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Abstract: Fine-scale, accurate intra-urban functional zones (urban land use) are important for
applications that rely on exploring urban dynamic and complexity. However, current methods
of mapping functional zones in built-up areas with high spatial resolution remote sensing images are
incomplete due to a lack of social attributes. To address this issue, this paper explores a novel approach
to mapping urban functional zones by integrating points of interest (POIs) with social properties and
very high spatial resolution remote sensing imagery with natural attributes, and classifying urban
function as residence zones, transportation zones, convenience shops, shopping centers, factory
zones, companies, and public service zones. First, non-built and built-up areas were classified
using high spatial resolution remote sensing images. Second, the built-up areas were segmented
using an object-based approach by utilizing building rooftop characteristics (reflectance and shapes).
At the same time, the functional POIs of the segments were identified to determine the functional
attributes of the segmented polygon. Third, the functional values—the mean priority of the functions
in a road-based parcel—were calculated by functional segments and segmental weight coefficients.
This method was demonstrated on Xiamen Island, China with an overall accuracy of 78.47% and
with a kappa coefficient of 74.52%. The proposed approach could be easily applied in other parts of
the world where social data and high spatial resolution imagery are available and improve accuracy
when automatically mapping urban functional zones using remote sensing imagery. It will also
potentially provide large-scale land-use information.

Keywords: GF-2 remote sensing imagery; POIs; functional zone; land-use classification

1. Introduction

Urbanization in developing countries has progressed rapidly over the past 20 years [1].
According to the World Urbanization Prospects, issued by the Department of Economic and Social
Affairs of the United Nations Secretariat, the global proportion of urban population increased from
30% in the 1950s to more than 54% in 2014. Rapid urbanization has caused a dramatic change in
land-use [2,3], population density, and environmental pollution [4]. There has been increasing demand
for fine-scale urban functional zone maps, which are the basic units for quantitative analyses in urban
transportation, job accessibility, and residential relocation, as well as being used in economic [5]
and demography studies over the past few decades [6]. Specifically, the spatial pattern of urban
functional zones influences the efficiency of urban life. The relationship between urban functions
and human mobility is important for determining the demand for people in different urban functions
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and the current availability in an urban space area [7]. The sharp division of functional zones leads
to the separation of workplaces and residences, and urban problems such as traffic jams, “sleeping
districts”, and air pollution [8,9]. However, most functional zone datasets derived from field studies
are time-consuming to collect and hard to update at a later point. The availability of multispectral
satellite remote imagery and big data, such as information on traffic and the utilization of cellular
mobile phone networks, provides great potential in mapping urban functional zones [10]. To combine
these data, an efficient approach to mapping the detailed functional zones is required that combines
spectral and texture components from multi-spectral remotely sensed imagery and data about the
anthropogenic activity (land use).

Remote sensing techniques have been recognized as vital for mapping urban land use
changes [11–14] because of their ability to capture the physical characteristics of land-use [15].
In particular, high spatial resolution remote sensing images have resulted in an increase in detailed
urban land-use identification [16–19]. Furthermore, object-based image analysis methods are suitable
for the classification of medium and high spatial resolution imagery and provide a valid alternative
to pixel-based methods of analyzing and categorizing remote sensing data [20]. Generally, two
kinds of approaches to land-use classification have been applied in the literature: (1) Use of land-use
indicators. Land use indicators mainly include the proportion of land-cover, but also the density
of land cover features. However, land-use indicators fail to effectively characterize land use in
complex urban areas such as shopping centers, residential buildings, and business office buildings
because they mainly consider spectral characteristics, coverage ratios, and the densities of land-use
features. In addition, shadows and dark roofs may have similar spectral, textual, and geometrical
characteristics, resulting in a high misclassification rate among different urban land uses [17]. (2) The
other is based on spatial arrangements. The spatial arrangement (also called spatial layout) of land-use
features characterized by quantifying the distribution of building types can effectively improve urban
land-use extraction performance [16,21–24] and spatial arrangement information of local features
is important for the application of scene classification (e.g., a railway station or an airport) [25–27].
However, training samples based on the spatial arrangement of buildings (segments or objects)
are restricted by the different types of roofs or architecture styles across cities [17]. Thus, such
approaches often provide limited model training information for urban functional zone on a broader
scale. Mapping urban land use with remotely sensed imagery is more difficult in built-up areas because
most remotely-sensed imagery merely records the natural characteristics of land cover, which can be
associated with electromagnetic reflectance, and further assessed with texture measures or grouped
into broad classes, such as “forest” or “built up”. This poses a deficiency in information about human
and social activities. Therefore, remote sensing imagery alone cannot identify inner-building attributes,
so it is necessary to explore an effective way to combine the useful characteristics of remote sensing
images and social sensing data.

Big data have advantages in urban studies due to their immediacy, volume, and social attributes.
The big social data with spatial attributes (e.g., with geographic coordinates) can be collected from all
kinds of handset devices, such as GPS, mobile phones, include static and dynamic datasets. Static data
mainly include points of interest (POIs) which could provide detailed land use information based on
human activity acquired from online maps and some social media (e.g., Facebook, Twitter). From the
point view of the application, road networks from open street maps and POI data are employed to
infer parcel characteristics [28], construct 3D models [29], and classify urban commercial districts
at the parcel scale [30]. Dynamic datasets are used to build models to cluster segmented regions
into functional zones and identify the intensity of the functional zone, for instance, mobile phone
data, social media on internet, and transportation information [7,31]. Mobile phone record data have
been used to analyze urban spatial structure [15] and patterns of population mobility [7,32–35], as
well as to analyze job–housing relationships [36]. Only a few studies have classified urban land-use
by combining remote sensing imagery and social media data [37–40]. Some approaches [6,7,15,22]
utilized the numbers of POIs or quantified location-based service (LBS) data instead of using polygon
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of building roof to map functional boundaries. However, as the POIs density varies in different zones,
using point quantification and excluding building boundaries could reduce the accuracy of the results.
Study on mapping urban land use using Landsat images and open social data also indicated that the
low spatial resolution imagery could not map the detailed information, especially in irregular spatial
arrangement areas such as public areas and shopping centers [39,41]. High spatial resolution imagery
could fill the gap and provide detailed texture of the building roof [42].

Our overarching goal was to map functional zones using high-resolution remote sensing
imagery and POIs. To do so, our first objective was to map the building roof-based segments using
very high-resolution remotely-sensed imagery and append the attributes of POIs to the segments.
The second step was to map the functional zones based on a unit of parcels which were generated with
road network and functional segments. Then, we analyzed the spatial pattern of functional zones by
using an example from Xiamen, China.

2. Methods

The workflow (Figure 1) of mapping functional zones includes five parts: (1) Urban land
cover classification; (2) segmentation of imagery to obtain polygons corresponding to the roof of
building; (3) appending the function of POIs to the segmentation to obtain a functional segmentation;
(4) appending functional segmentation to parcels to obtain the functional parcels; (5) assessing the
accuracy using validation points. To improve the accuracy, we experimented with different values
of the parameters for image segmentation, the weight coefficients of the functional POIs, and the
functional segmentation.
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2.1. Urban Land Cover Classification and the Generation of Functional Parcels

To improve the accuracy of extracting functional zones in built-up areas, we first used high
spatial resolution satellite imagery to produce a binary built-up/non-built-up land cover map using
an example-based feature extraction in ENVI 5.1 [43]. The non-built area covered the water, grass,
and forest and built-up area. All roofs with different reflectance were considered built-up areas, such
as factories with blue roofs and residential buildings with red or grey roofs, in R, G, B natural-color
combination. We used an object-based approach in which one object is a group of pixels with similar
spectral, spatial, or texture attributes. To find optimal parameters for image segmentation for classifying
built-up area we utilized Edge method in ENVI5.1 software and experimented with a series of image
segmentation settings, namely edge and full lambda schedule. As most of the POIs and functional
zones cluster in built-up areas, we masked out non-built area. The road network was acquired from
Baidu map. Then based on the width of different road types, we generated the parcels using the buffer
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tool. The buffer size depends on road grade design in different cities. The segmentation and parcels in
a built-up area were used as the input dataset for functional calculations.

2.2. Image Segmentation on Buildings

To fine-tune segmentation for building rooftop in built-up area, we refined the analysis with new
parameters of segmentation. Within the built-up area, primarily buildings and associated land use
determine the urban functional zones. The goal of multi-resolution segmentation is for each pixel of a
building to belong to a certain segment [44]. For the best segmentation results and effective feature
delineation, we set an appropriate scale level and merge level for detecting the edges of features, based
on experimenting with parameter selection in ENVI 5.1. The optimum scale level effectively delineates
the boundaries of the features without over-segmenting the features but merging combined adjacent
segments with similar spectral attributes. We used a full lambda schedule algorithm to merge the
small segments found within larger and textured areas. Where a building roof might consist of several
segments, we chose a faster lambda and increased the merge level to combine similar objects into one
segment. The greater the merge level parameter, the more heterogeneity is allowed within each object
and the larger the average size of the objects [45]. The process stops when there are no more possible
merges, given the defined segment size [46].

2.3. The Weights of POIs and Segmentation

To balance the discrepancy between the main and affiliated functions of parcels, we identified
their functional attribute from their POIs, segmentation, and weights. For instance, one segment
polygon may cover one or two POIs, or different kinds of functional segmentation may exist in one
parcel. An airport may contain multiple POIs, but only few POIs may have an attribute “airport”.
The weights of the POIs and segmentation were calculated with the Delphi consensus technique,
which has been applied in natural resources and city management research to investigate a variety of
local, regional, and global issues [47–50]. The Delphi technique involves a survey using questionnaires
with feedback from the panel of experts to develop indicators in a study. We applied this technique
in two steps: (1) an expert panel with a sufficient knowledge and experience in urban studies and
planning was established and asked to comment via the questionnaire; (2) 15 questionnaires were sent
to participants to determine the importance of each indicator. After collecting the scores from the first
round, the experts were presented with the feedback results for each indicator and gave new rates.
The results of the second round represented the alternative ranking.

Table 1. The weights of points of interest (POIs): first and second round. Smaller numbers indicate a
higher priority with a range from 1 to 9.

Indicators Previous Judgment First Round Second Round Result of Priority

Transportation Zone 2 2 1 1
Shopping Center 1 1 2 2

Public Service Zone 1 3 4 3 3
Residence 5 3 4 4

Factory 6 5 6 5
Company 4 6 5 6

Public Service Zone 2 7 7 7 7
Public Service Zone 3 8 8 8 8

Convenience Shop 9 9 9 9

2.4. Appending the Function of POIs to Segmentation

The functions of the segmentation were defined by the weights and numbers of the POIs, where
smaller numbers represented the higher priority (Table 1). For instance, if airport and convenience
shop points are present in a segment simultaneously, the functional attribute will be defined as
a transportation zone (Table 1, row 1). Following these rules, we joined the attributes from POIs
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to segments based on the spatial relationship to finally obtain the functional segments (segments
with function).

2.5. Appending Functional Segmentation to Parcels

Based on the weights of the segmenting function, the functional segmentations were appended to
the road network-based parcels based on the spatial relationship according to the following rules:

A. Firstly, the transportation zone and shopping center should be the primary function. If there is a
transportation zone (such as an airport or railway station) and a shopping center in the same
parcel, the main function of this parcels is transportation and the shopping center is secondary.

B. If there is no transportation or shopping center point in a parcel, the method of determining the
function would obey the following rule:

R = Maximum (Ai × Wi ) (1)

where Ai represents the number of functional segmentations for type i, Wi represents the functional
segmentation weight (Table 2), and R refers to the main function in a parcel.

Table 2. The weights of the segmenting function with a range from 1 to 9: first and second round.

Indicators Previous Judgment First Round Second Round Result of Score

Transportation Zone 1 1 1 1
Shopping Center 1 1 1 1

Public Service Zone 1 0.3 0.62 0.4 0.55
Residence 0.2 0.2 0.43 0.34

Factory 0.1 0.05 0.1 0.06
Company 0.1 0.04 0.02 0.024

Public Service Zone 2 0.15 0.01 0.03 0.015
Public Service Zone 3 0.1 0.02 0.01 0.01

Convenience Shop 0.05 0.06 0.01 0.001

2.6. Accuracy Assessment

To assess accuracy for thematic classes, non-built (grass, forest and water body) and built-up area,
including transportation, factory, residence and business, public service 1, public service 2, and public
service 3, we constructed confusion matrix and calculated overall (OA), user’s (UA) and producer’s
accuracies (PA). Confidence interval (error tolerance) is computed according to [51] with the confidence
level of 90%:

Interval = 1.64 ∗
√

A ∗ (1 − accuracy)/n (2)

where n is the cardinality of the reference data collected by field work, A is classification accuracy of
different class.

3. Case Study

3.1. Study Area

Xiamen is an island, which became one of the four special economic zones in China established
in 1980 with special investment and trade regulations. Xiamen became a sub-provincial city in
southeastern China whose urban core area grew up from the port of Xiamen on southern Xiamen
Island and experienced a fast urbanization process during the past 30 years [41]. According to the 2010
Census, Xiamen has a population of 3.5 million inhabitants, which increased 1.8 times from the last
census in 2000. The annual average population growth rate was of 5.57% for the period 2000–2010.
Due to land scarcity, reclamation offered space for urban built areas in the southwest of the island
along the lakeside, while public service facilities and railway stations were built around existing
residential zones. We chose Xiamen Island as our study area (approximately 136.3 km2) because we
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could extract various POIs representing different functional zones (Figure 2). Urban communities and
new residential parcels appeared along the southwest coast. Nowadays, tourism is the third largest
industry and therefore some artistic villages with compact houses remain clustered in the city center
for residency and shopping purposes. As a sub-provincial city, new urban and industrial areas were
developed in the northeastern part of the island [41].Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 15 
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showing detailed information about points of interests (POIs) and roads; (c) a sample area showing
detailed information about POIs overlaid with buildings.

3.2. Data Source and Preprocessing

3.2.1. GaoFen-2 Remote Sensing Imagery

The high spatial resolution remote sensing imagery used in this research was acquired from
the GaoFen-2 (GF2) satellite, which was launched by the China National Space Administration on
19 August 2014. Its spatial resolution of the panchromatic band is 1 m and for its multi-spectral bands
(B 0.45–0.52 µm, G 0.52–0.59 µm, R 0.63–0.69 µm, and NIR 0.770–0.89 µm) is 4 m. The width of imagery
is 45 km and coverage period is 69 days. We preprocessed two remote sensing images, which were
acquired on 16 April 2015 and 6 February 2015, covering 158 km2. The reason for using imagery
from this period was because of fewer clouds during winter and spring season compared to other
seasons in Xiamen. Preprocessing of the GF-2 imagery, including radiation calibration, atmospheric
correction, orthorectification, and image enhancement, imagery mosaic was performed using ENVI
5.1 software. The multispectral bands were fused with panchromatic bands using the Gram-Schmidt
pan-sharpening method with retained multi-spectral characteristics with a spatial resolution of 1 m [42]
(Figure 1a).

3.2.2. POIs and Functional Classification

The POIs were obtained through application programming interface operated by BaiduTM which
is a company providing service of search engine and maps. The Location Search Service (aka Place API)
is a type of Web API interface service; The service provides location-based (POI) retrieval capabilities
for a variety of scenarios, including city retrieval, circular area retrieval, and rectangular area retrieval.
Developers can obtain location (POI) basis or detailed geographic information through the interface
using request parameter, such as the name of the site, detailed classification of the function, and
geographic coordinates. The service also provides industry classification of POIs, including primary
industry classification and secondary industry classification. In this research, 37,356 points were
retrieved from Location Search Service in April 2015 and used to classify the urban functional zones as
residences, transportation zones, convenience shops, shopping centers, factories, companies, public
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service 1, public service 2, and public service 3. The results of the functional zone classification are
shown in Table A1. We set the 8 m to create buffer for expressway and the 4 m to create buffer for
branch road. To get the road-based parcel, we use the road buffer to erase the research area polygon.

3.2.3. Data for Training and Validation

The accuracy was assessed using 2134 stratified random sampling points recorded by a
non-differential GPS with geotagged photos during field visits, including 1021 samples for the non-built
area and 1113 samples for built-up area classification, and 1035 random samples for validating
functional zone classification. Field visits were made to each validation point to assign the classes.

4. Results

4.1. Land Cover

Based on visual inspection we chose the edge parameter as 42, the full lambda schedule as 91 and
kernel size as 3 resulting in 373,437 objects in the total research area. One thousand and twenty-one
samples (303 samples for training and 728 for validation) for non- built- up area and 1113 samples
(412 for training and 701 for validation) for built-up area were used to train the samples and assess
the accuracy of the land cover classification, respectively. The result is shown in Figure 3. The overall
accuracy for classifying built-up and non-built-up areas was 92.2% and the kappa coefficient was 89%.
Figure 3d,e show the road buffer and road-based parcel.
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4.2. Segmentation, Functional Segmentation and Urban Functional Zones

Figure 4 shows the experiment results of segmentation at three levels, based on the different
density of buildings after the repeated experiments. When the edge in the algorithm was 40 and the
full lambda schedule was 80, this yielded several segments in the same building roof polygon. In this
case, the POIs were merely identified by a small segment of one building roof. Likewise, when the
edge in the algorithm was 41 and the full lambda schedule was 98, many segments of building roofs
were missed when it was conducted on the imagery which was dominated by the dense and high
building. In such a situation, the POIs cannot totally be added to the relative spatial polygon of the
building. Therefore, according to the requirement of the segment size and the series of experiment
results, the parameters were set to produce the highest accuracy, that is, the edge in the algorithm,
the full lambda schedule, and the texture kernel size was set as 42, 92.8, and 3, respectively. Figure 5
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shows the results of functional segmentation, based on joined attributes from POIs to segments based
on the spatial relationship. The weights from the functional segmentation and rules for appending the
functional segmentation to the parcels were applied to classify the functional parcels (functional zones)
(Figure 6).Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 15 
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C. Factory.

4.3. Accuracy Assessment

A confusion matrix was calculated based on the field investigating the dataset (Table 3). This result
showed that the urban functional zone extraction had an overall accuracy of 78.5% and a kappa
coefficient of 74.5%. The highest producer’s accuracy (93%) was for the factory zone and the
lowest (50%) for the convenience shops. The lowest user’s accuracy (63%) was for the residence
zone. The accuracy for most other functional zones was more than 80%. The confidence interval
(error tolerance) of each class accuracy are as listed: residential (3.4%), convenience shops (5.7%),
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shopping center (9.2%), factory (5.9%), company (6.1%), and transportation (12%), PS1 (6.9%), PS2
(5.7%), and PS3 (5.2%), the error tolerance of overall accuracy is 6%.

Table 3. The confusion matrix of the urban functional zone extraction. PS1, PS2, and PS3 indicate
public service 1, public service 2, and public service 3, respectively. PA and UA refer to the producer
and user accuracies of the confusion matrix, respectively.

Classified Data

Reference Data

Residence Convenience
Shops

Shopping
Center Factory Company Transportation PS1 PS2 PS3 UA

Residence 218 87 1 14 9 0 0 2 16 63%
Convenience

shops 5 100 0 0 2 0 1 4 25 73%

Shopping center 12 0 36 0 3 0 0 0 0 71%
Factory 2 0 0 180 0 0 0 6 7 92%

Company 7 0 0 0 80 1 2 7 3 80%
Transportation 0 0 2 0 0 18 0 0 0 90%

PS1 0 0 0 0 1 2 45 0 4 87%
PS2 2 4 2 0 1 0 2 97 0 89%
PS3 5 9 1 0 0 0 0 2 141 89%

Total 255 200 40 50 100 20 50 120 200
PA 87% 50% 85% 93% 83% 86% 90% 82% 72%

Overall accuracy ± error tolerance = 78.47% ± 6%, kappa coefficient = 74.52%.

4.4. The Pattern of Functional Zones

Our results showed the built-up area covered 76.14 km2. Built up areas covered the largest
percentage of the research area (96.3 km2) and shopping centers were uniformly distributed around
the residential zone (27.5 km2) (Figure 6, Table 4). We observed clusters of convenience shops and
wholesale markets for various products, which covered 5.2 km2 (6.8%). Public service facilities
(12.1 km2) and shopping centers (9.74 km2) were clustered in the southwest of the island and the
industrial, and company zones were clustered in the northern island. Company zone (15.6 km2) and
factory zone (4.1 km2) are located at the northern part of Xiamen Island, and the transportation zone,
including the airport and railway station, covers 1.9 km2.
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Table 4. Area and proportion of different functional zones.

Functional Zone Area (km2) Proportion

Residence 27.5 36.1%
Convenience shops 5.2 6.8%

Shopping center 9.74 12.8%
Factory 4.1 5.3%

Company 15.6 20.5%
Transportation 1.9 2.5%
Public Service 12.1 15.9%

5. Discussion

5.1. Analysis of the Accuracy Measures

Our analysis showed that urban functional zones could be extracted from high-resolution remote
sensing imagery with the aid of POIs with reasonable accuracy of 78.47%. However, such high
classification accuracies with fine classifications required several factors: the segment parameter, the
weight coefficient, the road network density, and data fusion of POIs and high-resolution remote
sensing imagery. The approach we proposed can be applied to many countries, where POIs are
available. Our results also show that the high-resolution multi-spectral imagery, like GF-2 with 1-meter
spatial resolution, allow the accurate segmentation of different building roofs and provide accurate
building rooftop polygon for combining with POIs.

Analysis with the object-based classification approach revealed that segmentations create objects
representing land use types that may be spectrally variable at the pixel level and this was influenced
by three parameters: scale, reflectance (color or tone) and shape. The color parameter balances the
homogeneity of a building’s roof color with the homogeneity of its shape. The shape parameter
balances the smoothness of a segment’s border and compactness. Therefore, object-based classification
approximates the real world features better than pixels [52]. If the segmentation is divided coarsely, it
may undersegment the image with noticeable mixtures of building roofs and covers; the redundant
surface features and the segmentation result would be sketchy and low in accuracy. If the segmentation
is divided in a detailed manner, oversegmenting the image with many adjacent objects of building roofs
and many segment polygons would miss the POIs. In addition to the segment parameters, accurate
weight parameters for the identification of functional segments and functional parcels were important.
When the weights of the functional segmentation were adjusted, the accuracy of the assignment of
function to zones varied markedly because the main function with a few POIs could be replaced by
an auxiliary function with a high density of POIs—if no difference or a lower difference existed in
the weight coefficients. The reason for using the segment to extract the segmental functional zone
instead of using parcels directly is that some convenience shops along the road serving the main
function of this parcel are auxiliary facilities, such as a barbershop or the restaurants near residence
zones or railway stations. Therefore, it is necessary to balance the numbers of the main and auxiliary
functional POIs. However, it is difficult to define the weights of different kinds of functional POIs
directly. For example, 30 POIs identifying a convenience shop were around the railway station, while
only five points of the convenience shops were around the residence zone. Therefore, it is effective
to use functional segmentation as an intermediate product to map functional parcels. Based on the
combination of segments and POIs, the UA of the industrial zone (92%) and public service zone (87%)
were improved compared to conventional methods (58%, 82%) [39]. However, UA for the residential
zone was still low, since the residential zone class could overlap with public service 3 (kindergarten)
and convenience shops thematic classes.

We also found that the road density influenced the accuracy of functional zone extraction.
The accuracy is lower in sparse road areas than in areas with a density of roads because in the
former case the parcel will cover more types of POIs and functions. Therefore, the accuracy would be
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higher if applied in the city center, which has a high density of POIs. In a condition where no POIs are
related with a residential use and there are some small stores as auxiliary functions located at the first
floor of a building, the building will be incorrectly classified as a convenience shop. Some residential
buildings are dormitories for workers to work conveniently in factory zones. Thus, the auxiliary
zones could be confounded and increase the error tolerance of residential area (3.4%). Even though
the building roof of a railway station could be easily extracted using remote sensing images, the
transportation zone with higher confidence interval of 12% is still confused with the shopping center
zone because some shopping malls are present around the Xiamen railway station and, furthermore,
the railway station was being rebuilt during the research period, with bare soil replacing the roof of
the station building in the remote sensing images (Figure 5c). The shopping center class has a high
producer accuracy (85%), but its error tolerance is 9.2%. Here are the possible reasons. City planning
and development usually take a unit of road-based parcel. The government focuses on improving the
intensive land use level and urban complex. So, the residential area and company may exist within a
shopping center in one building. These fusions challenge the functional zone classification accuracy
in a built-up area. Therefore, functional arrangement influences accuracy when mapping functional
zones, and it is necessary to update the weights of functional segmentation when applying the method
to other cities, especially cities with different architecture morphology.

5.2. Other Methodological and Applied Considerations

Considerable effort has been made in recent years to improve the accuracy of mapping land
use in an urban area [52,53]. Remote sensing imagery and big social data have usually been applied
separately in urban studies. Land-use classification for remotely sensed images was based on the
spectral information of pixels and objects. Most experiments concentrate on several classes, including
buildings, streets, open areas, residential lawns, and shadows [21]. The application of big social data
to map local functional zones was lacking information on spatial boundaries, losing insight into the
functional proportions of spatial heterogeneity [28,36]. In this research, we took full advantage of
very high spatial resolution remotely sensed imagery to segment the building rooftop and appended
points with functions into the polygons of the building roof and, furthermore, bridged the gap between
dominant points and non-major points to balance the proportion of the function for improving the
accuracy of the application of remote sensing in city areas. A high precision map of a functional
zone provides basic data for applied research at a large scale, for instance, urban land use transition,
evaluation of urban land intensive use and estimating population density and space distribution of
public service facilities, etc. Hence, the approach that used physical features of satellite imagery and
POIs produced a more detailed parcel-based functional zones map than the approach that used a
single data source and provided the foundation for meticulous city management.

We acknowledge that the accuracy can be improved further. Some office buildings and parcels
including markets, companies, and residences were difficult to identify because of their similar shape
and building material. Buildings along roads with convenience shops on the ground floor could be
bungalows or high-rise buildings. However, we suggest that the building height can be utilized, for
instance from LIDAR, high-resolution imagery stereo pairs and other sources. High spatial resolution
imagery is still poor in spatial resolving power and often shows weak reflectance around building
boundaries. The LIDAR can reliably attribute accurate 3D information to the building boundaries
extracted by optical imagery and isolate building regions by subtracting terrain surface [54]. We also
noticed that the numbers of POIs and spatial and spectral resolutions of remote sensing images varied
in different research areas, especially in the city center and suburb areas. Additionally, the road
network is sparser in the suburbs than in the city center. We suggest that the research areas can be
classified according to the data volume of the POIs and the density of the road network in order to
improve accuracy. With the development of the internet and location-based services, this method
could incorporate more kinds of data and, thus, the accuracy of the method would be improved as the
number of POIs grows. As for the determination of weights and application in other research areas,
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machine learning methods could be applied to train the weights of POIs and functional segmentations
instead of using Delphi. Machine learning methods have the potential to improve the accuracy of
training samples and classification.

6. Conclusions

We developed an approach to mapping urban functional zones by integrating physical features
of high spatial resolution remotely sensed imagery and anthropogenic activity of POIs. To improve
the accuracy and mine the detailed social attributes of the buildings, we applied image segmentation
to locate the boundaries of building roofs. We then appended functional segmentation to parcels,
based on the road networks. The results showed that the fusion of POIs and remotely sensed imagery
could refine the classification and improve accuracy in some areas which were difficult to classify with
the previous approach. The overall accuracy of the functional zones with 10 classes reached 78.47%.
Therefore, we concluded that the proposed method provided an alternative means for mapping urban
functional zones using high-resolution images and POIs and could be potentially applied elsewhere.
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Appendix A

Table A1. The classification of points of interests (POI).

Function POI

Residential zone
Commercial residence
Residence community

Convenience shop zone

Restaurant
Insurance company
Shopping service
Animal medical center
Life service
Car sales company
Car maintenance company
Car service
Motorcycle service
Financial insurance company
Bank
Security company
Sport service
hotel

Shopping center Shopping mall/market
factory factory

Company Company in office building

https://github.com/soho1990/Jinchao-Song/tree/master/Functional%20zone


Remote Sens. 2018, 10, 1737 13 of 15

Table A1. Cont.

Function POI

Public Service Zone

Public service 1
Municipal government
University and college
Top three hospital

Public service 2

Middle school
Judicial organ
Medical care service
Second-class hospital
Social organization and government agency
Scenic zone

Public service 3
Kindergarten
Public learning service

Transportation zone Airport
Railway station

Non-built-up area
Agricultural land
Water
Mountain or forest
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