling in the formation and

maintenance of memory. Interestingly, it has been shown that sleep deprivation has a negative

effect on learning and memory in several animal models, which opens the possibility that the

role of AMPK in memory is associated with its role in sleep [57–59]. A persistent state of sleep

deprivation in animals deficient in AMPK signaling may explain their inability to learn to

repress courtship upon rejection. Other learning paradigms need to be tested to determine if

this is a general effect on the association center of the Drosophila brain and to rule out contri-

bution from potential sensory defects that would lead to inability to sense olfactory mating

cues.

The role of AMPK in homeostatic sleep regulation

Sleep is a highly conserved animal behavior, and humans spend roughly one-third of their life

sleeping [60, 61]. Sleep and wakefulness are under the control of circadian and homeostatic

processes. The circadian clock determines the timing and rhythmic nature of sleep onset,

whereas homeostatic mechanisms are involved in sensing sleep drive and provide increasing

sleep pressure as a function of time spent awake. Neurons have high demands for ATP, the

major form of cellular energy, and low capacity to store nutrients [62], which has led to the

hypothesis that sleep is required to replenish neuronal energy that is depleted during wakeful-

ness [63]. This theory suggests that energy levels are reflected in glycogen and adenosine

changes accumulated during metabolically demanding wakefulness and that these molecules

play key roles in homeostatic sleep regulation [64]. Consistent with this notion, glycogen levels

are indeed affected by the rest and wake cycle and drop after short periods of rest deprivation

in Drosophila [65]. Adenosine is a breakdown product reflecting the depletion of ATP, the pri-

mary energy currency used by brain cells [66]. Consistent with the idea that sleep is necessary

to reestablish energy stores, ATP has been shown in rats to increase during the initial hours of

sleep when neuronal activity is low [31]. If the homeostat senses sleep drive by measuring

energy levels, the molecular mechanism of the homeostat must involve an energy sensor that is

activated by low cellular energy levels and initiates processes that restore energy levels to

relieve sleep pressure after a nap. As the major cellular energy sensor activated by low energy

levels, AMPK promotes processes that replenish energy levels [67]. Furthermore, the AMPKβ
subunit contains a glycogen-binding domain that likely enables the AMPK complex to sense

energy levels in the form of both ATP and glycogen in the nervous system [68]. If the AMPK

complex is involved in homeostatic sleep regulation, then rebound sleep following sleep depri-

vation would not occur without this complex. Our results indicate that neuronal loss of AMPK

affects sleep regulation and leads to loss of rebound sleep following deprivation, providing evi-

dence that AMPK is indeed involved in homeostatic sleep regulation. It will be of great interest

to determine whether AMPK is part of the mechanism of sleep homeostasis and its role in psy-

chiatric disorders characterized by sleep disturbances.

Materials and methods

Drosophila strains and maintenance

Drosophila larvae and adults of mixed sexes were raised on standard cornmeal medium

(Nutri-Fly “Bloomington” formulation) under a 12:12 light/dark cycle at 25 ˚C with 60%

humidity, unless otherwise stated. Fly lines Cg-GAL4 (#7011), elav-GAL4; UAS-Dicer-2 (Dcr-2)
(#25750), ppk-GAL4 (#32078), UAS-mCD8::GFP (#5137), UAS-AMPKα-K56R (UAS-AMPKα-
DN, #50760), CG-GAL4 (#7011), and Canton S were obtained from Bloomington Drosophila
Stock Center (BDSC; Bloomington, IL). UAS-alc-RNAi(KK) (#109325) and the w1118 (#60000)

genetic background line were procured from Vienna Drosophila Resource Center (VDRC;
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Vienna, Austria). UAS-alc-RNAi(8057-R2) was obtained from the NIG-Fly stock center

(Mishima, Shizuoka, Japan). UAS-alc was a generous gift [19]. We used a cross to w1118, the

isogenic genetic background of the RNAi line and the genetic background for most fly lines, as

controls.

Lifespan measurements

For starvation-survival experiments, thirty 3-5-day-old adult males were placed in vials con-

taining 2% agar in water. Survival was assessed every 2–4 hours during the main course of the

experiment for 9–10 replicate vials for each cross until all animals were dead. For each vial, the

median survival was calculated in MatLab (The MathWorks, Inc., Natick, MA) as the time-

point when the cumulative survivor function using the Kaplan-Meier method fell below 50%.

For lifespan experiments, thirty male flies were collected upon eclosion into vials containing

normal diet. Ten replicates for each cross were used, and the animals were transferred to fresh

vials every 2 to 3 days. During each transfer, the numbers of dead animals left behind and car-

ried over were recorded. Escaped flies or accidental deaths during transfer were recorded as

censored. Longevity was monitored for 89 days. Survival data was analyzed for each vial in

MatLab using the Kaplan-Meier nonparametric method accounting for censored data. As

some control vials did not reach 50% mortality, to quantify survival, the Weibull distribution

function was fit to the data, right-censoring the animals still alive at the end of the experiment.

This analysis extends exponential distributions of failure (death) probability to allow for the

increasing hazard rates associated with aging systems [69]. The scale parameter was deter-

mined for each vial and used for comparisons.

Visualization of class-IV dendritic-arborization (da) neurons

Feeding and wandering third-instar larvae were selected and anesthetized by exposure to chlo-

roform for 1 minute in a sealed container. Larvae were mounted in 90% glycerol, and GFP

fluorescence in live animals was imaged. One individual GFP-labelled neuron, located in seg-

ment A2, was imaged per larva. Larvae were imaged at 20X using a Zeiss 780 LSM confocal

microscope. Z-stacks were processed using FIJI (NIH) software [70], and analysis was per-

formed using the TREES toolbox in MatLab [71].

Courtship-conditioning assay

A courtship-conditioning assay was used to assay learning in adult flies [29]. Male flies were

collected upon eclosion and housed individually until the start of the experiment. Virgin

females were collected upon eclosion and housed in groups of 30. Mated females were gener-

ated by housing with males for 24 hours prior to experimental start, after which the males were

removed. Male flies were split into two groups, naïve flies and flies to be trained. For training,

individual male flies were incubated with mated females for 1 hour prior to testing in custom

2-cm-diameter mating chambers with a food source. For imaging courtship behavior, custom

chambers were laser cut from clear acrylic. Each chamber set consisted of an array of 20,

1.5-cm individual chambers allowing for testing of all conditions in parallel (S3 Fig). Channels

were cut to allow for a thin separator to be inserted through all of the chambers to keep the

loaded males and female separate until the start of recording. Single naïve or trained males

were then transferred into a testing arena together with individual virgin females (loaded

through a separate loading hole and kept separate from males). Transfer was done using gentle

aspiration to avoid disturbing the animals. Once all animals were loaded, the chamber was

placed on a custom-built image-acquisition setup consisting of a 20-cm diffuse infrared LED

backlight (Falcon illumination FLFL-Si200-IR24) and a Basler acA2000-50gmNIR GigE
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camera fitted with an IR filter (S3 Fig). Once the dividers separating males and females was

removed, video was recorded for 10 minutes using LabView (National Instruments, Inc., Aus-

tin, TX). All experiments were done in a climate-controlled room at 25 ˚C and 70% humidity.

Courtship behaviours were manually scored, with the scorer blinded to the genotype. The

experiment was repeated 11 times, with three trials (individual fly pairs) per experiment.

Courtship indices (CIs) were calculated as the percentage of time that a male fly spends court-

ing during a 10-minute period. The learning index (LI) was calculated as the relative reduction

of CI in trained male flies compared to naïve flies.

Basal locomotion assay

For basal locomotion measurements, animals were video recorded at 15 Hz using the imaging

setup described above (S3 Fig). Animals were gently aspirated into 37 mm diameter behavioral

chambers and their behavior recorded for 10 or 20 minutes. Spontaneous locomotion was

quantified using the Ctrax MatLab package [36]. Running velocity was determined for periods

where animals moved faster than 2 mm/sec. Mechanical stimulus was delivered using a 10 mm

brushless vibration motor (Precision Microdrives #910–101) driven by an Arduino Uno

microcontroller interfaced with the custom imaging LabView program to deliver a train of five

500 msec stimuli at 1 Hz every 60 seconds over the 10 minute recording period. For analysis,

velocities for 60 second periods were aligned by stimulus onset for the first 5 stimuli and base-

line velocity (average velocity during 5-minute period preceding stimulus) was subtracted.

Sleep assays and analysis

Locomotion over a 24-hour period was measured using the Drosophila Activity Monitor (DAM)

system (TriKinetics, Inc., Waltham, MA). Adult males were collected in groups of 30 upon eclo-

sion and housed under standard conditions until experimental start. Four-to-seven-day-old

males were used for experiments, housed in 65-mm glass tubes with a plug of 5% sucrose and

2% agar medium at one end. Experiments were performed under a 12-hour light/12-hour dark

cycle, and activity measurements were binned in one-minute periods. Episodes of sleep were

defined as at least 5 minutes of uninterrupted quiescence. Animals with less than 10 minutes of

activity during either the light or dark phase were flagged as dead. All analyses of sleep- and

motion-bout dynamics were done in MatLab. For sleep-deprivation experiments, flies were

mounted in DAM monitors and were mechanically stimulated using a vortexer mounting plate

(TriKinetics) for 2 seconds every minute, over a 6-hour period prior to lights-on. Recovery sleep

from flies with>60% loss of sleep during the deprivation period was analyzed and compared to

baseline conditions 24 hours prior to the commencement of sleep deprivation. Recovery sleep

was defined to occur in the first three hours following the end of sleep deprivation.

Western blotting

Fly heads were homogenized in Laemmli sample buffer (#1610737, Bio-Rad, Hercules, CA).

For separation of polypeptides, samples were electrophoresed through precast polyacrylamide

gels (Bio-Rad, #4561094) for 1 hour in a Tris/glycine/SDS buffer. Separated proteins were

transferred to a nitrocellulose membrane and were then blocked with Odyssey blocking buffer

(LI-COR Lincoln, NE, #927–40000) for 1 hour prior to incubation overnight with rabbit anti-

pAMPKα (1:1000, Cell Signaling technology, Danvers, MA, #2535) and mouse anti-α-Tubulin

(Sigma #T9026, diluted 1:5000) antibody at 4 ˚C. After 3 x 15-minute washes in PBS at RT,

samples were incubated with IRDye 680RD and 800CW secondary antibodies diluted 1:10,000

(LI-COR) for 30 minutes at RT. Western blots were imaged using an Odyssey Fc imaging sys-

tem (LI-COR) and ImageJ was used to quantify probe signal intensity.
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Quantitative PCR and RNA sequencing

For quantitative real-time PCR (qPCR), total RNA was prepared from 10 adult male heads using

the RNeasy Mini Kit (Qiagen #74106) with DNase treatment (Qiagen #79254). cDNA was syn-

thesized using the iScript Reverse Transcription Supermix for RT-PCR (Bio-Rad #1708840), and

qPCR was performed using the QuantiTect SYBR Green PCR Kit (Fisher Scientific #204145)

on an Mx3005P qPCR system (Agilent Technologies). Expression was normalized to RpL32.

Primers: alc; GGGCGACCATCAGTACAAGT and GCGTTCTCCACGCTTTTC; RpL32,

AGTATCTGATGCCCAACATCG and CAATCTCCTTGCGCTTCTTG. For RNA-sequencing

transcriptomics (RNA-seq), ten adult fly heads from 4-7-day-old males were harvested for each

condition, and RNA libraries were prepared for Illumina HiSeq sequencing of paired-end 100-bp

reads. Triplicates were sequenced for each genotype to determine differentially expressed genes.

Mechanical stress test

The mechanical stress test was conducted on 3-day-old male flies as described [39]. For each

genotype, three vials containing 10 flies each were evaluated, with genotypes masked during

test and evaluation. Each vial of flies was subjected to 5 seconds of mechanical stimulation

(vortexing), followed by 55 seconds of recovery. The number of upright flies was counted after

this time and is represented as a percentage of total number of flies.

Supporting information

S1 Fig. Example fits of survival data to a Weibull distribution. Example for all genotypes

tested, showing fits of survival data, from individual vials of 30 animals, to a Weibull distribu-

tion. For controls, lines were crossed to w1118.

(TIF)

S2 Fig. Pan-neuronal knockdown of alc reduces alc mRNA and levels of activated

pAMPKα in adult heads. (A and B) Expression levels of alc mRNA in adult heads from animals

with reduced neuronal expression of alc using two independent RNAi lines compared to con-

trols. Data shown is relative to driver control. (C) Levels of pAMPKα are significantly reduced

(-60% from controls) in adult heads when alc is knocked down pan-neuronally; α tubulin is

used as a ratiometric loading control. Data from 4 experimental repeats using 8 adult heads per

sample. For controls, lines were crossed to w1118. Error bars indicate SEM. Mann Whitney test

was used to determine statistical significance: �p<0.05, ��p<0.01, versus the control.

(TIF)

S3 Fig. Schematic of courtship conditioning test setup. (A) Schematic diagram and compo-

nents of the setup built to test courtship conditioning. (B) Schematic diagram of individual

chambers laser-cut from acrylic that were used to test courtship conditioning.

(TIF)

S4 Fig. Knockdown of alc/AMPKβ in the nervous system does not increase motion-bout

duration or levels of activity during light-dark transition periods and fat body specific alc-
RNAi reduces sleep during the day. (A) Quantification of the average motion-bout length

during dark-light and light-dark transitions (isolated as the motion bout present at t = 0(24)

and t = 12 hours respectively) showed no significant differences in activity between elav>Dcr-
2, alc-RNAi and control genotypes. (B) Quantification of activity (mean number of beam

crossings per minute) during dark-light and light-dark transition periods showed a decrease in

activity for elav>Dcr-2, alc-RNAi animals compared to control genotypes. (C) Total sleep over

a 24-hour period for control genotypes elav>Dcr-2 and UAS-alc-RNAi/+ versus elav>Dcr-2,
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alc-RNAi on sucrose-based food and regular cornmeal food. For controls, lines were crossed to

w1118. (D-E) Effects of fat body knockdown of alc. Activity (A) and sleep (B) profiles over a

24-hour period for control genotypes CG>+ (n = 32) and UAS-alc-RNA/+ (n = 32) versus

CG>alc-RNAi (n = 32). All data obtained from second and third 24-hour cycle. Activity and

sleep are shown in bins of 30 minutes. White and black bars represent ZT time, 12 hours light

and 12 hours dark, respectively. (F) Total sleep (min) in CG>alc-RNAi flies with fat body alc
knockdown shows reduced day time sleep and elevated night sleep compared to controls. (G)

Average sleep-bout length (min) is significantly reduced during daytime in alc knockdown

flies but not during night. (H) The number of sleep bouts per day increases when alc is

knocked down in the fat body while being reduced during night sleep. (I) Maximum duration

of sleep when alc is reduced in the fat body is unaffected except when comparing to UAS-alc-
RNAi control during the day. For controls, lines were crossed to w1118. Error bars indicate

SEM. Kruskal-Wallis test with Dunn’s post-hoc testing was used to determine statistical signif-

icance: �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001, versus the control.

(TIF)

S5 Fig. Knockdown of alc/AMPKβ in the nervous system using the alc(8057R-2) RNAi line

disrupts sleep. (A-B) Activity (A) and sleep (B) profiles over a 24-hour period for control

genotypes elav>Dcr-2 (n = 32) and UAS-alc-RNAi(8057R-2)/+ (n = 32) versus elav>Dcr-2,

alc-RNAi(8057R-2) (n = 32). All data obtained from second to fourth 24-hour cycle. Activity

and sleep are shown in bins of 30 minutes. White and black bars represent ZT time, 12 hours

light and 12 hours dark, respectively. (C) Total sleep (min) in flies with pan-neuronal alc
knockdown compared to controls. Total sleep is significantly reduced compared to both con-

trols during dark phase and to driver control in light phase when alc is knocked down in the

nervous system. (D) Duration of the longest sleep bout (min) is significantly shorter in alc
knockdown animals than in controls. (E, F) Distribution of length of sleep bouts for control

genotypes elav>Dcr-2/+ and UAS-alc-RNAi(8057R-2)/+ versus elav>Dcr-2, alc-RNAi(8057R-
2) during the day (E) and during the night (F). For controls, lines were crossed to w1118. Error

bars indicate SEM. Kruskal-Wallis test with Dunn’s post-hoc testing was used to determine

statistical significance: ���p<0.001, ����p<0.0001, versus the control.

(TIF)

S6 Fig. Overexpression of alc/AMPKβ in the nervous system completely rescues sleep phe-

notype of pan-neuronal alc-RNAi. (A-B) Activity (A) and sleep (B) profiles over a 24-hour

period for control genotypes elav>Dcr-2 (n = 16) and UAS-alc-RNAi/+ (n = 16) versus alc
knockdown animals (elav>Dcr-2, alc-RNAi; n = 16) and alc overexpression animals

(elav>Dcr-2, alc-RNAi, alc; n = 16). All data obtained from second and third 24-hour cycle.

Activity and sleep are shown in bins of 30 minutes. White and black bars represent ZT time,

12 hours light and 12 hours dark, respectively. (C) Total sleep (min) in flies with pan-neuronal

alc knockdown with and without alc overexpression compared to controls. (D) Average sleep-

bout length (min) is significantly reduced during both day- and night-time in alc knockdown

flies and rescued with alc overexpression. (E) The number of sleep bouts per day and night

increases when alc is knocked down in the nervous system and rescued with alc overexpres-

sion. For controls, lines were crossed to w1118. Error bars indicate SEM. Kruskal-Wallis test

with Dunn’s post-hoc testing was used to determine statistical significance: �p<0.05,
��p<0.01, ���p<0.001, ����p<0.0001, versus the control.

(TIF)

S7 Fig. Alc/AMPKβ is required in the nervous system for recovery sleep following sleep

deprivation. (A) Quantification of sleep debt (min) showing that both control elav>Dcr2/+
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(n = 32) and UAS-alc-RNAi/+ (n = 32) flies recovered lost sleep in the first 3 hours following

sleep deprivation while elav>Dcr-2, alc-RNAi(KK) (n = 32) animals with neuronal alc knock-

down did not. (B) Both control genotypes showed a significant excess of sleep (~80 minutes)

compared to the same time period of the baseline day while pan-neuronal alc-RNAi animals

did not. (C) Time to first sleep bout (hours) is significantly reduced in both elav>Dcr2/+
(n = 54) and elav>Dcr2, alc-RNAi (n = 52) flies following sleep deprivation. For controls, lines

were crossed to w1118. ����p<0.0001, versus the control.

(TIF)

S8 Fig. Knockdown of alc/AMPKβ in the nervous system increases mortality following

sleep deprivation, but not mechanical stress, and AMPK activity increases after sleep dep-

rivation. (A) Graph showing percentage survival and increased mortality of sleep deprived

elav>Dcr2, alc-RNAi (n = 32) animals, compared to a sleep-deprived (SD) control genotype

(elav>Dcr2/+, n = 32), and non-sleep deprived controls (elav>Dcr2/+, elav>Dcr2, alc-
RNAi, n = 32). Survival was monitored over 24 hours post sleep deprivation, and the number

of dead animals was counted. (B) Graph showing mean fraction mortality following a

mechanical-stress assay (n = 3 vials of 10 animals for each genotype). Knockdown of alc in

the nervous system does not increase susceptibility to mortality following mechanical stress.

(C) Levels of phosphorylated AMPKα (pAMPKα) increased (normalized to alpha-Tubulin)

immediately following 6 hours of sleep deprivation (SD) compared to same-time non-

deprived animals for control animals (elav>Dcr-2/+ and Canton S). For controls, lines were

crossed to w1118.

(TIF)

S1 Table. RNA-seq data for differentially expressed genes in adult male fly heads between

control and animals with knockdown of alc in the nervous system. Control elav>Dcr2/+ ani-

mals were compared to elav>Dcr2, alc-RNAi(KK) animals with neuronal knockdown of alc.

(XLS)
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