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Abstract
Objectives This study was conducted in order to evaluate the effect of geometric distortion (GD) on MRI lung volume quanti-
fication and evaluate available manual, semi-automated, and fully automated methods for lung segmentation.
Methods A phantom was scanned with MRI and CT. GD was quantified as the difference in phantom’s volume between MRI
and CT, with CT as gold standard. Dice scores were used to measure overlap in shapes. Furthermore, 11 subjects from a
prospective population-based cohort study each underwent four chest MRI acquisitions. The resulting 44 MRI scans with 2D
and 3DGradwarp were used to test five segmentationmethods. Intraclass correlation coefficient, Bland–Altman plots,Wilcoxon,
Mann–Whitney U, and paired t tests were used for statistics.
Results Using phantoms, volume differences between CTandMRI varied according toMRI positions and 2D and 3DGradwarp
correction. With the phantom located at the isocenter, MRI overestimated the volume relative to CT by 5.56 ± 1.16 to 6.99 ±
0.22% with body and torso coils, respectively. Higher Dice scores and smaller intraobject differences were found for 3D
GradwarpMR images. In subjects, semi-automated and fully automated segmentation tools showed high agreement with manual
segmentations (ICC = 0.971–0.993 for end-inspiratory scans; ICC = 0.992–0.995 for end-expiratory scans). Manual segmenta-
tion time per scan was approximately 3–4 h and 2–3 min for fully automated methods.
Conclusions Volume overestimation of MRI due to GD can be quantified. Semi-automated and fully automated segmentation
methods allow accurate, reproducible, and fast lung volume quantification. Chest MRI can be a valid radiation-free imaging
modality for lung segmentation and volume quantification in large cohort studies.
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Key Points
• Geometric distortion varies according to MRI setting and patient positioning.
• Automated segmentation methods allow fast and accurate lung volume quantification.
• MRI is a valid radiation-free alternative to CT for quantitative data analysis.

Keywords Magnetic resonance imaging . Lung . Lung volumemeasurements . Phantoms . Imaging

Abbreviations
2D Gradwarp 2D geometry distortion correction

technique
3D Gradwarp 3D geometry distortion correction

technique
3D GWscanner 3D Gradwarp correction performed

with the built-in software of the scanner
3D GWoff-line 3D Gradwarp correction performed

with custom-made offline software
3D Slicer Threshold painting segmentation method

(semi-automated segmentation)
AWS AW Server (semi-automated segmentation)
CT Computed tomography
FOV Field of view
GeoS Geodesic Image Segmentation

(semi-automated segmentation)
GD Geometric distortion
ICC Intraclass correlation coefficient
MRI Magnetic resonance imaging
MS ITK-SNAP segmentation tool (manual

segmentation)
VC Vital capacity

Introduction

Computed tomography (CT) is the most used technique
for quantitative lung imaging because of its high spatial
resolution and signal-to-noise ratio [1, 2]. Consequently,
quantitative imaging analysis using chest CT is better
developed and validated compared to chest magnetic
resonance imaging (MRI) [3–6]. Nevertheless, MRI is
being developed as a feasible radiation-free alternative
imaging modality [1, 7].

However, several technical challenges hamper quanti-
tative analysis with MRI, namely protocol standardiza-
tion, low signal-to-noise ratio, and low spatial resolution.
Volume computation in MR is also limited due to geomet-
ric distortion (GD) [1, 3], which is mainly caused by
magnetic field inhomogeneity and nonlinearity of gradient
coils within the scanner [7, 8]. Image processing tech-
niques are available for GD correction and are commonly
employed by manufacturers (i.e., BGradwarp,^ General
Electric Healthcare). These techniques are particularly im-
portant for the delineation of target volumes for

radiotherapy of cancer, where several models to correct
GD have been analyzed [8–13].

Existing literature has focused on data with relatively
small field-of-view (FOV) or on anatomical locations
close to the isocenter where GD is minimal, such as
in MRI protocols for prostate, brain, and neck tumor
size quantification [7, 14, 15]. Conversely, lung imaging
requires larger FOV and is therefore more influenced by
GD, as magnetic field inhomogeneities make GD more
pronounced the farther the object scanned is from the
isocenter [7, 10, 16]. Consequently, peripheral lung por-
tions (i.e., costophrenic angles) are most affected by
GD. In addition, different MRI settings and patient’s
positioning can influence the magnitude of GD [7, 17].

To the best of our knowledge, no previous publica-
tions have assessed the effect of GD on lung volume
quantification in chest MRI and specifically the valida-
tion of lung volume quantification in MRI against CT.
This study addresses the problem of correcting for mag-
netic field inhomogeneity.

In addition, this study evaluates manual, semi-auto-
mated, and fully automated methods for lung segmenta-
tion and volume quantification with MRI. Lung segmen-
tation is a fundamental step for image analysis and is
aimed to extract quantitative information. Although
manual segmentation with delineation of lung bound-
aries on each image can give accurate results, it is la-
borious. Therefore, various segmentation methods have
been developed for CT images. Few studies have been
conducted on segmentation methods for MR images [18,
19], because it is believed to be more difficult and to
have more variations than CT volumetry. In this study,
we assessed segmentation methods in accuracy, repro-
ducibility, and time efficiency to determine the best seg-
mentation strategy for lung volume quantification using
MRI in the Generation R Study, a large prospective
population-based cohort study, described in detail in
the Supplementary material.

In summary, we aimed (1) to quantify GD for different
MRI scan settings on volume measurements compared to
CT using phantoms and (2) to assess the accuracy, repro-
ducibility, and time efficiency of semi-automated and ful-
ly automated lung volume segmentation tools compared
to manual segmentations of MRI measurements obtained
in children.
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Materials and methods

Datasets

Phantom data

A MRI body phantom (Fig. E1), with four bottles filled with
potassium sorbate (General Electric Healthcare), was used to
assess the effect of GD on volume quantification depending
on six different scan settings: (1) reference position with phan-
tom centered in the scanner isocenter, (2) electronic displace-
ment of FOV to simulate incorrect FOV positioning by a MRI
technician, (3) manual displacement of phantom to simulate
possible patient’s movements in the scanner, (4) table reposi-
tioning to simulate whole-body MRI protocol, (5) parallel
imaging with different acceleration factors for faster image
acquisition, and (6) use of torso coil to replicate the lung
MRI protocol of the prospective population-based
Generation R cohort study. For settings (2) and (3), eight dif-
ferent phantom positions distanced 5 cm from the isocenter
were tested: left (L), right (R), inferior (I), superior (S), left
inferior (LI), right inferior (RI), left superior (LS), and right
superior (RS). For setting (5), four different acceleration fac-
tors were tested (1, 2.25, 4, 5). For setting (6), three positions
were tested: torso coil centered on the subject and torso coil
distanced 5 cm left or right from the center. All images, except
setting (6), were acquired with body coil to obtain the most
homogenous signal from the phantom and thus facilitating
volume segmentation. Images were collected with in-plane
bidimensional (2D Gradwarp) and full three-dimensional
(3D Gradwarp) GD correction. These correction techniques
correct spatial distortion artifacts and blurring at the extreme
margins of MR images determined by only nongradient field
nonlinearity [20].

Subjects’ data

To test lung volume segmentation methods, lung MRI data of
a subset of 11 anonymized children were randomly selected
from the Generation R Study [21, 22]. After written informed
consent (METC-2012-165), children underwent whole-body
MRI, including brain, heart, hips, and lung MRI acquisitions.
The MRI scans were carried out in a specially designed child-
friendly MRI research facility. From November 2014 to
January 2016, 5000 MRI scans were acquired in the
Generation R Study. Each subject underwent two end-
inspiratory and two end-expiratory spirometer-guided MRI
acquisitions. Data were acquired with 2D and 3D Gradwarp.
In particular, 3D Gradwarp of the scanner was applied to one
end-inspiratory and one end-expiratory scan (Fig. 1).

More information about the Generation R Study and pa-
rameters for MRI and CT acquisitions are presented in the
Supplementary material.

Imaging analysis

Phantom segmentation

Phantom volume measurements were manually obtained with
MRI and CT through signal intensity thresholding segmentation

Fig. 1 Flowchart of acquisition scheme per subject. Each subject (n = 11)
underwent two end-inspiratory and two end-expiratory acquisitions. 2D
and 3D Gradwarp correction was applied to one end-inspiratory and one
end-expiratory scan. In total, 11 subjects underwent four acquisitions,
resulting in 44 scans

Fig. 2 MRI and CT acquisition scheme of body phantom. a Phantom
acquisitions with MRI with six different scan settings. b Phantom
acquisitions with CT scan as reference images

2772 Eur Radiol (2019) 29:2770–2782



using AW Server 2 platform (AWS) by GEHC and 3D Slicer
software (http://www.slicer.org) by a single observer. Signal
intensity threshold was chosen specifically for each scan to
include the entire volume of interest, which was visually

inspected in multiplanar reformats. All 52 MRI phantom
acquisitions were segmented, once with AWS and once with
3D Slicer, making a total of 104 segmentations. Three CT
phantom segmentations were performed with 3D Slicer (Fig. 2)

Fig. 3 Effect of GD on volume
quantification with MRI
compared to CT according to
various MRI scan settings.
Relative volume difference (%)
for a electronic displacement of
FOV, b manual displacement of
phantom, c table repositioning, d
parallel imaging, and e use of
torso coil. Reference = reference
MRI isocenter position. Positions
distanced 5 cm from isocenter:
L = left, R = right, I = inferior, S =
superior, LI = left inferior, RI =
right inferior, LS = left superior,
RS = right superior

Eur Radiol (2019) 29:2770–2782 2773
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to obtain true volumes. A total of 20 out of 52 acquisitions were
randomly selected for second segmentation with AWS and 3D
Slicer to assess intra- and intermethod agreement.

Subjects’ lung segmentation

Five lung segmentation methods were tested in 44 scans from
11 subjects (Fig. E2): one fully manual (ITK-SNAP) [23], two
semi-automated (3D Slicer [24] and GeoS [25]), and two fully
automated (Ivanovska [26] and Pennati [27]). Each segmen-
tation method is explained in the Supplementary material.

Five out of 11 Generation R subjects, with four acquisitions
for each subject, were randomly selected for second segmen-
tation with manual and semi-automated methods by the first
observer and a second observer to assess intra- and interob-
server agreement. Both observers were blinded to each other’s
segmentations.

Quantification of GD on phantom

MRI volume measurements were compared to CT measure-
ments as the gold standard. The magnitude of GD was quan-
tified as relative volume difference between MRI and CT
measurements.

Phantom volume segmentations of the aforementioned MRI
scan settings were compared to reference CT images using Dice
score after rigid registration. Dice score measures volumetric
overlap in the range between 0 (no overlap) to 1 (complete over-
lap) [28] and can be seen as a measure of shape similarity.

To assess intraobserver agreement, 20 randomly selected
phantom acquisitions were segmented twice by the first observer.

Quantification of GD on patient’s data

Volume differences between 2D and 3D Gradwarp datasets
were computed as volume difference between the two end-

Fig. 3 (continued)
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inspiratory scans. Inspiratory scans were used because of eas-
ier segmentation of the volume of interest due to more homo-
geneous lung parenchyma signal intensity levels. As the entire
Generation R cohort was only acquired with 2D Gradwarp,

3D Gradwarp correction performed with the built-in software
of the scanner (3D GWscanner) was compared with an offline
software (3D GWoff-line). Further details are provided in the
online supplement.

Fig. 4 Relative volume
difference (%) for a electronic
displacement of FOV, b manual
displacement of phantom, c table
repositioning, d parallel imaging,
and e use of torso coil. The
horizontal line through each box
indicates the median, rectangular
boxes represent the interquartile
ranges, and whiskers represent
minimum and maximum values.
Blue = 2D Gradwarp, orange =
3D Gradwarp
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Comparison of lung segmentation tools on subjects’ data

Lung segmentations from end-inspiratory scans were ob-
tained using 3D Slicer (with threshold painting tool)
[24], GeoS [25], Ivanovska [26, 29], and Pennati [27]
methods and compared to manual segmentation (MS) to
assess their performance. At the time of analysis, the
tested fully automated methods were not able to per-
form segmentation of end-expiratory scans due to de-
creased contrast differences between lung parenchyma
and surrounding tissues. Consequently, only 3D Slicer
and GeoS methods were compared to MS for end-
expiratory scans. Mean segmentation time for end-
inspiratory and end-expiratory images was calculated
for each method. Vital capacity (VC) computed with
MRI (VCMRI) by segmentation was compared to VC
measured by spirometry (VCSPIROMETER) to assess

correlation. The smallest measured end-expiratory lung
volume was subtracted from the largest measured end-
inspiratory lung volume to compute VCMRI. VCMRI was
compared to the highest VCSPIROMETER. VCSPIROMETER

was obtained from spirometry. VCMRI was calculated as
the volume difference between inspiratory and expirato-
ry levels.

Statistical analysis

Descriptive data were reported as means ± standard de-
viations. Q–Q plots and Shapiro–Wilk tests were used
to test normality. Intraclass correlation (ICC) coefficient
and Bland–Altman plots were used to assess intra- and
interobserver agreement. Paired samples t test, Wilcoxon
signed-ranks test, or Mann–Whitney U test was applied
to assess differences in lung volume measurements.

Fig. 4 (continued)
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To compare semi-automated and fully automated segmen-
tation methods with MS, volume differences were calculated
as absolute and relative difference. Dice scores were used to
measure overlap in shapes. Pearson correlation coefficient
was used to determine correlation between VCMRI and
VCSPIROMETER. P values ≤ 0.05 were considered to be statis-
tically significant. Multiple comparisons were adjusted using
Bonferroni correction. Statistical analyses were performed
using SPSS v.21 (IBM SPSS Statistics).

Results

Quantification of GD on phantom’s data

Mean volume of each phantom bottle was 1196.77 ± 77.34 ml
measured in CT. Figures 3 and 4 show the effect of GD on
volume quantification for different MRI settings. For the ref-
erence MRI position with the phantom centered at the
isocenter, volume differences were 6.91 ± 0.48 and 6.99 ±
0.22% with 2D and 3D Gradwarp correction, respectively.
Electronic displacement of FOV showed volume differences
of 6.93 ± 0.57 and 7.81 ± 0.64% with 2D and 3D Gradwarp,
respectively. Manual displacement of the phantom showed
volume differences of 6.97 ± 8.44 and 6.58 ± 1.42% with 2D
and 3D Gradwarp, respectively. Table repositioning showed
volume differences of 6.53 ± 0.57 and 6.94 ± 0.25% with 2D
and 3D Gradwarp, respectively. Parallel imaging showed a
volume difference of 1.80 ± 0.50% with 3D Gradwarp.
However, bottles were not completely imaged with this acqui-
sition due to the automatic FOV setting of the scanner, causing
an underestimation of the true volume. Imaging using torso
coil showed volume differences of 6.61 ± 7.10 and 5.56 ±
1.16% with 2D and 3D Gradwarp, respectively.

For electronic displacement, volumes of bottles on the right
side of the phantom were consistently larger, independently of
FOV positioning. Range of volume differences within the

phantom was smaller with 3D Gradwarp than with 2D
Gradwarp for all MRI settings. Figure 5 shows the effect of
2D and 3D Gradwarp. Bottles were more distorted, when
distanced farther away from the isocenter.

Intra- and intermethod agreement

Phantom volume measurements with 3D Slicer and AWS
showed high intra- and intermethod agreement (ICC = 0.991
and ICC = 0.994, respectively). No significant differences be-
tween segmentation tools (Z = -0.177, p = 0.86) were found. A
Wilcoxon signed-ranks test with Bonferroni-adjusted alpha
levels of 0.025 indicated that the first segmentations were
significantly higher in volume than the second segmentations
of the same data using 3D Slicer (mean difference = 4.48 ±
7.78 ml, Z = -5.450, p < 0.001). Similarly, the first segmenta-
tions had significantly higher volumes than the second seg-
mentations using AWS (mean difference = 6.36 ± 5.54 ml,
Z = -7.590, p < 0.001). Bland–Altman plots showed that mea-
surements with 3D Slicer and AWS differed very little (Fig.
E3).

Figure E4 represents the distribution of Dice scores with
2D and 3D Gradwarp. Mean Dice scores were 0.8593 ±

Fig. 5 Images illustrate the effect
of 2D and 3D Gradwarp. a CT
reference image, b MR image
with 2D Gradwarp, c MR image
with 3D Gradwarp. MR images
were obtained with phantom
distanced 5 cm to the right of the
scanner isocenter. Bending of
bottles on the right side of the
phantom (blue and green bottles)
were seen when the bottles moved
further from the scanner isocenter.
With 3D Gradwarp, all bottles
appear straight

Table 1 Overlapping Dice (0–1) scores between CT and MR images

MRI setting Dice score Dice score
2D Gradwarp 3D Gradwarp

Reference isocenter position 0.8776 0.9554

Electronic displacement 0.8725–0.9532 0.8788–0.9570

Manual displacement 0.7555–0.8906 0.7559–0.9580

Table repositioning 0.8784–0.8805 0.9542–0.9575

Parallel imaging N/A 0.9234–0.9378

Torso coil 0.8726–0.8879 0.9468–0.9611

Data are ranges (minimum–maximum) of Dice scores

N/A not available

Eur Radiol (2019) 29:2770–2782 2777



0.0502 and 0.9298 ± 0.0582 with 2D and 3D Gradwarp, re-
spectively. Range of Dice scores for the MRI settings tested is
shown in Table 1. High Dice scores were found for MRI
settings using torso coil and table repositioning with 3D
Gradwarp. The highest Dice score (0.9611) was found with
the torso coil centered on the phantom and with 3DGradwarp.

Quantification of GD on patients’ data

Mean end-inspiratory volume difference between 2D and 3D
GWoff-line scans was -0.91 ± 2.08%.Mean end-inspiratory vol-
ume difference between 2D and 3D GWscanner was 5.50 ±

9.62%. Mean end-inspiratory volume difference between 3D
GWscanner and 3D GWoff-line was 5.90 ± 9.71%. Based on
phantom testing, volume difference between 2D and 3D
Gradwarp using torso coil was -0.64 ± 5.59%. Therefore,
mean volume difference between 3D GWscanner and 3D
GWoff-line was around 0.27 ± 11.93%.

Comparison of segmentation methods

A total of 176 segmentations were analyzed for accuracy, repro-
ducibility, and time efficiency, of which 110were end-inspiratory
segmentations and 66 were end-expiratory segmentations.

Fig. 6 Lung volume segmentations with tested segmentationmethods. a Exemplary slice with corresponding segmentation results obtainedwith bMS, c
3D Slicer, d GeoS, e Pennati software, and f Ivanovska software

Table 2 Segmentation time and
intermethod agreement (ICC) Segmentation method Time (inspiratory) ICC (inspiratory) Time (expiratory) ICC (expiratory)

MS 219 ± 53 149 ± 46

3D Slicer 47 ± 8 0.988 41 ± 7 0.995

GeoS 12 ± 3 0.993 13 ± 4 0.992

Pennati 2 ± 1 0.982 N/A N/A

Ivanovska 3 ± 1 0.971 N/A N/A

Data are ± standard deviation in minutes. Semi-automated and fully automated segmentation methods were
compared with MS

N/A not available, ICC intraclass correlation coefficient

2778 Eur Radiol (2019) 29:2770–2782



Figure 6 shows an example slice and corresponding seg-
mentations with each tested method. Segmentation of medi-
astinal structures and peripheral lung portions was found to be
the source of variation, leading to volume differences between
software measurements. Semi-automated and fully automated
methods showed similar segmentation errors, namely inclu-
sion of nonlung tissue (i.e., mediastinum) and exclusion of
lung tissue at low signal-to-noise regions (i.e., lung’s apices).

End-inspiratory segmentations

Semi-automated (ICC = 0.988–0.993) and fully automated
segmentation results (ICC = 0.971–0.982) showed high agree-
ment with MS (Tables 2 and 3). Results indicated that seg-
mentations with GeoS, Pennati, and Ivanovska methods were
similar to MS, with volume differences ranging from 0.59 to
1.37%. One subject was not segmented by Ivanovska’s meth-
od due to motion artifacts. 3D Slicer showed a significant
difference (p < 0.001) with volume differences up to 2.89%.
Bland–Altman plots showed good agreement between semi-
and fully automated methods and MS (Fig. E5).

End-expiratory segmentations

Both semi-automated methods showed high agreement with
MS (ICC = 0.992–0.995) (Table 4). They had similar results
asMSwith mean differences of -1.27 and 1.81% for 3D Slicer
and GeoS, respectively. Bland–Altman plots showed a slight-
ly better performance for 3D Slicer than GeoS (Fig. E6).

Vital capacity

Spirometry data simultaneously obtained during theMRI scan
were available for 8 out of 11 subjects, of which 4 showed
large performance variability (Table 5). Association between
VCMRI and VCSPIROMETER was similar but not significant for
MS (r = 0.444, p = 0.271), GeoS (r = 0.440, p = 0.275), and
3D Slicer (r = 0.423, p = 0.297).

Segmentation time

Segmentation time for each method is shown in Table 2. Time
displayed excludes time needed for file conversion, uploading,
and saving steps. Manual segmentation time for end-expiratory
images was shorter than end-inspiratory images, because of the
shorter scan range due to lower volumes in expiration.

Both observers found MS a laborious task, aside from the
considerable amount of time required for segmentation.
Among the semi-automated methods, GeoS performed faster
and was less laborious than 3D Slicer. Fully automated
methods took approximately 2 to 3 min and required minimal
user interaction.

Intra- and interobserver agreement

High intraobserver agreements were found for GeoS (ICC =
1.000), 3D Slicer (ICC = 0.999), and MS (ICC = 0.997).
Volume differences were 4.81 ml (p = 0.455), 7.49 ml (p =
0.332), and 11.88 ml (p = 0.502), respectively, all not signif-
icant. High interobserver agreement was found for GeoS
(ICC = 0.994), 3D Slicer (ICC = 0.995), and MS (ICC =

Table 3 Comparison of end-
inspiratory lung volume segmen-
tations of semi-automated and
fully automated methods withMS

Segmentation tool ICC N Absolute difference (ml) p value* Relative difference (%)

3D Slicer (semi-automated) 0.988 22 77.99 ± 55.68 < 0.001 2.89

GeoS (semi-automated) 0.993 22 35.19 ± 62.16 0.020 1.30

Pennati (fully automated) 0.982 22 36.92 ± 113.78 0.223 1.37

Ivanovska (fully automated) 0.971 20 15.86 ± 120.83 0.526 0.59

Difference is mean ± standard deviations. Mean inspiratory lung volume obtained with MS was 2702.85 ±
598.51 ml

ICC intraclass correlation coefficient, N number of subjects

*Calculated with Wilcoxon signed-ranks test with Bonferroni-adjusted alpha levels of 0.01 per comparison

Table 4 Comparison of end-
expiratory lung volume segmen-
tations of semi-automated
methods with MS

Segmentation tool ICC N Absolute difference (ml) p value* Relative difference (%)

3D Slicer (semi-automated) 0.995 22 -13.63 ± 29.84 0.067 -1.27

GeoS (semi-automated) 0.992 22 19.40 ± 37.65 0.036 1.81

Difference is mean ± standard deviations. Mean expiratory lung volume obtained with MS was 1073.69 ±
334.14 ml

ICC intraclass correlation coefficient, N number of subjects

*Calculated with Wilcoxon signed-ranks test with Bonferroni-adjusted alpha levels of 0.025 per comparison
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0.989). Volume differences were 92.93 ml (p < 0.001),
52.91 ml (p = 0.030), and 102.03 ml (p = 0.001), respectively.
With an adjusted alpha level of 0.017, 3D Slicer showed no
significant interobserver difference.

Discussion

We found that mean volume differences from MRI relative
to CT due to GD for an object centered at the isocenter of
the scanner were 5.56 ± 1.16 and 6.99 ± 0.22% with torso
and body coil, respectively. Moreover, we found high Dice
overlapping scores for images with 2D Gradwarp and even
higher with 3D Gradwarp. We also compared five segmen-
tation methods with different complexity and interaction
possibilities. We found that MRI systemically overesti-
mates volume measurements compared to CT due to GD,
with varying volume differences according to MRI setting
and patient positioning. The range of volume differences
within the phantom was always smaller with 3D than 2D
Gradwarp, but mean difference was sometimes higher with
3D Gradwarp. This means that 3D Gradwarp normalized
the intraobject volume differences but tended to increase
volume overestimation.

A discrepancy was found in the expected GD on volume
measurements between electronic and manual displacement
settings. Previous studies have shown that the greater the dis-
tance from the isocenter, the greater the GD [7, 10]. While this
was true for the manual displacement setting, it was not for the
electronic displacement. Electronic displacement consistently
generated a larger volume for bottles on the right side of the
phantom. This may be due to asymmetrical inhomogeneity of
the magnetic field.

The MRI system changes the FOV from 500 to 600 mm
when 3D Gradwarp was applied. When smaller FOV was
used with 2D Gradwarp, some bottles were not completely
imaged, causing an underestimation of true volume. This
problem can explain the lower volume differences found
with 2D than with 3D Gradwarp phantom data, for elec-
tronic displacement and table repositioning settings.

Finally, end-inspiratory segmentations with GeoS,
Pennati, and Ivanovska methods and end-expiratory seg-
mentations with 3D Slicer and GeoS showed similar vol-
ume measurements to manual segmentation. Results from
the present study suggest that fully automated methods can
be used for end-inspiratory lung volume segmentations of
large cohort studies, reducing segmentation time and effort
without sacrificing accuracy. To date, no fully automated
algorithms for end-expiratory images are available. Up to
date, GeoS seems the fastest and most accurate semi-
automated segmentation method for lung volume segmen-
tation of end-expiratory images.

We acknowledge some limitations to this study: firstly,
the small number of subjects. However, each subject had
four lung MRI acquisitions, so 44 acquisitions were ob-
tained to test five software methods. Secondly, many miss-
ing lung function data hamper data analysis. VCMRI corre-
lated positively with VCSPIROMETER, but analysis of a larg-
er subset is needed to confirm these results. This will be
eventually achieved when the entire dataset of Generation
R is segmented. Thirdly, only one MRI system was used to
acquire the MR images. While this ensured homogeneity in
the resulting MR images, this does not reflect the wide
range of MRI systems and imaging sequences used in prac-
tice. However, our approach can be applied to other ven-
dors and MRI sequences.

Conclusion

MRI systematically overestimates volume compared to CT
due to GD. 3D Gradwarp images yield shapes that are similar
to reference CT images, but can also determine larger volume
overestimation. The effect of GD on volume measurements
for images acquired with specific MR settings or in specific
patient positions can be quantified and potentially be predicted
and corrected.

Semi-automated and fully automated segmentation
methods allow accurate, reproducible, and fast lung volume
quantification using MRI. We conclude that chest MRI is a
valid radiation-free alternative to CT to assess lung volume in
large cohort studies.
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