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SUMMARY

Mammalian genomes are promiscuously transcribed,
yielding protein-coding and non-coding products.
Many transcripts are short lived due to their nuclear
degradation by the ribonucleolytic RNA exosome.
Here, we show that abolished nuclear exosome func-
tion causes the formation of distinct nuclear foci, con-
taining polyadenylated (pA+) RNA secluded from nu-
cleocytoplasmic export. We asked whether exosome
co-factors could serve such nuclear retention. Co-
localization studies revealed the enrichment of pA+

RNA foci with ‘‘pA-tail exosome targeting (PAXT)
connection’’ components MTR4, ZFC3H1, and
PABPN1 but no overlap with known nuclear struc-
tures such as Cajal bodies, speckles, paraspeckles,
or nucleoli. Interestingly, ZFC3H1 is required for foci
formation, and in its absence, selected pA+ RNAs,
including coding and non-coding transcripts, are
exported to the cytoplasm in a process dependent
on themRNAexport factor AlyREF.Our results estab-
lish ZFC3H1 as a central nuclear pA+ RNA retention
factor, counteracting nuclear export activity.

INTRODUCTION

Mammalian genomes transcribe a large repertoire of RNAs,

which experience markedly different fates. This includes (1) their

transport to nuclear compartments for functioning or for the pas-

sage of processing steps, (2) their nuclear export, or (3) their

rapid nuclear decay. Nuclear export of RNA polymerase II (Pol

II) transcripts is tightly coupled to their 50 m7G cap formation,

splicing, and 30polyadenylation. mRNAs serve as the prototypic

example of such flow from transcription to cytoplasmic transla-

tion (recently reviewed in Williams et al. [2018]). Some long

non-coding RNAs (lncRNAs) are processed similarly to mRNAs

(Kung et al., 2013). However, many are also rapidly degraded

in the nucleus without being extensively spliced and where the

polyadenylation status is unclear. This includes divergently tran-

scribed enhancer RNAs (eRNAs) (Andersson et al., 2014; Djebali
Cell
This is an open access article under the CC BY-N
et al., 2012) and so-called promoter upstream transcripts

(PROMPTs)/upstream antisense (UA) RNAs (Preker et al.,

2008; Seila et al., 2008). Despite of all these RNAs being Pol II

products and displaying structural similarity, at least at their 50

ends, lncRNAs appear to be more concentrated in the nucleus

and to be more labile than their mRNA counterparts (Djebali

et al., 2012; Preker et al., 2011). Thus, mechanisms must exist

that ‘‘sort’’ Pol II-derived transcripts for their differential nuclear

and cytoplasmic destinies.

RNA-processing steps largely take place co-transcriptionally

but, nevertheless, may occur in specialized nuclear areas;

nucleoli, speckles, Cajal bodies (CBs), and paraspeckles (Slee-

man and Trinkle-Mulcahy, 2014). Commonly, such nuclear

bodies are self-organizing and dynamic structures that harbor

specific substrates and enzymes and where enzymatic and

RNP assembly reactions might be accelerated. With relevance

for Pol II-derived transcripts, CBs contain a variety of proteins

and RNAs that are involved in the assembly and modification

of small nuclear ribonucleoproteins/small nucleolar ribonucleo-

proteins (snRNPs/snoRNPs) (Nizami et al., 2010). After their

maturation, snRNPs travel to speckles, which may host multiple

steps of gene expression, such as Pol II transcription, pre-mRNA

splicing, and other mRNP maturation events in preparation for

nuclear export (recently reviewed in Galganski et al. [2017]).

Paraspeckles, which are proximal to speckles, form around the

NEAT1 lncRNA and are enriched for specific RNA-binding

proteins (Naganuma and Hirose, 2013). Their function is still

debated, but recent reports suggest that paraspeckle compo-

nents are involved in gene expression regulation (West et al.,

2014), immune responses (Morchikh et al., 2017), andmicroRNA

processing (Jiang et al., 2017). The so-called ‘‘Mmi foci’’ are

another group of nuclear bodies of interest. These foci, which,

so far, appear specific for S. pombe cells, are enriched with

proteins involved in nuclear RNA decay, and it has been pro-

posed that Mmi1 foci are degradation sites for meiosis-specific

transcripts during vegetative growth (Harigaya et al., 2006; Su-

giyama and Sugioka-Sugiyama, 2011; Yamanaka et al., 2010;

Yamashita et al., 2013). Where and whether similar degradation

centers exist in mammalian cell nuclei are still open questions.

The best described and major, nuclear RNA decay machinery

is the highly conserved 30–50 exo- and endo-nucleolytic RNA

exosome (Kilchert et al., 2016). This multi-subunit complex is
Reports 23, 2199–2210, May 15, 2018 ª 2018 The Author(s). 2199
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present in the cytoplasm as well as in the nucleus, where it deals

with most RNA biotypes. The human nucleoplasmic exosome is

composed of a nine-subunit catalytically inactive core (known as

EXO9) that achieves its activity via interaction with the exonu-

clease RRP6 and the exo- and endonuclease RRP44 (also

known as DIS3) (Kilchert et al., 2016; Zinder and Lima, 2017).

RNA exosome function critically depends on the RNA helicase

MTR4 (also called SKIV2L2) to unwind exosome substrates,

hereby facilitating their entry into the central channel of the exo-

some (Johnson and Jackson, 2013; Schneider and Tollervey,

2014). Critically, MTR4 also serves as a platform for recruiting

adaptor proteins, providing RNA substrate binding and speci-

ficity (Meola and Jensen, 2017). In human nuclei, three such

MTR4-containing adaptor complexes have been described.

The human hTRAMP complex, harboring the non-canonical

poly(A) (pA) polymerase TRF4-2 and the zinc-knuckle protein

ZCCHC7, is exclusively nucleolar and predominantly involved

in rRNA processing and decay (Lubas et al., 2011). Two other

MTR4-containing complexes, the nuclear-exosome-targeting

(NEXT) complex (Lubas et al., 2011) and the pA-tail-exosome-

targeting (PAXT) connection (Meola et al., 2016), both have

nucleoplasmic localizations. In the NEXT complex, MTR4 inter-

acts with the zinc-knuckle protein ZCCHC8 and the promiscu-

ous RNA-binding protein RBM7 (Giacometti et al., 2017; Lubas

et al., 2011), which facilitate exosome decay of, e.g., PROMPTs,

eRNAs, and 30 extended products of snRNAs and snoRNAs (An-

dersen et al., 2013; Hrossova et al., 2015; Lubas et al., 2011,

2015; Meola et al., 2016). In case of the PAXT connection,

another zinc-finger protein, ZFC3H1, mediates an interaction

of MTR4 with the nuclear pA-binding protein PABPN1, in turn,

targeting polyadenylated RNAs to the exosome (Meola et al.,

2016). Thus, although substrate overlap exists, PAXT generally

promotes the degradation of longer and more extensively poly-

adenylated RNAs, whereas NEXT targets shorter and more

immature transcripts (Meola et al., 2016).

Adding an m7G cap to the 50 end of the �20-nt-long nascent

transcripts is considered to be a hallmark of successful Pol II

transcription initiation (Ramanathan et al., 2016). Shortly after

its capping, the nascent RNA is bound by the cap-binding pro-

teins, CBP20 and CBP80, forming the cap-binding complex

(CBC) (Izaurralde et al., 1994; Moteki and Price, 2002; Visa

et al., 1996). Interestingly, both PAXT and NEXT components

can connect to the CBC via bridging proteins ZC3H18 and

ARS2 (Andersen et al., 2013; Hallais et al., 2013; Meola et al.,

2016). ARS2 directly interacts with the CBC to form the CBC-

ARS2 (CBCA) complex, which behaves as a general suppressor

of pervasive transcription (Andersen et al., 2013; Iasillo et al.,

2017), whereas ZC3H18 connects the CBCA with NEXT for

immediate substrate degradation (Andersen et al., 2013). The

CBC also plays a role in intra-nuclear transcript transport as

well as nuclear RNA export (Boulon et al., 2004; Cheng et al.,

2006). For small nuclear RNAs (snRNAs), the transport adaptor

protein PHAX binds the CBCA complex to promote the nuclear

export of capped precursor transcripts (Boulon et al., 2004;

Ohno et al., 2000). Sorting these RNAs between nuclear decay

and export is suggested to occur in a competition between

ZC3H18/NEXT and PHAX for CBCA binding (Giacometti et al.,

2017). For most polyadenylated RNAs, like mRNAs, nuclear
2200 Cell Reports 23, 2199–2210, May 15, 2018
export is promoted in a process involving the AlyREF protein,

which interacts with CBP80 to recruit the transcription/export

(TREX) machinery to mRNA 50 ends (Masuda et al., 2005). How

the interplay between RNA export and degradation factors leads

to a final decision of RNA fate remains unresolved.

In this study, we demonstrate that abolishing RNA exosome

activity, by depleting its core component RRP40 (also known

as EXOSC3), leads to the sequestration of pA+ RNAs in distinct

nuclear foci (coined pA+ RNA foci). We find that MTR4 and

PAXT, but not NEXT, components, are enriched in pA+ RNA

foci, and we identify ZFC3H1 as a critical factor for foci forma-

tion. We surmise that ZFC3H1 is a nuclear retention factor for

its bound pA+ RNA, and we demonstrate that it functionally

competes with the pA+ RNA export factor AlyREF.

RESULTS

RNA Exosome Depletion Leads to the Accumulation of
pA+ RNA in Distinct Nuclear Foci
While both NEXT and PAXT pathways act on nuclear transcripts,

it is unclear where targeting occurs and which mechanism(s)

might ensure the nuclear retention of substrates prior to their

decay. To begin to shed light on these questions, we first used

small interfering RNAs (siRNAs) to deplete the exosome core

protein RRP40 in HeLa cells (Figure 1A) and visualized pA+

RNA with a fluorescently labeled oligo(dT) probe. By removing

an exosome core component, all exosome targets are impacted,

regardless of the utilized adaptor complex. Moreover, it has been

demonstrated that, in the absence of the exosome, at least some

of its targets undergo poly- (Preker et al., 2011) or hyper-adeny-

lation (Bresson and Conrad, 2013). RRP40 depletion triggered

the appearance of distinct nuclear pA+ RNA foci only vaguely

visible in control cells (Figure 1B). To ascertain whether these

foci were related to known nuclear bodies, we performed co-

localization analysis using SC35, Coilin, and PSF protein as

markers for speckles, paraspeckles, and Cajal bodies, respec-

tively. These analyses did not disclose any exclusive overlap

with pA+ RNA foci in exosome-depleted conditions (Figures

1C, S1A, and S1B), although we noted an occasional co-locali-

zationwith SC35 (Figure 1C, right line scan) andPSF (Figure S1B,

right line scan) and a frequent close proximity to Coilin (Fig-

ure S1A, right line scan). In addition, we did not observe pA+

RNA localization in nucleoli, constituting condensed regions

poorly stained with DAPI. We conclude that at least some exo-

some targets are nuclear retained and largely aggregate outside

of known nuclear compartments when prevented from getting

degraded.

PAXT Components Are Selectively Enriched in pA+ RNA
Foci
Besides RNA, nuclear bodies harbor high concentrations of pro-

tein, potentially involved in their biological function. Therefore,

we asked whether pA+ RNA foci contain proteins involved in

nuclear RNA decay. Immunolocalization (IL) analysis of MTR4,

involved in both NEXT and PAXT pathways, displayed a clear

punctate accumulation in RRP40-depleted cells, whereas the

protein showed an even nuclear distribution in control cells (Fig-

ure 2A). Importantly, dual MTR4 IL/pA+ RNA fluorescence in situ



Figure 1. RNA Exosome Depletion Leads

to the Formation of Distinct Nuclear pA+

RNA Foci

(A) Western blotting analysis of RRP40 levels in

HeLa cells treated with control siRNA (siEGFP) or

siRNA targeting RRP40 (siRRP40). b-actin was

used as a loading control.

(B) RNA-FISH analysis of pA+ RNA in control

(siEGFP) or RRP40-depleted (siRRP40) HeLa cells.

pA+ RNA, detected with an oligo(dT)-LNA probe

(Thomsen et al., 2005), is shown in yellow, and

nuclear DAPI stain is shown in blue.

(C) Co-localization analysis of pA+ RNA foci with

the speckle marker SC35 using cells from (B).

Confocal images of SC35 immunofluorescence (IF)

signal in green, pA+ RNA-FISH signal in red, and

DAPI stain in blue. SC35 IF and RNA-FISH signals

were merged (merge). Arrows point to cells that

were used for line scan analyses, and zoom-ins of

the relevant cells are shown at the right of the

corresponding panel. Line scan profiles represent

IF and RNA-FISH signal intensities along the drawn

line. Dashed lines represent outlines of nuclei. pA+

RNA was detected as in (B).

Scale bars, 10 mm.
hybridization (FISH) analysis demonstrated that MTR4 punctae

coincide with pA+ RNA foci (Figure 2A, right bottom line scan).

To inquire about PAXT and/or NEXT enrichment in the pA+

RNA foci, we repeated such co-localization analysis using anti-

bodies toward the PAXT components PABPN1 and ZFC3H1,

as well as the NEXT components RBM7 and ZCCHC8. This

revealed a strong overlap between PABPN1 and ZFC3H1 with

the pA+ RNA signal upon exosome inactivation (Figures 2B and

2C, right bottom line scans), whereas neither of the NEXT com-

ponents ZCCHC8 and RBM7 exhibited any noticeable localiza-

tion change between RRP40-depleted and control cells (Figures

S2A and S2B). Interestingly, we could also detect an enrichment

of the ARS2 protein in pA+ RNA foci (Figure S2C). As ARS2 is part

of the CBCA complex that binds capped RNA, this suggests that

accumulating RNAs have a proper cap structure. Thus, PAXT

components MTR4, ZFC3H1, and PABPN1 accumulate on nu-

clear exosome targets, of which at least some are capped and

polyadenylated, when turnover is prevented.

Diverse RNAs Accumulate in pA+ RNA Foci upon
Exosome Inactivation
Having established an enrichment of PAXT proteins in pA+ RNA

foci, we next addressed whether known RNA substrates of the

PAXT pathway were also present. Hence, we performed specific

RNA-FISH analysis of the highly expressed and spliced SNHG19

RNA previously established as a PAXT pathway target (Meola

et al., 2016) (Figure S3A). FISH analysis using probes spanning

the SNHG19 RNA exon-exon junction demonstrated its co-

accumulation with polyadenylated RNA in pA+ RNA foci (Fig-

ure 3A). To determine any pathway specificity of such accumu-

lation, we next localized NEXT pathway targets. These are

generally short and lowly expressed, making RNA-FISH chal-

lenging; therefore, we chose the highly expressed DNAJB4

PROMPT (Figure S3B) and the 30 extended form of U1 snRNA

(RNVU1-14) (Figure S3C) for our analysis. Both these transcripts
accumulated in pA+ RNA foci upon RNA exosome depletion (Fig-

ures 3B and 3C). Finally, we analyzed RNA expressed from an

artificial PROMPT (proPOGZ) locus, stably integrated in the

HeLa genome between a CMV promoter and a BGH pA signal

(Ntini et al., 2013). qRT-PCR analysis showed this transcript to

be stabilized upon RNA exosome depletion, although neither

ZCCHC8 (NEXT) nor ZFC3H1 (PAXT) depletion affected its levels

(Figure S3D). Yet, RNA-FISH analysis still revealed a clear accu-

mulation of this transcript in pA+ RNA foci (Figure S3E). Thus,

even though the nuclear pA+ foci specifically concentrate

PAXT components, they contain both PAXT and non-PAXT

RNA substrates. It is plausible that non-PAXT targets become

polyadenylated in exosome-depletion conditions (Preker et al.,

2011) and that longer pA tails trigger PAXT loading and pA+

RNA foci localization (see also Discussion).

The ZFC3H1 Protein Is Required for Formation of pA+

RNA Foci
Given the massive condensation of nuclear RNA exosome sub-

strates into pA+ RNA foci, we next wondered whether exosome

adapters NEXT or PAXT might be involved in foci formation. To

examine this question, we depleted HeLa cells of RRP40,

MTR4, ZFC3H1, or ZCCHC8 (Figure S4A) and followed pA+

RNA foci and SNHG19 RNA localization by RNA-FISH, as

described earlier. As previously reported (Lubas et al., 2011;

Ogami et al., 2017), MTR4 depletion also reduced ZCCHC8,

ZFC3H1, and, to some extent, RRP40 protein levels (Figure S4A).

Still, neither MTR4 nor ZFC3H1 and ZCCHC8 depletions re-

sulted in pA+ or SNHG19 RNA accumulation in nuclear foci (Fig-

ures 4A and S4B). At the same time, parallel qRT-PCR analysis

showed the robust accumulation of SNHG19 RNA upon both

MTR4 and ZFC3H1 depletions (Figure 4B; see also Meola et al.

[2016]).

A possible reconciliation of these data could be that the

MTR4 and/or ZFC3H1 proteins themselves are, apart for their
Cell Reports 23, 2199–2210, May 15, 2018 2201



Figure 2. PAXT Complex Components Localize to pA+ RNA Foci

(A–C) Co-localization analysis of PAXT components MTR4 (A), ZFC3H1 (B), and PABPN1 (C) with pA+ RNA in control (siEGFP) and RRP40-depleted (siRRP40)

HeLa cells as in Figure 1C. Scale bars, 10 mm.
roles as exosome co-factors, required for the creation of pA+

RNA foci. To test this notion, we depleted cells for RRP40 (to

form pA+ RNA foci) and combined this with depletion of
2202 Cell Reports 23, 2199–2210, May 15, 2018
MTR4, ZFC3H1, or ZCCHC8, yielding largely comparable levels

of SNHG19 RNA as upon single depletion of RRP40 (Figure 4B).

Parallel RNA-FISH analysis showed that cells subjected to



Figure 3. Diverse RNAs Accumulate in pA+ RNA Foci

(A–C) RNA-FISH co-localization analyses of pA+ RNA with SNHG19 (A), proDNAJB4 (B), and RNVU1-14 30 extension (C) in control (siEGFP) or RRP40-depleted

(siRRP40) HeLa cells. pA+ RNAwas detectedwith an oligo(dT) 50-mer probe. Line scans are indicated as in Figure 1C, including DAPI channel. Scale bars, 10 mm.
RRP40/MTR4 and RRP40/ZFC3H1 co-depletions were devoid

of any discernable pA+ and SNHG19 RNA accumulation (Fig-

ure 4A). In contrast, cells subjected to RRP40/ZCCHC8 co-

depletion displayed similar focal patterns of pA+ and SNHG19

RNA, as observed for cells depleted only for RRP40. Given

the presence of MTR4 protein in RRP40/ZFC3H1-depleted cells

and the co-depletion of MTR4 and ZFC3H1 in RRP40/MTR4-

depleted cells (Figure S4A), these results, therefore, implicate

the ZFC3H1 protein as an important contributor to pA+ RNA

foci formation in exosome-depleted cells. If so, exogenous

ZFC3H1 expression in RRP40/ZFC3H1 co-depleted cells

should re-install pA+ foci formation. To test this, we used

ZFC3H1 50 and 30 UTR-specific siRNAs, which both efficiently

deplete endogenous ZFC3H1 protein but do not target a

plasmid-expressed FLAG-tagged ZFC3H1 version (Figure S4C).

Indeed, parallel IL/pA+ RNA-FISH analysis of the plasmid-trans-
fected cells demonstrated that pA+ foci formation was rescued

by exogenous FLAG-tagged ZFC3H1 expression (Figure S4D).

We conclude that ZFC3H1 is required for pA+ RNA foci

formation.

What then is the fate of exosome substrates, e.g., SNHG19

RNA, in ZFC3H1-depleted cells, where the transcript is stabi-

lized but does not accumulate in nuclear foci? If ZFC3H1 activ-

ity generally retains exosome substrates in cell nuclei, SNHG19

transcripts escaping such retention would be likely to enter the

mRNA export pathway. To explore this possibility, we per-

formed subcellular fractionation of HeLa cells from Figure 4A

and analyzed the abundance of SNHG19 RNA in nuclear and

cytoplasmic fractions. qRT-PCR analysis showed a clear accu-

mulation of SNHG19 transcripts in the cytoplasmic fractions of

cells subjected to factor depletion combinations; MTR4,

ZFC3H1, RRP40/MTR4, and RRP40/ZFC3H1, which all yielded
Cell Reports 23, 2199–2210, May 15, 2018 2203



Figure 4. The ZFC3H1 Protein Is Required

for RNA Foci Formation

(A) Dual SNHG19 and pA+ RNA-FISH analysis in

the indicated factor-depleted HeLa cells. Merged

images of DAPI (blue), SNHG19 (green), and pA+

RNA (red) are shown. Images from separate

channels are shown in Figure S4B. pA+ RNA was

detected with an oligo(dT) 50-mer probe.

(B and C) qRT-PCR analysis of SNHG19 RNA us-

ing total (B) or cytoplasmic and nuclear (C) frac-

tions harvested from the indicated factor-depleted

HeLa cells. In (C), 1 mg RNA from the respective

fractions was used for reverse transcriptase re-

actions. Data are displayed as mean values, with

error bars denoting SD (n = 4 biological replicates,

except for siZCCHC8: n = 3). ***p < 0.01, Student’s

t test; ns, not significant. Scale bars, 10 mm.

See also Figure S4B.
low ZFC3H1 levels (Figures 4C and S4A). Consistently,

ZCCHC8 depletion alone, or in combination with RRP40 deple-

tion, did not result in elevated cytoplasmic SNHG19 RNA levels

(Figure 4C). These results all point toward ZFC3H1 being

responsible for retaining RNA exosome targets in the cell

nucleus.

ThemRNA Export Factor AlyREF Functionally Competes
with ZFC3H1
Our results so far suggest that ZFC3H1might compete with RNA

export activity to prevent nuclear RNA exosome substrates from

entering the cytoplasm. IL analysis of mRNA export factors

AlyREF (Figures S5A and S5B) and NXF1 (data not shown) did

not reveal any accumulation in pA+ RNA foci, suggesting mutual

exclusive binding of export and decay factors. Therefore, the

observed export of exosome substrates upon ZFC3H1 depletion

may be caused by recruitment of the export machinery to sub-

strates normally blocked by decay co-factors. To test this pre-

diction, we depleted AlyREF alone or in ZFC3H1- and RRP40/

ZFC3H1-depletion conditions (Figure S5C). As expected, deple-

tion of AlyREF alone resulted in nuclear accumulation of pA+

RNA (Figure 5A) but did not lead to nuclear accumulation of

SNHG19 RNA (Figure 5B), which is most likely degraded by

the exosome in this condition. When co-depleted with ZFC3H1

or RRP40/ZFC3H1, AlyREF depletion resulted in re-established
2204 Cell Reports 23, 2199–2210, May 15, 2018
nuclear accumulation of SNGH19 and

pA+ RNA (Figures 5A and 5B). However,

as opposed to the distinct foci of

RRP40-depleted cells, pA+ and SNHG19

RNA now appeared more diffusely in the

nucleoplasm (Figures 5A and 5B;

compare panel ‘‘siRRP40’’ to panels

‘‘siZFC3H1/siAlyREF’’ and ‘‘siRRP40/

siZFC3H1/siAlyREF’’). These results reit-

erate a role of ZFC3H1 in pA+ RNA aggre-

gation and suggest that the protein might

‘‘shield’’ RNA exosome targets from the

mRNA export machinery. In the absence

of ZFC3H1, however, even exosome
targets with no normal cytoplasmic business, like SNHG19

RNA, will get exported from the nucleus.

Full-Length mRNAs Accumulate upon Exosome
Depletion
To further examine which transcripts get turned over by the

nuclear exosome and might accumulate in pA+ RNA foci in its

absence, we performed high-throughput RNA-sequencing

(RNA-seq) analysis of pA+ RNA from nuclear fractions of cells

subjected to RRP40 depletion (‘‘siRRP40’’) or treated with con-

trol EGFP siRNAs (‘‘siEGFP’’) (Figure S6A). Both types of libraries

were produced either in duplicates (EGFPkd) or triplicates

(RRP40kd), which generally displayed good reproducibility

between replicates (Figure S6B). Nuclear exosome targets

were revealed by calculating fold changes between the

RRP40kd and the control sample, using DESeq2, and using all

GENCODE-annotated RNAs expressed in the samples as well

as PROMPTs and eRNAs as previously described (Meola

et al., 2016). As expected PROMPTs and eRNAs were generally

upregulated in the RRP40-depletion condition (Figure 6A),

consistent with the notion that a large share of these transcripts

are adenylated (Preker et al., 2011). More surprisingly, we

noticed that RNA stemming from a significant number of anno-

tated protein-coding genes were either up- or downregulated

upon RRP40 depletion (Figure S6C), which was also observed



Figure 5. ZFC3H1 Counteracts AlyREF Function

(A and B) RNA-FISH analysis of pA+ RNA (A) and SNHG19 RNA (B) in factor-depleted (indicated to the left side of each image panel) HeLa cells. Image display is as

shown in Figure 3B. pA+ RNA was detected with an oligo(dT) 50-mer probe. Scale bars, 10 mm.
in previously published RRP40kd libraries of total RNA prepara-

tions (Meola et al., 2016) (Figure S6D). However, aberrant prod-

ucts, e.g., those constituting premature transcription termination

events, as well as intragenic eRNAs are stabilized upon RRP40

depletion (Iasillo et al., 2017). Therefore, we intersected the

nuclear RNA-seq analysis with our previously published total

RRP40kd RNA-seq data (Meola et al., 2016) and also interro-

gated the extent to which the upregulated signals constituted

full-length and/or spliced mRNA. To this end, we selected

1,641 protein-coding genes that were significantly upregulated

(log2[RRP40kd/EGFPkd] > 0, and adjusted p value [padj] <

0.05) in the nuclear samples and were upregulated/unaffected

(log2[RRP40kd/EGFPkd] > �0.5) in the total RNA datasets (Fig-

ure 6B). Log2 fold changes (RRP40kd/EGFPkd) were then calcu-

lated for each exon and intron, and genes were selected that had

their exons upregulated in the nuclear RNA samples, resulting in

a set of 673. On average, introns were less upregulated than

exons, indicating thatmature spliced RNAswere being stabilized

by exosome depletion (Figure 6C). Moreover, upregulation

occurred across all exons, strongly suggesting that full-length
mRNAs were affected. We note that our analysis cannot discrim-

inate which of these are direct targets of the exosome and which

accumulate due to indirect effects.

To characterize exosome-sensitive mRNAs, we used a pub-

lished classification system for human coding and non-coding

genes (Mukherjee et al., 2017). In relation to a background set

(Figure S6E), our set of 1,641 upregulated protein-coding genes

was significantly enriched for cluster c3 (p = 6.12e�10) from

Mukherjee et al. (2017) (Figure 6D). A significant enrichment

(p = 3.207e�07) was obtained for the same cluster when

analyzing only those 366 genes giving rise to mRNAs upregu-

lated (log2[RRP40kd/EGFPkd] > 0, and padj < 0.05) in both total

and nuclear samples (Figures S6F and S6G). Interestingly, clus-

ter c3 is enriched for transcription-factor-encoding mRNAs, that

are more nuclear than the average, are well synthesized, and

exhibit high degradation rates (Mukherjee et al., 2017).

Finally, we asked whether exosome-sensitive mRNAs might

also localize to pA+ RNA foci upon RRP40 depletion. The

ACTB and NFKB2 mRNAs were selected for analysis, as both

transcripts are relatively abundant, and their full-length mature
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Figure 6. Full-Length mRNAs Can Be Upre-

gulated upon Exosome Depletion

(A) Log2 fold changes (y axis) between PROMPTs

and eRNAs in nuclear RRP40kd versus EGFPkd

libraries plotted against their mean normalized

expression (log10 scale, x axis).

(B) Venn diagram representing the overlap be-

tween significantly upregulated protein-coding

genes (log2[RRP40kd/EGFPkd] > 0, padj < 0.05) in

the nuclear RNA libraries and the upregulated and

unaffected protein-coding genes (log2[RRP40kd/

EGFPkd] > �0.5) in the total RNA libraries.

(C) Boxplots of log2 fold changes (RRP40kd/

EGFPkd) of each individual exon and intron of the

selected protein coding genes in ascending order

up to the 11th exon.

(D) Barplots representing theclassification of 1,641

protein-coding genes—overlap from (B)—to pre-

viously described clusters (Mukherjee et al., 2017).

Note the enrichment of genes belonging to cluster

c3 (Pearson’s chi-square test, p = 6.12e�10;

calculated against all expressed genes in nuclear

samples represented in Figure S6E).

(E) Genome browser view of the ACTB locus,

showing tracks of normalized total and nuclear

RNA-seq data from control (EGFPkd, black line)

and RRP40-depleted (red line) HeLa cells. All tracks

represent an average of three biological replicates,

except the nuclear EGFPkd sample, which repre-

sents average of two biological replicates.

(F) Dual ACTB and pA+ RNA-FISH analysis in the

indicated factor-depleted HeLa cells. Merged

images of DAPI (blue), ACTB (green), and pA+

RNA (red) are shown. Image display is as in Fig-

ure 1C.

See also Figure S6E.
RNA species displayed elevated nuclear expression upon

RRP40 depletion (Figures 6E, S6H, and S7A). As expected,

RNA-FISH experiments revealed a predominant cytoplasmic

localization for both RNAs, which did not differ between control

and RRP40-depleted cells (Figures 6F and S7B). However, some

ACTB mRNA could be detected in nuclear pA+ RNA foci upon

RRP40 depletion (Figure 6F), while a noticeable accumulation

of NFKB2 RNA was not observed (Figure S7B). Collectively,

these results suggest that a fraction of spliced, full-length

mRNA is subject to nuclear exosomal decay.

DISCUSSION

The vast majority of the human genome is transcribed, and

commonly from non-genic regions, giving rise to a broad variety

of ncRNA. These are often transcribed by Pol II and, therefore,
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pass some processing steps character-

istic of mRNA. Yet, unlike most mRNA, a

large fraction of ncRNA is rapidly turned

over by the nuclear RNA exosome. How

such molecular decision is enabled, and

with what means nuclear export of these

ncRNA is prevented, is not well under-

stood. Here, we demonstrate that pre-
cluding the degradation of RNA exosome targets, including

somemRNA, does not automatically lead to their nuclear export.

Instead, they form distinct nuclear pA+ RNA foci, requiring reten-

tion that counteracts export. We unveil one aspect of such

mechanism(s) by demonstrating that the PAXT component

ZFC3H1 is required for establishing the pA+ RNA foci phenotype.

Moreover, we suggest that this occurs in functional competition

with AlyREF-mediated pA+ RNA nuclear export.

Cell biological data presented here echo results from mitoti-

cally growing S. pombe cells, where unwanted meiosis-specific

transcripts are cleared by the nuclear exosome (Chen et al.,

2011; Harigaya et al., 2006; Hiriart et al., 2012; Yamashita

et al., 2012; Zofall et al., 2012). These transcripts are specifically

recognized by the Mmi1 protein (Harigaya et al., 2006) in the

context of MTREC, a multisubunit complex that also contains

Red1 and Pab2, which are S. pombe homologs of ZFC3H1



and PAPBN1, respectively (Marayati et al., 2016; Zhou et al.,

2015). Both these proteins are required for the decay of meiotic

transcripts, in a process that also requires the polyadenylation

activity of the canonical pA polymerase Pla1 (St-André et al.,

2010; Sugiyama and Sugioka-Sugiyama, 2011; Yamanaka

et al., 2010). Interestingly, Mmi1, Red1, Pab2, polyadenylation

factors, and the nuclear exosome subunit Rrp6 accumulate in

distinct nuclear dots, suggested to be transcript degradation

sites (Harigaya et al., 2006; Sugiyama and Sugioka-Sugiyama,

2011; Yamanaka et al., 2010). Given the obvious similarity to

our results, it is possible that such RNA decay centers also exist

in mammalian cells. However, unlike in S. pombe, where ‘‘Mmi1

foci’’ are also visible in wild-type cells, we do not measure

discernable condensates of exosome adaptor proteins in nor-

mally growing HeLa cells. Although we cannot fully exclude

that RNA foci are pre-existing in normal cells as condensates

of non-adenylated RNA, which becomes adenylated after RNA

exosome depletion, the fact that neither adaptor proteins nor

targets of the exosome accumulate in foci in the control condi-

tion is at odds with this possibility. Nuclear pA+ RNA foci are

also observed in S. cerevisiae cells carrying a mutant allele of

the MTR4 gene (Kadowaki et al., 1994). It is, therefore, an

outstanding task, across different species, to discern whether

macromolecular interactions exist, that are difficult to detect

by conventional microscopy, and which coalesce into detect-

able foci only when the nuclear concentration of RNA increases

upon exosome inactivation. Additionally, we do not have evi-

dence to discriminate whether active RNA decay takes place

in such putative RNP assemblies. Finally, S. cerevisiae strains

debilitated in mRNA nuclear export also retain pA+ RNA in

nuclear focal structures (Hilleren et al., 2001; Jensen et al.,

2001a; 2001b; Libri et al., 2002). Curiously, this retention is alle-

viated upon inactivation of the S. cerevisiae nuclear exosome,

revealing that decay factors can also, in some situations, control

nuclear RNA retention. Clearly, much still has to be learned about

the relationships between nuclear RNAmetabolism, localization,

and export.

Although the mechanisms underlying the formation of RNA-

containing foci are generally also not understood, a number of

recent studies have demonstrated that non-membranous

cellular compartments can form by so-called liquid-liquid phase

transitions (Shin and Brangwynne, 2017). Their formation is often

driven by sequence-specific physicochemical properties of

RNA, facilitating multivalent protein-RNA and protein-protein

interactions enriched with amino acid sequences of low

complexity (Jain and Vale, 2017; Jiang et al., 2015; Kato et al.,

2012; Uversky, 2017). The N-terminal part of ZFC3H1 harbors

several low-complexity regions and is highly disordered (data

not shown; using the low-complexity-predicting program

PONDR-FIT; Xue et al., 2010), with particularly serine- and

proline-rich stretches predicted to be important for phase sepa-

ration (Shin and Brangwynne, 2017). Thus, it is likely that this

property of ZFC3H1 drives formation of pA+ RNA foci.

Consistent with their ZFC3H1 dependency, we found PAXT

components, and the bona fide PAXT target SNHG19, to be

enriched in pA+ RNA foci. However, despite the absence of

NEXT components ZCCHC8 and RBM7, we somewhat surpris-

ingly also found the accumulation of NEXT substrates. Since
PAXT complex loading onto target RNA presumably is pA-tail

dependent (Meola et al., 2016), it is possible that NEXT

substrates, stabilized in RNA exosome-depleted conditions,

achieve pA-tails long enough to accommodate PAXT binding.

Indeed, recent RNA-seq data (Meola et al., 2016) showed a

partial stabilization of tested NEXT targets in ZFC3H1-depleted

HeLa cells (see also Figures S3A and S3B), indicating that a frac-

tion of transcripts can be degraded by both pathways.Moreover,

NEXT targets tested in this study are highly expressed compared

to bulk NEXT substrates and may, therefore, be especially prone

to experiencing such pA tailing and subsequent loading of PAXT

components. This suggestion is consistent with our previous

observation that RBM7 binds to newly synthetized and unpro-

cessed Pol II transcripts, including pre-mRNAs, and with

the proposition that RBM7/NEXT recruits the exosome to trigger

RNA degradation when unprotected RNA 30 ends are available

(Lubas et al., 2015). It is, therefore, possible that NEXT compo-

nents, which are not present in pA+ RNA foci, have already

been discarded from these more processed/polyadenylated

RNAs.

Our data imply that ZFC3H1-mediated nuclear retention of

pA+ RNA might occur in functional competition with its nuclear

export by, e.g., AlyREF. Interestingly, AlyREF is loaded onto

RNA in a 50 cap-dependent manner (Cheng et al., 2006; Shi

et al., 2017) and also binds mRNA 30 ends PABPN1 dependently

(Shi et al., 2017). It is conceivable that these interactions underlie

aspects of transcript sorting between nuclear export and reten-

tion/degradation, with ZFC3H1 and AlyREF competing for tran-

script binding via a common interaction with PABPN1 as well

as MTR4 competing with AlyREF for association with the CBC-

bound ARS2 protein (Fan et al., 2017). Our analysis of AlyREF

localization in exosome-depleted cells did not reveal any enrich-

ment of this protein in pA+ RNA foci. In contrast, ARS2, MTR4,

and ZFC3H1 were all clearly enriched, indicating that accumu-

lated transcripts are not immediately prone for export. It was

proposed that formation of ARS2-MTR4 versus ARS2-AlyREF

links is decisive in whether transcript gets degraded or exported,

respectively (Fan et al., 2017). However, as previously reported

(Andersen et al., 2013; Ogami et al., 2017), and as recapitulated

here, MTR4 depletion in HeLa cells negatively affects the levels

of ZFC3H1, ZCCHC8, and RRP40. Hence, it is difficult to

address any direct impact of MTR4 on pA+ RNA retention. Yet,

RNA exosome targets escape the nucleus upon ZFC3H1 deple-

tion (data in the present paper; Ogami et al., 2017), where MTR4

levels are unchanged, arguing against a direct role of MTR4 in

transcript retention. It thus appears likely that PABPN1-depen-

dent AlyREF versus ZFC3H1 loading on transcript 30ends is a

major RNA-sorting determinant, which also makes intuitive

sense, since pA-tailing is a final step in RNA production, warrant-

ing an ultimate decision of whether to undergo export or decay.

Moreover, it is possible that protein interactions with transcript

50 and 30 ends are cooperative so that any ZFC3H1-AlyREF

30 end competition might affect ARS2-MTR4 50 cap interactions

and vice versa. Such cooperative factor loading was recently

demonstrated by the depletion of CBP80, which impacts the

30 end loading of AlyREF, and the depletion of the 30 end

processing factor CstF64, which disturbs 50 cap association of

AlyREF (Shi et al., 2017).
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Our results are in agreement with a recent study reporting that

the absence of ZFC3H1 results in the association of different

types of pervasive transcripts with active ribosomes, causing

global translation repression (Ogami et al., 2017). This positions

ZFC3H1 as a key factor in preventing the nuclear export of RNAs

that are seemingly unwanted in the cytoplasm. However, we also

found that a fraction of fully spliced and full-length mRNAs was

subject to exosomal decay. This suggests that bona fide trans-

lation substrates might also be targeted for nuclear turnover,

echoing a recent demonstration that different cell types and

tissues harbor 13%–30% of nuclear retained mRNAs (Halpern

et al., 2015). Moreover, using annotation-agnostic classification

of RNAs, Mukherjee et al. also found that certain transcription-

factor-encoding transcripts were nuclear labile, and it was pro-

posed that these RNAs may emanate from transcriptional bursts

and that their nuclear retention might help buffer cytoplasmic

transcript levels (Mukherjee et al., 2017). Consistently, this class

of mRNA was upregulated upon RRP40 depletion (Figures 6D

and S6G). Taken together, these data argue that nuclear turn-

over of full-length mRNA occurs. However, it remains an open

question whether ZFC3H1-bound RNAs are committed to

nuclear decay or whether the RNP assemblies, which we visu-

alize as pA+ RNA foci by inactivating the RNA exosome, might

also serve a storage function capable of releasing, e.g., retained

mRNA, in resemblance to cytoplasmic processing bodies

(P-bodies) (Buchan, 2014). Previously reported nuclear retained

mRNAs were localized in nuclear speckles (Halpern et al., 2015),

the function of which is connected to active transcription (Gal-

ganski et al., 2017). Since pA+ RNA foci do not co-localize with

known nuclear bodies, including nuclear speckles, we suggest

that these represent a post-transcriptional event, which is further

supported by our observation that full-length spliced mRNAmay

appear in pA+ RNA foci. Future research will be focused

on determining how sorting between productive export and

retention/decay is orchestrated and which additional factors

contribute to this process.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfections

HeLa cells were grown in DMEM containing 10% fetal bovine serum and 1%

penicillin/streptomycin at 37�C and 5% CO2. Cells were seeded at low conflu-

ence (approximately 44 cells per square millimeter) 1 day before siRNA trans-

fection. The following day, DMEMwas replaced with DMEMwithout penicillin/

streptomycin, and transfections were performed using Lipofectamine 2000

(Thermo Fisher Scientific) according to the manufacturer’s instructions, with

a final concentration of 20 nM of each siRNA (Table S1) and Lipofectamine

2000 (final dilution, 1:1,000) in RPMI 1640 medium. Two days after siRNA

transfection, the medium was changed to new DMEMwithout penicillin/strep-

tomycin, and the transfection procedure was repeated. For our complementa-

tion experiment, the ZFC3H1 coding construct pcDNA5-ZFC3H1-3xFLAG

(Meola et al., 2016) or its empty vector pcDNA5-3xFLAG was transfected

(using Lipofectamine 2000) into cells 1 day after the first siRNA transfection,

and cells were harvested 1 day after the second siRNA transfection.

RNA-FISH Analysis

Cells were grown on microscope coverslips placed in tissue culture dishes.

After siRNA treatment, medium was removed, and cells were washed twice

with PBS prior to fixationwith 4% formaldehyde in PBS for 20min at room tem-

perature. After fixation, cells were washed twice with PBS and permeabilized

overnight at�20�C in 70%ethanol. Subsequently, cells were washed twice for
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5 min with 23 SSC and blocked for 15 min in 23 SSC/30% formamide

solution. The relevant FISH probe was added to hybridization mixture 1

(30% formamide, 23 SSC, 1 mg/mL E. coli tRNA), heated for 5 min at 95�C,
and then cooled on ice. Thereafter, hybridization mixture 1 was combined

with hybridization mixture 2 (10% dextran, 0.2 mg/mL BSA, 40 U RiboLock

RNase inhibitors [Thermo Fisher Scientific]) and placed on a 37�C thermostat.

20 mL drops (per 12-mm coverslip) of combined hybridization mixtures 1 and 2

were pipetted onto a parafilm-coated box placed on wet filter paper, and

coverslips were placed on the hybridization mixtures (cells facing the drops).

The box was sealed with thin household film, and hybridization was performed

overnight at 37�C. On the next day, coverslips were washed twice for 30 min

each at 37�C in 23 SSC/30% formamide and twice for 5 min with PBS at

room temperature. Cells were mounted with ProLong Gold Antifade Mountant

with DAPI (Thermo Fisher Scientific).

ACTB, NFKB2, proDNAJB4, and RNVU1-14 30 extension probes were

designed using the R script Oligostan (Tsanov et al., 2016), and RNA-FISH

was performed according to the smiFISH protocol described in Tsanov et al.

(2016). All RNA-FISH probes used are listed in Table S2, except the

oligo(dT)-LNA probe described in Thomsen et al., (2005).

Sequential RNA-FISH and IL Analysis

Forco-stainingofRNAandprotein,RNA-FISHreactionswere followedbyprotein

IF staining. Briefly, a primary antibody dilution in 2%BSA was added to cells for

1 hr at room temperature, followed by three short washes with PBS. Thereafter,

Alexa-Fluor-488-conjugated secondary antibody (Thermo Fisher Scientific) in

2%BSAwas added for 1 hr at room temperature, followedby three shortwashes

with PBS. Cells were mounted with ProLong Gold Antifade Mountant with DAPI.

All primary antibodies and applied concentrations are listed in Table S3.

Microscopy and Image Analysis

Non-confocal images were obtained using a Zeiss Axiovert 200M epifluores-

cent microscope equipped with a coolSNAPHQ camera (Photometrics) and

603 (1.4) and 1003 (1.3) objectives. Confocal images were obtained with a

Zeiss LSM 710 confocal microscope and a 603 (1.4) objective. All images

within the same experiment were taken with same excitation power and expo-

sure time and processed similarly using the publicly available Fiji software

(Schindelin et al., 2012). For all transcript-specific RNA-FISH images, back-

ground subtraction was performed using the Fiji Subtract Background plugin,

with a rolling ball radius of 10 pixels. When image color balance adjustment

was needed, all comparable images were processed in the same manner.

Western Blotting Analysis

Western blotting was performed by standard procedures (see Supplemental

Experimental Procedures).

RNA Isolation, qRT-PCR Analysis, and Cellular Fractionation

RNA was purified using TRIzol reagent (Thermo Fisher Scientific) according to

the manufacturer’s instructions, and RNA was analyzed by qRT-PCR using

standard procedures (see Supplemental Experimental Procedures).

RNA-Seq Library Preparation, Data Processing, and Computational

Analysis

RNA-seq libraries were produced, and reads were quality controlled andmap-

ped using standard procedures (see Supplemental Experimental Procedures).

Statistical Analysis

Values of biological replicates, p values, and statistical tests are reported in the

figure legends. qRT-PCR data are shown as means ± SDs, except in Fig-

ure S6H where data are shown as means ± SEM. Statistical tests were done

in the environment of the R Project for Statistical Computing (https://www.

r-project.org).

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is GEO:

GSE108197.
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