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Abstract: Diffraction gratings have a wide array of applications in optics, diagnostics, food 

science, sensing, and process inspection. Scattering effects from defects can severely degrade 

the performance of such gratings. In this paper, we consider three classes of defects: Two 

classes introduced at the grating/air interface, as a change in line heights, and one class 

introduced as a sinusoidal variation of the grating/substrate interface. The scattering properties 

of the gratings are modelled using rigorous coupled wave analysis, and defects are 

approximated with a new semi-analytical model and a neural network. The new methods make 

it possible to avoid the time consuming library generation/search strategy commonly used in 

scatterometry. The method does not introduce new numerical parameters, and therefore no new 

parameter correlations. This work enables improved grating reconstruction, especially of non-

diffracting short pitch gratings. It is found that two of the defect classes can be adequately 

described by the semi-analytical model, while the third defect is accurately reconstructed by a 

neural network. The network is demonstrated to be faster than a library search and more 

versatile for related structures. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Periodic nanostructures can be used to enhance or add desired functions [1,2]. In fabrication 

of these nanostructures, product defects of a few nanometers are hard to avoid. As the sizes of 

the produced nanostructures shrink, the relative sizes of these defects increase. For NIL on 

hard surfaces linewidth and height defects of tens of nanometers have been reported [3]. 

Furthermore, defects are likely to be even more prominent when fabrication moves out of 

the laboratory and into the mass-production industry [4]. These defects can affect the 

functionality of the nanostructures, for example in their interaction with light [5]. 

Scatterometry is an optical technique already utilized in the semiconductor industry, where 

a diffraction grating is reconstructed from an optical signal by inverse modelling [6]. Rigorous 

coupled wave analysis (RCWA) [7] is the common workhorse for scatterometry modelling due 

to its speed, convergence and relatively simple implementation. In RCWA, the diffraction 

grating is approximated by rectangular slabs, and Maxwell’s equations are solved by coupling 

the boundary conditions between the slabs [8]. 

Conventionally, angular resolved scatterometry has been deployed in the semiconductor 

industry [9]. Moving to wavelength-resolved scatterometry, one can reduce the complexity of 

the measurement hardware by removing the need for goniometric detector setups, since all 

information can be collected at a single point. Furthermore, as the period of the functional 

nanostructures decreases, the number of observable (non-evanescent) diffraction orders 

decreases as well. When all the optical information is extracted from the zeroth order (specular 

reflection), the reconstruction of complex structures such as multiple trapezes, additional 

material layers and rounded corners, tend to become ambiguous due to correlations between 

the added parameters. In the worst cases, one could end up reconstructing a structure different 

from the physical sample without knowing it. It is therefore relevant to investigate how the 
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zeroth diffraction order from a complex structure can be approximated by simpler models 

without the dreaded ambiguity. 

In this paper, RCWA is used for forward calculation of the diffraction orders from a grating. 

However, when describing complex structures such as roughness and defects, a large amount 

of parameters is needed to describe the grating. Since the RCWA solver is called once for each 

permutation of parameters, this ends up being very time-consuming [10]. Furthermore, one 

could end up with a strong correlation between the parameters, making the reconstruction 

unstable [11]. Based on this, it is desirable to retain a low number of parameters in the 

modelling without losing too much information. 

In the presented work we, show how scatterometric data can be used to detect different 

classes of defects. We simulate the multi-spectral zeroth order diffraction from three classes of 

defects, described in the next section, with varying magnitudes of the introduced defect. This 

is done by describing the grating by a unit cell containing multiple grating lines, called a 

supercell. We then investigate how these defects can be characterized without using a 

conventional library search. We present a semi-analytical method based on the total integrated 

scatter model [12] to incorporate the effect of scattering from defects into the scatterometric 

reconstruction. This method requires only a single numerical calculation describing the perfect 

grating. The total integrated scatter model is combined with the simplest structure form of 

RCWA, a rectangular grating described by a period, height and width, to make a semi-

analytical model. We show that this model accurately predicts the scatterometric signature of 

the defects on the sample. The model can be used to reduce the dimensionality of the 

scatterometry library, and thus simplify the analysis process. It is stressed that the semi-

analytical model suggested could just as well be used for an angle resolved spectrum. 

Furthermore, we shown how a neural network can be developed and used to analyze defects 

in place of a library search strategy. Neural networks have previously been deployed to select 

a library for scatterometry [13,14] or replace the library [15,16]. These works aimed to 

characterize gratings created from simple unit cells, where all grating lines are assumed 

identical. We demonstrate that we can use the neural network to characterize defects from the 

most complex supercell and achieve good performances on similar defects. 

2. Simulations 

The diffraction efficiency,  , is defined as the zeroth diffracted order with respect to the 

incoming light [8]. Numerically calculated diffraction efficiencies, 
Num , for the structures 

with different defects are found using RCWA. All structures modelled in the examples shown 

here are constructed by imposing the defects on perfect line gratings in silicon. The perfect line 

gratings are described by their period, Δ, height, h, their width, w. The simulated gratings have 

the following parameters: Δ = 2 μm, h = 0.7 μm and w = 1 μm. In addition, periodic defects 

are added to theses gratings by describing the grating as a super cell consisting of ten unit cells 

of the perfect grating, this super cell then has a period of Γ = 20 μm. 

Three classes of defects are examined by incorporating them into the structure of the 

supercell: 

1) A simple defect where the first of the ten grating lines are higher than the others, see 

Fig. 1(a). 

This was observed in our previous work with injection molded nanostructures, where 

some grating lines had additional material on top [17]. 

2) A sinusoidal defect in the height over the grating, see Fig. 1(b). This defect can occur 

in bottom-up fabrication [18]. 
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3) A perfect grating on a sinus shaped substrate, see Fig. 1(c). This defects could arise 

from a grinding step in the substrate preparation, or could be purposely introduced as 

in ref [19]. 

The magnitude of the defects is described by the parameter d shown in Fig. 1. Simulations 

are performed using incoming light polarized along the grating lines (TE), with an incident 

angle
I of 70 degrees with respect to the grating normal, and a wavelength,  , ranging from 

250 nm to 850 nm. In order for the numerical supercell calculations to converge, a large number 

of diffraction orders, defining the truncation of the Fourier series in the RCWA calculations 

[19], needs to be retained in the calculations, which in turn makes the calculations very time-

consuming. In the presented work, over 400 orders are reatined in the RCWA calculations. 

 

Fig. 1. Sketches of the different grating imperfections examined. The denoted parameters are 
the height of the perfect grating, h, the width of the grating, w, and the size of the imperfection, 

d, the period of the simple grating, Δ, and the period of the supercell, Γ. The marked volume 

shows where the defect is introduced and the plot to the left shows the profile of the defect used 
in the semi-analytical model. (a) Simple grating defect. (b) Sinusoidal grating defect. (c) A 

perfect grating on a sinusoidal substrate. All imperfections have been exaggerated for clarity. 

3. Semi-analytical model 

The Total Integrated Scatter (TIS) originates from scalar diffraction theory [20]. The model 

describes what fraction of the reflected light is scattered from a rough surface. It is 

conventionally described as [12]: 

 

2
cos( )

1 exp 4T S I

T

R R
TIS

R




   
        

 (1) 

Here, 
TR , is the total reflectance, 

SR , is specular reflected light,   is the Root Mean Square 

roughness of the surface, also commonly known as Rq [21]. 

The roughness, σ, used in the TIS calculation is found as: 
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where the height function f(x) describes the part of the grating with the introduced defect (see 

profile in Fig. 1). The magnitude of the defect d can be moved out of the integral, making it 

possible to solve the integral and scale with d, for an analytical mapping between σ and d. It is 

important to note that in the general case, σ should be the appropriately bandwidth limited 

surface roughness, since spatial frequencies larger than 
1


 produce evanescent waves and are 

irrelevant with regards to scattering [12]. In this paper, the variations have a low frequency, 

and Eq. (2) can safely be used. 

Our semi-analytical model assumes that the introduced defect can be treated as a 

perturbation to the perfect grating described by the TIS model, and that the scattering caused 

by the defect and the perfect grating are uncoupled so that the defect can be treated as a 

perturbation. The diffraction efficiency found from the semi-analytical model, 
SA , is given 

by: 

 (1 )S

SA Grat

I

I
TIS

I
       (3) 

where 
Grat is the diffraction efficiency from the rectangular grating with no defects, IS and II 

are the intensities of the scattered and incoming light respectively. This enables us to use a 

single numerical calculation for the simple rectangular grating when characterizing a grating 

with defects. It should be noted that other computational methods than RCWA, such as finite 

difference time domain [22] or finite element method [23], can be used to find 
Grat  as well. 

4. Results 

In order to compare the agreement between the diffraction efficiency, Num , calculated using 

RCWA on the supercell, and the diffraction efficiency 
SA  from the semi-analytical model, 

we look at the difference between the samples with introduced defects and perfect samples. 

In Fig. 2 we show: 

Num Num Grat     (solid line) and SA SA Grat     (crosses) as a function of the 

wavelength for the three defect classes at different magnitudes. We see that the semi-analytical 

model works well for the first class and exceptionally well for the second class. 

 

Fig. 2. Defect class 1 (top), class 2 (middle) and class 3 (bottom). Fully drawn lines show the 

Num
 while the slightly darker crosses show 

SA
 . d is illustrated in Fig. 1. Note the different 

y-axes. 

However, the third class is not described well by the semi-analytical model. Intuitively, 

this break-down of the model can be understood by looking at how the defect is introduced on 

the structure: For the first two classes, the defect is placed on top, but for the third, the defect 
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is embedded into the perfect structure. The poor result in Fig. 2(c) suggests that the signals 

from the two areas cannot be decoupled, and therefore cannot be approximated by the semi-

analytical model. This suggests that the defects above the grating, and defects inside the grating 

must be treated differently. 

4.1 Defect above grating 

Going back to the first two classes, we see that we have a good agreement between the RCWA 

and the semi-analytical model, which becomes gradually worse as the magnitude of the defect 

increases. This would suggest that the Semi-analytical model is valid for “moderately” rough 

surfaces. This is a property inherited from the TIS model. It is noted that type 1 has a lesser 

impact on the optical signal (notice the different y-axis), which is to be expected since the 

defect class 1 has a lower change in the volume of the material. 

Since the total integrated scatter based model describes the second type of grating well, it 

can be used to find the defect magnitude d from an intensity signal using a library search 

approach traditional employed in scatterometry. To demonstrate this, the correct signal is taken 

to be the RCWA signal with- and without applied white Gaussian noise with a standard 

deviation of 0.5%, and the semi-analytical model is fitted by minimizing the mean square error, 

MSE, described below using nearly continuous values for the magnitude of the defect, d. These 

continuous values of d are denoted δ. 

  
2

1

1
( , ) ( , ) ( , )

N

SA i Num i

i

MSE d d
N 

        (4) 

where N (121 in this case) is the number of wavelengths used, and ( , )Num i d   is the numerical 

diffraction efficiency with d locked at several values from 2% to 10% of the total grating 

height. ( , )MSE d  can be seen for the different defect d values in Fig. 3 We see that the best 

fitting solution finds the defect size from the RCWA simulations with- or without added noise. 

This demonstrates that for this case, the simple semi-analytical model can be used to describe 

the defect. Furthermore, for the noiseless RCWA, we see that the MSE “dip” becomes wider 

as the defect magnitude increases, and therefore the best solution becomes less well defined. 

This result shows that the semi-analytical model works best for small defect values, a property 

inherited from the TIS model. In the presence of noise, we see that the best fitting solution 

becomes worse due to the MSE reaching the noise floor. This shows, that the signal-to-noise 

ratio acts as a lower boundary condition for the model. If one wants to look at very small 

perturbations to the perfect grating, one needs a good signal to noise ratio. 

 

Fig. 3. Mean square error as a function of defect size used in the semi-analytical model for 
defect class 2 using pure RCWA (a) and RCWA with added white Gaussian noise (b). The 

legends and the dashed lines indicate the defect size d used in the RCWA calculations, while 

the fully drawn lines indicate the defect sizes used in the semi-analytical model. 
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Since the semi-analytical model is based on the simplest form of RCWA (a rectangle 

described by a single slab), it could also be used in combination with conventional library 

search scatterometry aimed at determining the parameters of the perfect grating. Here one 

could use the model to add a defect or roughness parameter to a pre-generated database without 

having to re-calculate a library with a higher dimensionality. In the simplest case one would 

only need to simulate a single structure numerically and account for other variations 

analytically, which is computationally much more efficient. 

It would also be possible to completely avoid a library search by first assuming that the 

measured signal is described by
SA . Then the ratio SA

Grat




could be used to analytically 

calculate   from Eq. (3) and (1). Since there is a linear mapping from   to d for each class, 

this could be used to analytically characterize the defect magnitude. 

Before the time of computers, where exponential functions should be avoided, Eq. (1) was 

approximated by a firs order Taylor expansion: 

 

2 2
cos( ) cos( )

1 exp 4 4T S I I

T

R R
TIS

R

 
 

       
              

 (5) 

The approximated TIS expression is assumed to be valid for optically smooth surfaces, 

commonly described by the g-factor [24]: 

 
cos( )

4 1Ig




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

 (6) 

If g is small enough, higher order terms from the Taylor series can be safely discarded. This is 

thoroughly discussed in refs [25–27]. 

Since the approximation of the TIS model is still seeing industrial use [9], it is interesting 

to investigate how well the semi-analytical model fares using the first order Taylor 

approximation for the total integrated scatter model. 

Figure 4 shows the MSE minimization using the approximation of Eq. (5) in the semi-

analytical model. In this case we see that the semi-analytical model finds smaller defects than 

the numerical approach. This “deficit” seems to increase with the magnitude of the defect, 

corresponding to the approximation becoming worse as g gets larger. The limit where the 

approximation stops working could be interpreted as the point where the optically smooth 

criterion is no longer valid. For class 2 with d = 30 nm, we obtain a roughness parameter g of 

0.365 and 0.107 for the lowest and highest wavelengths respectively. Again, we see the trend 

that the RCWA with noise finds the same solution as the noiseless RCWA. 
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Fig. 4. Same approach as Fig. 3 but using the simplified (first order Taylor) TIS model for defect 
class 2. The legends and the dashed lines indicate the defect size d used in the RCWA 

calculations, while the fully drawn lines indicate the defect sizes used in the semi-analytical 

model. We see that this model already falls off for defect values above 28 nm (corresponding 
to 4% of the grating height). 

Previous work on injection molded nanostructures [17,28] has shown that one often ends 

up with very little characteristic features in the wavelength resolved spectrum. In those cases, 

it is necessary to restrict the reconstruction to a few model parameters. The presented method 

can be used as a perturbation for the simpler structures and gives an idea of whether or not 

these defects are within a safe limit or if they might be detrimental to the desired functionality. 

The easy implementation would make the method much more attractive to use with existing 

libraries rather than recalculating a new library with a higher dimension to account for the 

defects. 

4.2 Defect in the grating area 

As we saw in the previous section, class three defects could not be well described by the semi-

analytical model. The simulations do, however, clearly show that we can easily distinguish a 

grating on a periodic grinded (sinusoidal) surface from a grating on a plain surface, since the 

signal change is much larger than typical measurement uncertainties associated with 

scatterometry [8]. This result was also experimentally reported in ref [19]. Furthermore, it is 

observed that the signal changes very little with the magnitude of the defect. Looking at the 

solid line data in Fig. 2(c), it is clear that any model describing the effect of the third defect 

class would be complex. Therefore, it is decided to attempt a solution using machine learning. 

A neural network has been developed using RCWA simulated data sets, as a placeholder 

for experimental data, with d varying from 1 to 100 nm in steps of 1 nm. Physical 

measurements have been simulated by adding white Gaussian noise [29] to the simulated 

spectra. A thousand sets of noisy data are made from each simulation, resulting in 100.000 data 

sets used for the network. 

The network type is a multilayer perceptron [30]. Here the input data points are passed 

through an input layer with a node for each wavelength, 121 in total, a hidden layer with 10 

nodes, and then converted to output data at the end by an output layer with a single node finding 

the defect magnitude d. All neurons from the hidden layer are interconnected to all nodes in 

input layer and the output layer through weighted transfer functions. The network is sketched 

in Fig. 5. When training the network, the weights of the transfer functions are adjusted in order 

to map a desired output from the input by minimizing a mean squared error function. The 

network described here is trained using a Levenberg-Marquardt algorithm [31–33]. The input 
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layer uses a tan-sigmoid transfer function (Tansig), and the output layer uses a linear transfer 

function (Purelin) [34,35]. 

 

Fig. 5. Sketch of the neural network. The input layer has a node for each wavelength simulated 
(121). The hidden layer has a total of 10 nodes, and the output layer has a single node finding 

the defect magnitude d. The nodes from the input layer are connected to the hidden layer through 

a weighted Tansig transfer function. In the same manner, all nodes in the hidden layer are 
connected to the output node through a Purelin transfer function. 

Once the network is trained, it can be used to predict outputs from new unseen data. In 

order to evaluate the networks ability to determine defects from a scatterometry measurement, 

a new set of measurement signals are simulated. These signals are then passed through the 

network, and the estimated defect is extracted. The targeted defect value, dT, is the value of d 

used in the RCWA code to generate the true signal, and the found defect value, dF, is the value 

of d predicted by the network. The results can be seen in Fig. 6. We see that we have an overall 

good agreement with a seemingly randomly distributed deviation from the targeted value. This 

is expected, since the signal changes very little with a change in the defect magnitude, as seen 

in Fig. 2(c). The found magnitudes are fitted as a linear function of the targeted magnitudes, 

and the correlation: 

 0.9959F Td d   (7) 

is found. 

Since we have a good fit and no major outliers, it is concluded that this neural network can 

be used to reliably characterize class three defects. Since the prediction does not repeat 

calculation steps, it can be done very fast. The prediction time does not scale with the size of 

the data used to generate the network as opposed to a standard library approach, where the 

search time is directly proportional to the library size. This would make a neural network 

approach even more suited for inline characterization, if computation time starts to present a 

bottle-neck. For a quick comparison, the neural network finds the defect magnitude in 0.46 ms, 

while a library approach as used in ref [36]. uses roughly 0.01 ms for each generated RCWA 

structure (typically tens of thousands, but could easily be larger for complex structures). Both 

calculations were performed on a standard laptop. 
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Fig. 6. Performance of the Neural network. The defect found by the neural network, dF, is plotted 
vs the targeted defect, dT, from the simulated models with added noise. The black dashed line 

shows the best linear fit to the data. 

Defects, by definition, are not perfect. It is therefore interesting to see how the same 

network performs on similar, but different substrate structures. To test the developed network, 

we look at how well it predicts the defect magnitude from a substrate described by a bottom 

cut sinusoidal. Data was simulated for cuts of 12.5%, 25%, 37.5% and 50% of the total height 

as sketched in the upper insert of Fig. 7. This was done without any retraining of the network. 

 

Fig. 7. Evaluation of the developed network using different substrate defects. Circles shows the 

magnitude found by the network, and the dashed lines show the best linear fit. The diagonal 
line shows the fit obtained from the uncut sinusoidal in Fig. 6 to guide the eye. Upper insert 

shows the simulated structures from uncut to 50% cut. The curves have been displaced for 

clarity. The grating lines on top of the substrate has been omitted in the illustration. The Arrows 
mark 2d for the different cut values, where d is the target value for the given structure. Lower 

insert: table showing the linear coefficient for the fit: dF = a dT. 

The performance of the network can be seen in Fig. 7. The parameters for the best fitting 

line can be seen in the inserted table. The network clearly recognizes features from the perfect 

sine substrates, seen by the linearity between dT and dF. Good linear fits are seen for all cut 

values. As a trend, the neural network over-predicts the amplitude, by a larger ratio for the 

larger cut values. This is likely caused by the network only being trained on perfect sine 

structures. This means that the network will match the signal to the best fitting perfect structure, 

which by nature has a larger d value than the corresponding cut structure. This suggests that 

even if we do not have a perfect sinusoidal structure, we can still estimate a substrate defect 
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and compare the relative substrate roughness between two samples. It has thus been 

demonstrated that the neural network can be used to predict a defect size for similar, but not 

identical, substrates. This method is believed to be more stable, than a library of RCWA signals 

simulated from perfect sinusoidal. 

Future work will emphasize using the semi-analytical model in combination with inline 

characterization and further development of the neural network by adding new defect types. 

Here defects as line edge roughness will be of certain interest. 

5. Conclusion 

We have examined three different classes of defects introduced on perfect rectangular silicon 

gratings. The defects were introduced above the grating area and in the grating area for the two 

first classes and the last class respectively. A semi-analytical model has been suggested to 

determine the magnitude of the grating defect. For the first two classes, the defect is in 

agreement with a semi-analytical model based on TIS and RCWA. The third class cannot be 

described by the semi analytical model. This model enables defect characterization of low 

period non-diffracting structures. A neural network has been developed to characterize these 

defects. The network can accurately determine the magnitude of the defect. Both methods can 

be used to create simple models describing the defects without the need of additional RCWA 

computations, and in some cases make it possible to entirely omit a library generation and 

search. Future work will emphasize using the semi-analytical model in combination with inline 

characterization and further development of the neural network by adding new defect types. 

Here defects such as line edge roughness will be considered. 
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