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A B S T R A C T

Neuroticism is a fundamental personality trait that reflects a tendency to experience heightened negative affect
and susceptibility to stress. Negative emotionality has been associated with fronto-limbic brain structures and
connecting fibre tracts. The major fibre tracts connecting the frontal and limbic brain regions are the cingulum
bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had
decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus
FA increases throughout childhood and into early adulthood. Since adolescence is associated with an increased
incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises
whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is al-
ready present in children and adolescents or whether such relationship emerges during this age period. To
address this question, we assessed 72 typically-developing 10-to-15 year-olds with diffusion-weighted imaging
on a 3 T magnetic resonance scanner. Neuroticism was assessed with the Junior Eysenck Personality
Questionnaire. FA and parallel and perpendicular diffusivity measures were extracted for cingulum, uncinate
fasciculus as well as the white matter underlying the ventromedial prefrontal cortex. Higher neuroticism scores
were associated with decreased left relative to right cingulum FA in boys, while in girls, higher neuroticism
scores were associated with increased left relative to right cingulum and ventromedial prefrontal white matter
FA, indicating that there are sex differences in the neural correlates of neuroticism. Our findings suggest that the
link between neuroticism and frontal-limbic white matter microstructure asymmetry likely predates early
adolescence. Future studies need to elucidate the significance of the observed sex differences in the neural
correlates of neuroticism.

1. Introduction

Adolescence is associated with an increased incidence of neu-
ropsychiatric disorders, such as anxiety, mood and substance use dis-
orders (for review see (Paus et al., 2008)), for which neuroticism is a
known risk factor (Belcher et al., 2014; Bienvenu et al., 2001; Kendler
et al., 2006; Sutin et al., 2013). Neuroticism is a fundamental person-
ality trait that reflects an individual's tendency to experience negative
emotionality, such as anger, anxiety, guilt, sadness and worry, and a
higher susceptibility to stress. High neuroticism scores have been linked
to mood and anxiety disorders, such as phobias, panic disorder, and

major depression (Bienvenu et al., 2001, 2004), and prospective studies
show that high neuroticism scores increase the risk of developing major
depression (Kendler et al., 2006, 2004). Females have higher neuroti-
cism scores as well as higher prevalence of anxiety and mood disorders
than males (Goodwin and Gotlib, 2004; Paus et al., 2008). The latter
change from an equal female-male prevalence before puberty to a 2:1
female-male prevalence after puberty (Paus et al., 2008). Neuroticism
shows substantial heritability (Hansell et al., 2012; Jang et al., 1996;
Kendler et al., 2006), as well as substantial genetic correlation with
symptoms of anxiety/depression in adolescents (Hansell et al., 2012)
and major depression in adults (Kendler et al., 2006). Thus, neuroticism
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and a predisposition for anxiety/depression may result from shared
genetic factors. Moreover, negative emotionality also exhibits a positive
genetic link with medial orbitofrontal cortex thickness, suggesting that
the latter may partly mediate the observed heritability of negative
emotionality traits (Lewis et al., 2014).

Findings from structural magnetic resonance imaging (MRI) studies
on the neural correlates of negative emotionality-related traits in
mainly healthy adult volunteers, as well as in volunteers with disorders
such as major depression, have implicated frontal and limbic brain
structures, such as the orbitofrontal cortex, ventromedial prefrontal
cortex (vmPFC), anterior cingulate cortex, and the amygdala (Mincic,
2015; Omura et al., 2005; Rive et al., 2013; Wright et al., 2006). A
recent meta-analysis study of the structural neural correlates of nega-
tive emotionality traits reported that negative emotionality was posi-
tively associated with left amygdala volume and negatively associated
with left orbitofrontal cortex volume (Mincic, 2015). In a large cohort
of youths aged 7–20 years, higher anxiety scores were associated with
smaller vmPFC surface area adjusted for total area, as well as overall
thinner cortex (Newman et al., 2016). Interestingly, these associations
diminished with age, suggesting that youths with higher anxiety scores
may have delayed expansion of the vmPFC and an altered global cor-
tical thinning trajectory. Moreover, a study of 16–17 year-old healthy
adolescents observed opposite sex effects of the neural correlates of
neuroticism, in that neuroticism was positively correlated with sub-
genual anterior cingulate cortex grey matter volume and cortical
thickness in females, but negatively in males (Blankstein et al., 2009).
Frontal brain regions, including the anterior cingulate and dorsomedial
prefrontal cortex, as well as the orbitofrontal cortex and vmPFC are
connected to medial temporal lobe structures, such as the amygdala and
hippocampus, by two major white matter tracts, respectively, the cin-
gulum bundle and uncinate fasciculus (Schmahmann and Pandya,
2006). Diffusion-weighted imaging (DWI), which is sensitive to the
diffusion of water molecules, allows for measurements of the micro-
structural properties of white matter fibre tracts. In white matter, cel-
lular structures, such as the axonal membranes and surrounding myelin
sheaths, hinder diffusion of water in the direction perpendicular re-
lative to parallel to a fibre bundle, thereby causing diffusion anisotropy
(Beaulieu, 2009). By fitting a diffusion tensor to each voxel of the DWI
data, measures, such as fractional anisotropy (FA), and parallel (axial,
λ||) and perpendicular (radial, λ⊥) diffusivity, can be extracted. FA
reflects the degree of diffusion directionality, which can be influenced
by microstructural properties, such as axonal density, diameter, orga-
nization, and myelination (Beaulieu, 2009; Schwartz et al., 2005). DWI
studies investigating the white matter correlates of negative emotion-
ality-related traits in predominantly healthy adult populations have
provided inconsistent results showing global as well as region-specific
associations (Mincic, 2015). Globally, higher neuroticism and harm
avoidance scores have been associated with widespread lower white
matter FA (Bjornebekk et al., 2013; Westlye et al., 2011). Regionally,
higher negative emotionality trait scores have been associated with
both lower (Eden et al., 2015) and higher FA (Clewett et al., 2014) of
fibres connecting the right amygdala and vmPFC. Moreover, higher
negative emotionality has been linked to lower FA of the right (Taddei
et al., 2012) and bilateral (McIntosh et al., 2013) uncinate fasciculus, as
well as higher FA of the left uncinate fasciculus (Modi et al., 2013).
Furthermore, higher negative emotionality scores have been linked to
higher FA in the left uncinate fasciculus, cingulum, superior long-
itudinal fasciculus and inferior fronto-occipital fasciculus in males, but
not in females (Montag et al., 2012). The above findings suggest that
brain asymmetry may play a role in negative emotionality-related
traits. In line with this hypothesis, we previously found in healthy
adults that higher neuroticism scores were associated with higher FA of
the right relative to the left cingulum. (Madsen et al., 2012). Notably,
the association with neuroticism was not driven by the absolute FA
values of the left or right cingulum, but by the relative difference be-
tween left and right cingulum FA. Even though research findings do not

provide a clear picture, individual differences in fronto-limbic fibre
tracts appear to play an important role for negative emotionality traits.
Moreover, associations between negative emotionality traits and white
matter microstructure may differ between brain hemispheres as well as
between sexes.

Currently, most studies investigating the neuroanatomical corre-
lates of negative emotionality have examined adults. However, dis-
orders such as anxiety and major depression often debut in adolescence,
a period in human life characterized by ongoing brain maturation that
continues well into early adulthood (Jernigan et al., 2011). Matura-
tional increases in FA, reflecting a disproportionate decrease in λ⊥
relative to λ||, have been observed in multiple white matter locations
throughout childhood, adolescence and young adulthood, possibly due
to ongoing myelination, and/or increased axonal diameter and density
(Eluvathingal et al., 2007; Lebel and Beaulieu, 2011; Lebel et al., 2012).
Notably, the cingulum bundle and the uncinate fasciculus show a pro-
tracted maturation into late adolescence and early adulthood (Lebel
and Beaulieu, 2011; Lebel et al., 2012). In the present study, we ex-
amined whether the relationship between neuroticism and cingulum FA
asymmetry, which we previously observed in healthy adults, is already
present in typically-developing children and adolescents aged 10–15
years, or whether such relationship emerges during this age range.
Additionally, we investigated the relationship between neuroticism and
FA asymmetry of the uncinate fasciculus and the white matter under-
lying the vmPFC. Furthermore, we examined to what extent the ob-
served relationships might change with age or differ between sexes.
Finally, to explore the nature of observed FA findings, we examined the
ROI λ|| and λ⊥ asymmetries in post hoc analyses, since higher FA can
be due to increased λ|| and/or decreased λ⊥.

2. Methods and materials

2.1. Participants

The present study included 72 typically-developing children and
adolescents (45 girls, 27 boys) aged 10.1–15.5 years (mean± standard
deviation = 12.7 ± 1.7), who all were enrolled in the longitudinal
HUBU (“Hjernens Udvikling hos Børn og Unge” – in English: Brain ma-
turation in children and adolescents) project designed to trace devel-
opmental changes, in which 95 typically-developing children (55 girls,
40 boys) aged seven to 13 years and their families had been recruited
from three elementary schools in the Copenhagen suburban area in
2007. All children and adolescents who volunteered for the HUBU
project were included, except for those with any known history of
neurological or psychiatric disorders or significant brain injury, ac-
cording to parent reports. Participants in the HUBU cohort have been
assessed up to 12 times, with six months intervals for the first 10 as-
sessments. Prior to participation and after receiving oral and written
explanation about the study aims and procedures, all children assented
to partake in the study and informed written consent was obtained from
the parents of all subjects. The study was approved by the Ethical
Committees of the Capital Region of Denmark (H-KF-01–131/03) and
conducted in accordance with the Declaration of Helsinki. Previous
publications on baseline data investigated the relationship between
higher-order cognitive functions or motor function and grey and white
matter microstructure (Angstmann et al., 2016; Klarborg et al., 2012;
Madsen et al., 2011, 2010; Vestergaard et al., 2011).

The included 72 children and adolescents were of primarily
Caucasian descent (96%). Sixty-four participants were right-handed
and eight participants were left-handed as assessed by the Edinburgh
Handedness Inventory. To screen participants for psychopathology,
parents filled in the Danish version of Strength and Difficulties
Questionnaire (SDQ) (Niclasen et al., 2012) in the 3rd HUBU assess-
ment conducted 1.5–2.5 years before the 6th and the 8th HUBU as-
sessment. SDQ data was available for 66 (44 girls, 22 boys) of the 72
participants included in the present study. Based on Danish norms for
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11–15 year-olds (SDQ DAWBA DK, 2017), all participants had a SDQ
total difficulties score within the normal range (≤11 in girls, ≤13 in
boys), except for two girls, who had slightly elevated scores (12–15 for
girls, corresponding to the 20% highest scores), but below clinical
thresholds.

The data included in the present study consisted of data from 62 (38
girls, 24 boys) of the 73 children and adolescents assessed in the 6th
HUBU assessment, in which personality assessments and MRI were
conducted. Data from the remaining 11 participants (seven girls, four
boys) were excluded from the present study because of not being
scanned due to metallic dental braces (n= 3), incidental clinical find-
ings on the MRI scans (n= 2), no personality data acquired due to time
constraints in the behavioural testing session (n=4), or poor MR-
image quality (n=2). In addition to the 63 participants from the 6th
HUBU assessment, we included 10 children and adolescents (seven
girls, three boys) from the 8th HUBU assessment, who either had not
participated in the 6th HUBU assessment (n=5) or who did not have
all relevant data acquired in the 6th HUBU assessment (n=5).

2.2. Personality assessment

An adapted Danish version of the 81-item Junior Eysenck
Personality Questionnaire (J-EPQ) (Eysenck and Eysenck, 1975; Nyborg
et al., 1982) was administered on the same day as the MR-scanning. The
J-EPQ measures three major dimensions of personality, i.e. neuroticism
(negative emotionality), extraversion and psychoticism (tough mind-
edness). Here, we focused on the neuroticism scale, which consists of 20
items. The questionnaire was read out loud, and the participants were
asked to indicate how well each item described their personality. In the
original J-EPQ version, participants have to answer each item with a
“Yes” or a “No”. In the present study, we extended the rating scale to
include four possible answers: Strongly agree / Agree / Disagree /
Strongly disagree, which were scored on a 0–3 point scale, in order to
get more detailed estimates of the personality traits. The neuroticism
scale using either of the rating scales showed good to excellent internal
consistency (Cronbach's alpha for the 2-point scale (α= .857) and the
adapted 4-point scale (α= .904)).

2.3. Image acquisition

All subjects were scanned using a 3 T Siemens Magnetom Trio MR
scanner (Siemens, Erlangen, Germany) with an eight-channel head coil
(Invivo, FL, USA). All acquired scans were aligned parallel to the
anterior commissure–posterior commissure line. T1-weighted images of
the whole head were acquired using a 3D MPRAGE sequence (TR =
1550ms, TE = 3.04ms, matrix 256× 256, 192 sagittal slices, 1× 1×
1mm3 voxels, acquisition time = 6:38). T2-weighted images of the
whole head were acquired using a 3D turbo spin echo sequence (TR =
3000ms, TE = 354ms, FOV = 282× 216, matrix = 256× 196, 192
sagittal slices, 1.1× 1.1× 1.1mm3 voxels, acquisition time = 8:29).
Whole brain diffusion-weighted (DW) images were acquired using a
twice-refocused balanced spin echo sequence that minimized eddy
current distortion (Reese et al., 2003). Ten non-DW images (b = 0) and
61 DW images (b = 1200 s/mm2), encoded along independent collinear
diffusion gradient orientations, were acquired (TR = 8200ms, TE =
100ms, FOV = 220× 220, matrix = 96× 96, GRAPPA: factor = 2,
48 lines, 61 transverse slices with no gap, 2.3× 2.3× 2.3mm3 voxels,
acquisition time = 9:50). A gradient echo field map was acquired to
correct B0 field distortions (TR = 530ms, TE[1] = 5.19ms and TE[2]
= 7.65ms, FOV = 256× 256; matrix = 128× 128, 47 transverse
slices with no gap, voxel size = 2× 2× 3mm3, acquisition time =
2:18).

2.4. Image preprocessing

Raw images were visually inspected to ascertain data quality.

Images were preprocessed using pipelines implemented in Matlab,
using mainly SPM8 (Wellcome Department of Cognitive Neurology,
University College London, UK) routines. T1-weighted and T2-weighted
images were corrected for spatial distortions due to non-linearity in the
gradient system of the scanner (Jovicich et al., 2006). The T2-image
was coregistered (no reslicing), using a 6-parameter mutual information
rigid transformation to the T1-image, which was registered into MNI
orientation (no scaling). In the DWI analysis, each subject's mean b0
image was coregistered (no reslicing), to the brain-masked T2-image,
after which all DW images were coregistered (no reslicing) to the mean
b0 image. Next, all coregistered images were corrected for geometric
distortions using a voxel displacement map based on both the acquired
B0 field map (Andersson et al., 2001) and the scanner specific gradient
non-linearities (Jovicich et al., 2006). Finally, all images were resliced
using trilinear interpolation. Note that this procedure involves only one
reslicing step. The diffusion gradient orientations were adjusted to ac-
count for any rotation applied during registration. The diffusion tensor
was fitted using a least-squared-fit by non-linear optimization em-
ploying a Levenburg-Marquardt algorithm (Jones and Basser, 2004)
implemented in Camino (Cook et al., 2006), and constrained to be
positive definite by fitting its Cholesky decomposition. Fractional ani-
sotropy (FA) as well as diffusivity parallel (axial diffusivity, λ|| = λ1)
and perpendicular (radial diffusivity, λ⊥ = (λ2+ λ3) / 2) to the
principal diffusion direction were calculated. A brain mask based on the
mean b0 image was applied to the FA and diffusivity images.

2.5. Inter-subject spatial normalization of fibre tracts

In the present study, we extracted FA and diffusivity measures from
regions-of-interest (ROIs) to test specific hypotheses and to determine
the anatomical specificity of observed associations (see below). Spatial
normalization and alignment of fibre tracts across subjects were
achieved using the Tract-Based Spatial Statistics (TBSS) module (Smith
et al., 2006), part of FSL 4.1.4 (Smith et al., 2004). At first, all subjects’
FA images were aligned into a common space using the non-linear re-
gistration tool FNIRT (Andersson et al., 2001). A study-specific target,
the group's most representative FA image, was then identified after non-
linearly registering each subject's FA image to every other subject's FA
image. Next, the target FA image was aligned to MNI space using affine
registration and subsequently the entire aligned dataset was trans-
formed into 1 mm3 MNI space. A cross-subject mean FA image was
created and thinned to create a mean FA skeleton, representing the
centres of all tracts common to the group. The mean FA skeleton was
thresholded at FA> .25, and contained 130,934 1 mm3 interpolated
isotropic voxels, corresponding to approximately 39% of the voxels
with FA above .25. Each subject's aligned FA image was then projected
onto the mean skeleton by locating the highest local FA value in the
direction perpendicular to the skeleton tracts and assigning this value to
the skeleton. In addition, the nonlinear warps, and skeleton projections
were applied to the λ|| and λ⊥ data.

2.6. Regions-of-interest

To test our hypotheses, mean FA, λ|| and λ⊥ values were extracted
from left and right sided ROIs in the cingulum, uncinate fasciculus and
in the white matter underlying the ventromedial prefrontal cortex
(vmPFCWM). The ROIs are depicted in Fig. 1. ROIs were manually
drawn onto the mean skeleton overlaid on the mean FA image using
FSLview. The skeleton segments representing the cingulum were clearly
distinguishable from all other skeleton segments. Cingulum ROIs in-
cluded all skeleton segments within the body of the cingulum, and
excluded segments intersecting the cingulum but diverging from the
main body of the tract. Right and left cingulum ROIs contained 883 and
973 voxels, respectively. Uncinate fasciculus ROIs were delineated
using the JHU White-Matter Tractography Atlas (Hua et al., 2008)
implemented in FSLview for guidance. Only central uncinate fasciculus

K.S. Madsen et al. Neuropsychologia 114 (2018) 1–10

3



segments were included, while segments extending towards the tem-
poral pole, the inferior frontal gyrus and orbitofrontal cortex were ex-
cluded. Right and left uncinate fasciculus ROIs included 422 and 375
voxels, respectively. Finally, vmPFCWM ROIs were drawn, which in-
cluded the skeleton segments in the white matter underlying the right
and left vmPFC, while excluding segments in the frontal pole. The
vmPFCWM ROIs extended from MNI-coordinates y=53 to Y = 27. The
right and left vmPFCWM ROIs contained 292 and 215 voxels, respec-
tively. To assess the anatomical specificity of observed associations,
right (66,303 voxels) and left (64,265 voxels) hemispheric skeleton
ROIs were delineated using the mid-sagittal plane (not included in ei-
ther of hemispheric ROIs).

2.7. Left-right asymmetry measures

ROI diffusion parameter asymmetries were calculated as the dif-
ference between left and right ROI values expressed as a percentage of
the bilateral mean:

+((2*(Left – Right)) / (Left Right))*100

2.8. Statistical analyses

Statistical analyses were performed in SPSS20. Two-tailed t-tests
were used to compare left and right ROI values (paired samples), and
sex differences in neuroticism and parent's average years of education
(independent samples). Multiple linear regression was used to examine
age, sex and handedness effects on ROI FA values or ROI FA asymme-
tries. Multiple linear regression models predicting neuroticism were
used to test our hypotheses. Shapiro-Wilk tests showed that the re-
siduals from all the main regression analyses did not significantly de-
viate from the normal distribution. All other assumptions for linear
regression were fulfilled. A p-value below .05 was considered sig-
nificant.

Based on our previous findings in adults, our major hypothesis was
that neuroticism would be associated with cingulum FA asymmetry. To
test our primary hypothesis, cingulum FA asymmetry, sex by cingulum
FA asymmetry and age by cingulum FA asymmetry, controlling for age,
sex and the interaction age by sex, were entered in a multiple linear
regression model predicting neuroticism. Our secondary hypotheses
tested if neuroticism was also associated with vmPFCWM and uncinate

fasciculus FA asymmetries, which were tested using the same analysis
strategy as the one for cingulum FA asymmetry (Model A). To follow-up
on sex by ROI FA asymmetry effects, boys and girls were analysed se-
parately, using age, ROI FA asymmetry, and age by ROI FA asymmetry
as predictors of neuroticism (Model B). Model A and B are summarised
below:

Model A:

= + + + + +

+ +

Y β β X β X β X β X X β X X

β X X ε

age sex ROI age sex age ROI

sex ROI

0 1 2 3 4 5

4

Model B:

= + + + +Y β β X β X β X X εage ROI age ROI0 1 2 3

In these equations, Y corresponds to the neuroticism score, ROI
corresponds to the ROI FA asymmetry measures, and ε is the error term.

Planned follow-up analyses assessed 1) the anatomical specificity of
observed effects by including global white matter hemispheric FA
asymmetry as an additional covariate in Model B, 2) whether the ob-
served effects might be driven by differences in handedness by in-
cluding handedness as an additional covariate in model B, and 3) the
contribution of the left and right ROIs to observed asymmetry effects by
analysing left and right ROIs both simultaneously and separately. Based
on our results in girls, a post hoc analysis was conducted, in which
neuroticism was modelled with cingulum and vmPFCWM FA asymmetry
simultaneously to assess if their effects were additive. Finally, to further
explore the nature of observed FA findings, λ|| and λ⊥ were in-
vestigated, since higher FA can be due to increased λ|| and/or de-
creased λ⊥. This was tested by replacing the ROI FA variables with
either λ|| or λ⊥ in the models where the ROI FAs were significant.

3. Results

3.1. Descriptive statistics

Neuroticism and ROI FA values are presented in Table 1. The mean
neuroticism score from the 2-point rating scale is displayed in Table 1 to
allow for comparisons between the present cohort and other cohorts.
However, only the neuroticism score from the 4-point rating scale was

Fig. 1. Regions-of-interest in the cingulum bundle
(red), uncinate fasciculus (green) and in the white
matter underlying the ventromedial prefrontal cortex
(blue), and the TBSS skeleton (yellow) overlaid on the
target fractional anisotropy (FA) map. Axial (z), cor-
onal (y) and sagittal (x) views of the ROIs with the
corresponding MNI coordinates for each slice.
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used in the statistical analyses. Girls had significantly higher neuroti-
cism scores than boys (t= 2.479, p= .014, Cohen's d = .612), while
parents’ average years of education did not significantly differ between
girls and boys (t=−1.674, p= .099, Cohen's d = .416). For each of
the ROI pairs, FA was significantly higher in the left than the right ROI
(ts ≥ 4.304, ps< .00005). FA increased with age in all ROIs (βs =
.132− .253, p= .108− .272), except the right vmPFCWM (β= .053,
p= .661). However, the increase in ROI FA was only significant for the
left cingulum (β= .253, p= .034). There were no significant age ef-
fects in FA asymmetry for any of the ROIs (βs ≤ .214, ps ≥ .072).
Furthermore, there were no significant sex (βs ≤ −.113, ps ≥ .335) or
handedness (βs ≤ −.182, ps ≥ .126) effects on ROI FA or ROI FA
asymmetry.

3.2. Neuroticism and FA: whole group analyses

In the main models predicting neuroticism scores, we did not ob-
serve any significant main effects of ROI FA asymmetry (ps ≥ .361) or
age (ps ≥ .23), but there was a main effect of sex with girls having
higher neuroticism scores than boys (p= .011− .094). Moreover, we
observed a significant sex by cingulum FA asymmetry interaction effect
(β= .353, p= .003). We did not observe a significant sex by vmPFCWM

FA asymmetry (β= .669, p= .116) or sex by uncinate fasciculus FA
asymmetry interaction effects (β=−.362, p= .401). Nor did we ob-
serve any significant age by sex interaction effects (ps> .19), or age by
ROI FA asymmetry interaction effects (ps> .15).

3.3. Neuroticism and FA: analyses of boys and girls separately

Subsequent analyses of boys and girls separately showed that neu-
roticism was significantly and positively associated with cingulum FA
asymmetry in girls, and negatively associated with cingulum FA
asymmetry in boys (Table 2, Model 1; Fig. 2a and b). In boys, a sig-
nificant age by cingulum FA asymmetry interaction effect was also
observed (Table 2, Model 1; Fig. 3b). The cingulum FA asymmetry ef-
fect remained significant in both girls and boys when hemispheric FA
asymmetry was included in the models (Table 2, Model 1a), indicating
anatomical specificity. Furthermore, in girls, neuroticism was also sig-
nificantly and positively associated with vmPFCWM FA asymmetry
(Table 2, Model 2), and this relationship also remained significant with
hemispheric FA asymmetry in the models (Table 2, Model 2 and 2a;
Fig. 2c). No significant relationship was observed between neuroticism
and vmPFCWM FA asymmetry for boys (Table 2, Model 2, Fig. 2d), or
with uncinate FA asymmetry for any of the sexes (ps ≥ .383). Including

handedness as an additional covariate did not change the results of any
of the above analyses.

3.4. Neuroticism and FA: contribution of left and right ROI FA

Follow-up analyses, modelling left and right cingulum FA as si-
multaneous predictors of neuroticism, showed that neuroticism was
negatively associated with right and positively associated with left
cingulum FA in girls, and visa versa in boys (Table 3, Model 4).
Moreover, in girls, a similar effect to that of cingulum was observed for
left and right vmPFCWM FA (Table 3, Model 5). Notably, when modelled
individually, neither left nor right ROI FA were significantly associated
with neuroticism (Table 3, Model 4a, 4b, 5a and 5b), indicating that it is
the relationship between the left and right ROIs that exhibited asso-
ciations with neuroticism, and not the left or right ROIs individually.

3.5. Post hoc analyses

To investigate if the observed associations between neuroticism and
cingulum and vmPFCWM FA asymmetry in girls were additive, the two
ROI measures were modelled simultaneously. When modelled si-
multaneously, both cingulum (β= .446, p= .003) and vmPFCWM

(β= .485, p= .0006) FA asymmetry were significantly associated with
neuroticism, in a model also including age (β= .091, p= .52), and the
interactions age by cingulum FA asymmetry (β=−.206, p= .15) and
age by vmPFCWM FA asymmetry (β= .296, p= .042), suggesting that
the two asymmetry measures independently contribute to neuroticism.

Further exploration of the nature of the observed FA asymmetry
effects revealed that in girls, the ROI λ⊥ asymmetries (cingulum:
β=−.311, p= .057; vmPFCWM: β=−.322, p= .034), but not the
ROI λ|| asymmetries (β < .15, p > .35), were associated with neu-
roticism. In boys, neither cingulum λ⊥ asymmetry (β= .23, p= .23),
nor cingulum λ|| asymmetry (β=−.16, p= .43) was associated with
neuroticism.

4. Discussion

The present study examined associations between neuroticism and
microstructural asymmetry of fronto-limbic white matter tracts in ty-
pically-developing children and adolescents aged 10–15 years.
Specifically, higher neuroticism scores were associated with decreased
left relative to right cingulum FA in boys, and increased left relative to
right cingulum FA in girls. This relationship became stronger with in-
creasing age in boys, but not in girls. Furthermore, higher neuroticism
was associated with increased left relative to right FA of the vmPFCWM

in girls, but not in boys. When modelled simultaneously, both cingulum
and vmPFCWM FA asymmetry were significantly associated with neu-
roticism in girls, suggesting that the two measures of asymmetry in-
dependently contributed to neuroticism. The observed associations
were mediated by the relationship between left and right white matter
fibre tract FA and were not driven by FA in either the left or right fibre
tract individually. Furthermore, including a hemispheric white matter
FA asymmetry measure in the models did not change the ROI asym-
metry effects, indicating that the effects are likely to be anatomically
specific and not linked to general hemispheric white matter FA asym-
metry.

We have previously observed that higher neuroticism scores corre-
lated with higher right relative to left cingulum FA in healthy adults
(Madsen et al., 2012). Some additional previous studies, mainly in
adults, have reported on negative emotionality traits being related to
left-right asymmetry. A fMRI study of negative emotional vs. neutral
faces observed that neuroticism was positively associated with right
amygdala – right dorsomedial PFC functional connectivity, and nega-
tively correlated with left amygdala – right anterior cingulate con-
nectivity (Cremers et al., 2010). The significance of brain asymmetry is
not fully clear, however it has been suggested that laterality provides

Table 1
Descriptive statistics. Mean± standard deviation for age, parent average years
of education, SDQ – total difficulties score, neuroticism and region-of-interest
fractional anisotropy (FA) values for girls and boys.

Girls (N=45) Boys (N=27)

Age 12.67 ± 1.74 12.66 ± 1.59
Handedness (right / left) 40 / 5 24 / 3
Parents’ average years of education 14.09 ± 1.98 13.32 ± 1.68
SDQ – total difficulties score 4.70 ± 3.15 4.64 ± 4.01
Neuroticism (4-point scale) 29.0 ± 10.2 22.6 ± 10.7
Neuroticism (2-point scale) 10.1 ± 4.6 7.6 ± 4.8
Cingulum FA asymmetry 3.93 ± 3.08 4.27 ± 2.85
VmPFCWM FA asymmetry 5.44 ± 8.16 4.66 ± 7.48
Uncinate fasciculus FA asymmetry 2.06 ± 3.96 1.77 ± 3.67
Left cingulum FA .544 ± .027 .551 ± .033
Right cingulum FA .523 ± .026 .528 ± .032
Left vmPFCWM FA .391 ± .029 .395 ± .034
Right vmPFCWM FA .370 ± .028 .377 ± .030
Left uncinate fasciculus FA .508 ± .029 .511 ± .030
Right uncinate fasciculus FA .497 ± .027 .503 ± .034

Abbreviations: SDQ = Strength and Difficulties Questionnaire, VmPFCWM =white
matter underlying the ventromedial prefrontal cortex.
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efficiency benefits, diminish redundancies linked to duplication of
function, and decreases conflicts between the hemispheres (Lindell,
2013). Brain asymmetries have been described for several cognitive
functions and behaviours, including emotional processing and ap-
proach/withdrawal behaviour (Grimshaw and Carmel, 2014; Lindell,
2013). The left hemisphere has been associated with positive affect,
motivation to approach and/or inhibition of negative distractors, while

the right hemisphere has been associated with negative affect, moti-
vation to withdraw and/or inhibition of positive distractors. Lower left
relative to right frontal activity has been associated with withdrawal-
related traits and negative affect, while lower right relative to left
frontal activity has been linked with approach-related traits and posi-
tive affect (Grimshaw and Carmel, 2014; Lindell, 2013; Nusslock et al.,
2015). In the present study, we found that neuroticism was associated

Table 2
Results from the main models predicting neuroticism for boys and girls separately.

Dependent variable: Neuroticism ROI FA asymmetry Age Age by ROI FA asymmetry Hemispheric FA asymmetry

Model r2 β p β p β p β p

Cingulum - boys
1 .309 − .401 .037 − .159 .381 − .388 .039
1a .405 − .426 .022 − .197 .259 − .455 .015 − .320 .073
Cingulum - Girls
1 .125 .373 .026 .020 .895 − .087 .588
1a .136 .385 .024 .031 .841 − .082 .611 − .106 .480
VmPFCWM - Girls
2 .222 .436 .003 .157 .309 .254 .106
2a .227 .438 .003 .164 .295 .251 .114 − .071 .614
VmPFCWM - Boys
2 .091 − .070 .745 − .369 .159 − .206 .443

Each row represents a separate regression model predicting neuroticism with ROI FA asymmetry for either the cingulum or vmPFCWM. Models 1 and 2 included ROI
FA asymmetry, age, and age by ROI FA asymmetry. Models 1a and 2a additionally included hemispheric white matter FA asymmetry. Abbreviations: FA = fractional
anisotropy, ROI = region-of-interest, VmPFCWM =white matter underlying the ventromedial prefrontal cortex.

Fig. 2. Partial regression plots of neuroticism as a function of fractional anisotropy (FA) left-right asymmetry of the cingulum bundle in girls (a) and boys (b), and of
the white matter underlying the ventromedial prefrontal cortex (vmPFC) in girls (c) and boys (d), adjusted for age and age by ROI FA asymmetry. Note the residuals
are plotted. The standardized regression coefficients (β) and the significance level (p) are displayed within each partial regression plot.
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with relative differences between the left and the right ROIs and not
with left or right ROIs’ FA magnitude. Since the left and right hemi-
spheres have been associated with differences in affect and approach/
avoidance behaviour, is seems plausible that the balance between the
left and the right ROIs may play an important role for trait neuroticism
which reflects different negative-emotion related behaviours and ten-
dencies.

Asymmetries of fronto-limbic structures and fibre tracts have also

been related to affective and stress-related disorders (Kim et al., 2006;
Nusslock et al., 2011). One study reported that individuals with post-
traumatic stress disorder (PTSD) had lower FA of the left cingulum
compared to controls. In addition, on average the PTSD group had
higher FA of the right relative to the left cingulum, while the control
group had higher FA of the left relative to the right cingulum (Kim
et al., 2006). While MRI studies on hemispheric asymmetry in mood,
anxiety and stress are sparse, the role of frontal cortical activity

Fig. 3. Partial regression plots of neuroticism by left-
right ROI fractional anisotropy (FA) asymmetry of the
cingulum bundle in girls (a) and boys (b), and of the
white matter underlying the ventromedial prefrontal
cortex (vmPFC) in girls (c) and boys (d), adjusted for
age. The plots visualise the youngest half (x) and the
oldest half (•) of the girls (left) or boys (right) split by
the median years of age (girls: 12.44 years, boys: 12.67
years) to secure two age groups of similar size. In girls,
the association between neuroticism and ROI FA
asymmetry did not appear to significantly differ with
age (a, c) In boys, the association between neuroticism
and cingulum FA asymmetry became stronger with age
(d), while the relationship between neuroticism and
vmPFC FA asymmetry did not significantly differ with
age (b). The standardized regression coefficients (β)
and the significance level (p) of the age by ROI FA
asymmetry interaction (Model 1 and 2 in Table 2) are
displayed within each partial regression plot. Note the
residuals are plotted.

Table 3
Follow-up analyses assessing the relative contribution of fractional anisotropy (FA) in left and right regions-of-interest (ROIs) on neuroticism for boys and girls
separately.

Left ROI FA Right ROI FA Age Age by left ROI FA Age by right ROI FA

Model r2 β p β p β p β p β p

Cingulum - Boys
4 .337 − .806 .055 .891 .039 − .141 .456 − 1.265 .063 1.448 .036
4a .079 − .021 .918 − .256 .217 .109 .591
4b .123 .137 .501 − .220 .283 .204 .309
Cingulum - Girls
4 .168 .520 .066 − .720 .014 .121 .490 − .044 .868 .299 .300
4a .025 − .019 .921 .108 .557 .136 .418
4b .087 − .335 .080 .231 .175 .247 .163
VmPFCWM - Girls
5 .187 .382 .025 − .326 .046 .079 .611 − .033 .837 .159 .335
5a .076 .262 .102 .033 .833 .019 .903
5b .073 − .184 .232 .156 .324 .192 .224

ROI FA asymmetry for either the cingulum or the white matter underlying the ventromedial prefrontal cortex (vmPFCWM). Each row represents a separate regression
model predicting neuroticism either by modelling the left and right ROIs simultaneously (Models 3 and 4), or the left (models 4a and 5a) or right (models 4b and 5b)
ROI individually. All models included age, and age by ROI FA asymmetry.
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asymmetry has been investigated for more than 30 years using elec-
troencephalography (EEG), though with inconsistent findings (Nusslock
et al., 2015; Thibodeau et al., 2006; van der Vinne et al., 2017).
Nevertheless, the most recent meta-analysis study reported a significant
age-by-sex-by-depression severity interaction effect on frontal alpha
asymmetry. This effect was mainly driven by an opposite sex effect in
the population over the age of 53 years, in which severely depressed
females had greater left than right cortical frontal alpha activity, while
severely depressed males had greater right than left cortical alpha ac-
tivity (van der Vinne et al., 2017). Of note, the direction of the opposite
sex effects reported in van der Vinne et al. (2017) are similar to those
observed in the present study. Moreover, a prospective study of young
adults found that decreased left relative to right frontal resting EEG
activity was associated with greater probability for having a depressive
episode during a 3-year follow-up period (Nusslock et al., 2011). As
higher neuroticism scores as well as frontal alpha asymmetry have been
associated with an increased risk of developing affective disorders
(Kendler et al., 2006, 2004; Nusslock et al., 2011, 2015), we suggest
that cingulum and vmPFCWM microstructural asymmetries may be
brain structural markers for a predisposition or risk for developing af-
fective disorders. Future studies, including prospective studies, are
needed to address if and how fronto-limbic microstructural asymme-
tries predispose or increase risk of developing affective disorders in
healthy as well as clinical cohorts. Further studies should also in-
vestigate the possible link between structural and frontal cortical ac-
tivity asymmetries in negative emotionality and affective disorders.

In the present study, we report on sex differences in the association
between neuroticism scores and left-right cingulum microstructural
asymmetry. Our observation in boys that higher neuroticism scores
were associated with decreased left relative to right cingulum FA is
comparable to what we previously found in healthy adults (Madsen
et al., 2012). While we hypothesized that there might be sex differences
in the neural correlates of neuroticism, we did not expect to find that
females would exhibit an opposite asymmetry effect, i.e. higher neu-
roticism scores associated with increased left relative to right cingulum
FA. Some other studies have reported of sex differences in the neural
correlates of negative emotionality traits. One study of 16–17 year-old
adolescents observed that neuroticism was associated with the bilateral
volume and left cortical thickness of the subgenual anterior cingulate
cortex and that this relationship was positive in girls, but negative in
boys (Blankstein et al., 2009). Another study found that higher harm
avoidance scores were significantly associated with larger amygdala
volume in young female adults, but not in young male adults (Iidaka
et al., 2006). Summarised, both these studies reported that negative
emotionality trait scores were positively associated with left-sided
structures in females, while negative or no associations with left-sided
structures were observed in males. The results of the present study
concurs, to some extend, with these previous findings, in that neuroti-
cism scores were positively associated with FA in the left relative to the
right cingulum and vmPFCWM in females and negatively associated with
left relative to right cingulum FA in males. It is unknown what might
underlie the observed sex differences in the relationship between neu-
roticism and fronto-limbic white matter asymmetries. One possible
factor is differences in sex hormones. There is evidence that sex hor-
mones affect functional brain asymmetries (Hausmann, 2017). Frontal
alpha asymmetry have been observed to differ across the menstrual
cycle in high vs. low neuroticism females, suggesting that changing
female sex hormone levels affect frontal alpha asymmetry differently in
women with high vs. low neuroticism scores (Huang et al., 2015). There
is also some evidence that sex hormones affect structural brain asym-
metries. Peripubertal testosterone levels have been observed to affect
cortical thickness differently in boys and girls, with testosterone af-
fecting cortical thickness in the left hemisphere more than the right
hemisphere in boys, and the right hemisphere more than the left
hemisphere in girls (Nguyen et al., 2013). Future studies are needed to
elucidate to which extent sex hormones may play a role in the observed

sex differences between neuroticism and fronto-limbic white matter
asymmetries. The present study highlights that it is important to ex-
amine sex differences when investigating neural correlates of negative
emotionality traits.

To further explore the nature of the observed FA effects, we ex-
amined the λ|| and λ⊥, as these diffusivity measures may provide ad-
ditional information about the underlying tissue microstructure. In
girls, the ROI λ⊥ asymmetries, but not the ROI λ|| asymmetries, were
significantly associated with neuroticism scores. In boys, neither cin-
gulum λ⊥ asymmetry, nor cingulum λ|| asymmetry were significantly
associated with neuroticism. However, since cingulum λ⊥ asymmetry
exhibited a weak positive and cingulum λ|| asymmetry a week negative
association with neuroticism, differences in both λ|| and λ⊥ may con-
tribute to the observed associations with FA asymmetry in boys.
Though the interpretation of differences in diffusion parameters is not
straightforward, previous studies suggest that λ⊥may be more sensitive
to changes in axonal density, myelination and extracellular volume
fraction (Beaulieu, 2009; Schwartz et al., 2005). The perpendicular
apparent diffusion coefficient has been reported to be positively cor-
related with axonal spacing and extracellular volume fraction, and
negatively correlated with axonal number and myelination in the cer-
vical spinal cord in rats (Schwartz et al., 2005). The observed λ⊥
asymmetry effects may, thus, be related to asymmetry in axonal den-
sity, organization and/or myelination of the cingulum and vmPFCWM.
However, axonal organization may also contribute to differences in λ⊥
(Beaulieu, 2009; Schwartz et al., 2005). Finally, the size of the fibre
bundle may also play a role, in that increased partial volume effects
may reduce FA in smaller fibre bundles (Vos et al., 2011). The present
cingulum and vmPFCWM findings could therefore be affected by the
structural properties intrinsic to the fibre tracts or to the size of the fibre
tracts, which could affect the underlying diffusivities differently.

The current study has some potential limitations. The study in-
cluded almost twice as many girls as boys, which might have prevented
us from detecting effect sizes in boys similar to those observed in girls.
However, notably the observed association between higher neuroticism
scores and decreased left relative to right cingulum FA in boys corro-
borates our previous findings in healthy adults, of which approximately
two thirds were male (Madsen et al., 2012). The fact that we found
associations between neuroticism and cingulum microstructural asym-
metry in two independent, albeit non-comparable cohorts, suggests that
this relationship is not a chance finding. The main objective of the
present study was to examine whether the association between neuro-
ticism and cingulum microstructural asymmetry, previously observed
in adults, was already present in children and adolescents aged 10–15
years, or whether such a relationship would emerge during this age
period. While we observed that the neuroticism – cingulum asymmetry
association was already present and independent of age in girls, we also
observed that in boys the association became stronger with age. How-
ever, given the relatively small sample size of males, it is not possible to
conclude whether the association emerges during the age range of the
present study, or whether it merely becomes stronger. In order to es-
tablish whether the observed relationships arise during childhood, fu-
ture studies need to include larger sample sizes as well as expand the
age range to include younger children. Furthermore, we used chron-
ological age to account for possible neurodevelopmental differences in
children and adolescents of different ages. However, the included age
range of 10–15 years is also the period in human development in which
puberty typically occurs. There is accumulating evidence that in-
dividual differences in pubertal development are associated with neu-
rodevelopmental differences or changes in white matter microstructure,
above and beyond chronological age, that may differ between boys and
girls (Herting et al., 2017, 2012). Therefore, future studies should in-
clude measures of pubertal development, as it would allow for a more
fine-grained characterization of the nature and timing of the observed
associations between neuroticism and cingulum FA asymmetry.
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5. Conclusion

The present study corroborates our previous results in adults,
highlighting that fronto-limbic white matter microstructural asym-
metry may play an important role in neuroticism. Moreover, the present
results extend our previous study, by suggesting that there are sex
differences in the neural correlates of neuroticism. The neurobiological
significance of these sex differences is unclear, and future studies are
necessary to elucidate the significance of such differences between boys
and girls in greater detail. Further, as neuroticism is a risk factor for
anxiety and mood disorders, which exhibit sex differences in pre-
valence, future studies also need to elucidate whether sex differences in
the neural correlates of negative emotionality traits might be associated
with the sex differences observed in the prevalence of anxiety and mood
disorders.
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