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Metabolic control of PPAR activity by
aldehyde dehydrogenase regulates invasive
cell behavior and predicts survival in
hepatocellular and renal clear cell
carcinoma
Diana Andrejeva1, Jan-Michael Kugler1*, Hung Thanh Nguyen1, Anders Malmendal1, Mette Lind Holm2,
Birgitte Groenkaer Toft3, Anand C. Loya3 and Stephen M. Cohen1*

Abstract

Background: Changes in cellular metabolism are now recognized as potential drivers of cancer development,
rather than as secondary consequences of disease. Here, we explore the mechanism by which metabolic changes
dependent on aldehyde dehydrogenase impact cancer development.

Methods: ALDH7A1 was identified as a potential cancer gene using a Drosophila in vivo metastasis model. The role
of the human ortholog was examined using RNA interference in cell-based assays of cell migration and invasion.
1H-NMR metabolite profiling was used to identify metabolic changes in ALDH7A1-depleted cells. Publically available
cancer gene expression data was interrogated to identify a gene-expression signature associated with depletion of
ALDH7A1. Computational pathway and gene set enrichment analysis was used to identify signaling pathways and
cellular processes that were correlated with reduced ALDH7A1 expression in cancer. A variety of statistical tests
used to evaluate these analyses are described in detail in the methods section. Immunohistochemistry was used to
assess ALDH7A1 expression in tissue samples from cancer patients.

Results: Depletion of ALDH7A1 increased cellular migration and invasiveness in vitro. Depletion of ALDH7A1 led to
reduced levels of metabolites identified as ligands for Peroxisome proliferator-activated receptor (PPARα). Analysis
of publically available cancer gene expression data revealed that ALDH7A1 mRNA levels were reduced in many
human cancers, and that this correlated with poor survival in kidney and liver cancer patients. Using pathway and
gene set enrichment analysis, we establish a correlation between low ALDH7A1 levels, reduced PPAR signaling and
reduced patient survival. Metabolic profiling showed that endogenous PPARα ligands were reduced in ALDH7A1-
depleted
cells. ALDH7A1-depletion led to reduced PPAR transcriptional activity. Treatment with a PPARα agonist restored
normal cellular behavior. Low ALDH7A1 protein levels correlated with poor clinical outcome in hepatocellular and
renal clear cell carcinoma patients.

Conclusions: We provide evidence that low ALDH7A1 expression is a useful prognostic marker of poor clinical
outcome for hepatocellular and renal clear cell carcinomas and hypothesize that patients with low ALDH7A1 might
benefit from therapeutic approaches addressing PPARα activity.
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Background
A growing body of evidence links changes in metabolism to
cancer [1, 2]. In addition to the well-known shift of cancer
cells to aerobic glycolysis, mutations or changes in the ex-
pression of metabolic enzymes have been identified as po-
tential cancer drivers. Mutations and/or altered expression
of metabolic enzymes such as succinate dehydrogenase,
pyruvate kinase and isocitrate dehydrogenase are linked to
tumor initiation, development and drug resistance [3–6].
Changes in metabolite levels can affect expression profiles,
epigenetic marks and chromatin organization in cancer,
with resulting changes in cellular phenotypes, metastatic
potential, as well as on the tumor microenvironment [7].
The human ALDH family comprises 19 enzymes that

catalyze NAD(P)+ dependent oxidation of aldehydes to
their corresponding carboxylic acids and NAD(P)H [8].
Notably, ALDH1 is thought to be oncogenic in breast
cancer. Cells with high ALDH1 activity have been linked
to poor outcome in some cancers [9, 10], albeit not in
others [11, 12]. Evidence of the roles of other ALDH iso-
forms in cancer remains equivocal.
In this study, we provide evidence for a role of ALDH

isoform 7A1 (ALDH7A1) in human cancer, and link this
to regulation of PPAR activity. PPARs (Peroxisome
proliferator-activated receptors) are ligand-activated tran-
scription factors, regulated by cellular metabolites [13, 14].
Metabolite-regulated control of PPAR activity contributes
to cellular homeostasis through feedback regulation on
the expression on enzymes involved in glucose, amino
acid and lipid metabolism [15]. Metabolic profiling
showed that ALDH7A1-depletion reduced the levels of
metabolites that serve as activating ligands for PPARs.
Analysis of cancer RNAseq data from TCGA showed that
low ALDH7A1 mRNA levels correlate with a low PPAR
activity signature, and with poor survival prognosis in pa-
tients with hepatocellular carcinoma and renal clear cell car-
cinoma. Importantly, the cellular phenotypes associated with
ALDH7A1-depletion, increased migration and invasiveness,
were corrected by restoring PPAR activity. We hypothesize
that metabolic changes resulting from low ALDH7A1 ex-
pression may be linked to clinical outcome through their ef-
fects on PPAR activity. PPARs are pharmaceutical targets for
metabolic disorders including diabetes, dyslipidemia, obesity,
chronic inflammation and atherosclerosis [16, 17]. Immuno-
histochemical staining of clinical samples suggests that low
ALDH7A1 expression may be a useful prognostic marker of
poor clinical outcome for hepatocellular and renal clear cell
carcinomas. Our findings suggest a route to identifying can-
cer patients who might benefit from PPAR agonist therapy.

Methods
Cells
Primary BJ cells were originally obtained from ATCC
(Cat# ATCC® CRL-2522™). hTert-expressing BJ cells were

engineered to express p53 and p16 shRNAs (4F3). These
genetic modifications enable cells to migrate and invade
well in migration and invasion assays. Cells were expanded
to passage 5, and frozen. All subsequent experiments were
performed using this parental polyclonal 4F3 cell line. BJ
cells were tested for mycoplasma every 6months and ex-
amined for consistent phenotype and behavior on an on-
going basis. Information on the other cell lines used in this
study is provided in Additional file 1: Figure S7.

Viral transduction
Lentivirus particles were produced by calcium phosphate
transfection of 293 T cells and harvested after 24 h–48 h
using standard procedures. One to two passages after thaw-
ing, BJ-4F3, HUH7, CAKI2 cells were transduced with
control shRNAs (Sigma: SHC001 as empty vector, SHC002
as non-targeting shRNA control) or ALDH7A1-specific
shRNAs (Sigma: TRCN0000028424 (sh1) and TRCN
0000028447 (sh2)) for 24 h, allowed to recover for 24 h, and
placed under puromycin selection (2 μg/ml) for 6 days. Ex-
periments were performed within the next 10 passages. All
experiments were performed at least 3 times with inde-
pendently transduced cells. Knockdown efficiency was
assessed by quantitative RT-PCR (qPCR) (forward primer:
CATGGCGTGAGTGAAGGAC, reverse primer: CAGG
GCAATAGGTCGTAATAACC), and/or by immunoblot-
ting of cell extracts using rabbit anti-ALDH7A1 (Sigma:
HPA023296).

Quantitative qPCR
Total RNA was isolated with the “RNeasy Plus Mini Kit”
following the manufacturer’s instructions. After DNase
treatment (RQ1 RNase-Free DNase; Promega) a cDNA
was synthesed using a SuperScript™ III First-Strand Syn-
thesis System (Invitrogen) using 0.5–1 μg of total RNA.
qPCR was carried out on a QuantStudio 6 Flex Real-Time
PCR System (Applied Biosystems) using HOT FIREPol®
EvaGreen® qPCR Mix Plus (ROX) (SOLIS BIODYNE).
Total RNA from each sample was normalized to
β-ACTIN, KIF and TBP for the BJ and HUH7 cell line or
KIF in the case of CAKI2 cell line. Significance was
determined using the Mann–Whitney U test after adjust-
ing for False Discovery Rate. The following primers were
used: CYP27A1 (forward primer: GGTGCTTTACAA
GGCCAAGTA, reverse primer: TCCCGGTGCTCCTT
CCATAG), FABP3 (forward primer: TGGAGTTCG
ATGAGACAACAGC, reverse primer: CTCTTGCCCGT
CCCATTTCTG), ACSL1 (forward primer: CTTATGG
GCTTCGGAGCTTTT, reverse primer: CAAGTAGTG
CGGATCTTCGTG), CPT2 (forward primer: CTGGAGC
CAGAAGTGTTCCAC, reverse primer: AGGCACAAA
GCGTATGAGTCT), ACOX1 (forward primer: ACTCGC
AGCCAGCGTTATG, reverse primer: AGGGTCAGC
GATGCCAAAC), FADS2 (forward primer: AATCAGC
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AGGGGTTTCAAGA, reverse primer: GGCACTACG
CTGGAGAAGAT), APOA1 (forward primer: TTGCTG
AAGGTGGAGGTCAC, reverse primer: TGGATGTGC
TCAAAGACAGC), β-ACTIN (forward primer: GATG
CGTAGCATTTGCTGCATGG, reverse primer: TGAG
GCTAGCATGAGGTGTGTG), TBP (forward primer:
CGCCGAATATAATCCCAAGC, reverse primer: TCCT
GTGCACACCATTTTCC), KIF (forward primer: TTGC
CTCCTTTGGCAACATTCG, reverse primer: ACAC
AGCACCAATACCCATGATAC).
BJ cells were treated with PPARα agonist (Ciprofi-

brate) or DMSO as a control. Cells were collected for
RNA extraction and qPCR as described above. β-ACTIN
was used as normalization control. Friedman rank sum
test with pairwise post-hoc test for multiple comparisons
with “holms” adjustment was used to calculate p-values
between groups with and without Ciprofibrate treatment.

Cell culture
Unless specifically mentioned, all cell lines were cultured in
high glucose DMEM (Dulbecco’s Modified Eagle Medium;
Sigma-Aldrich) with 10% Fetal Calf Serum (Sigma) and 1%
Penicillin-Streptomycin (Sigma), 1% GlutaMAX™-I (Gibco)
and 1% pyruvate. Cells were cultured at 37 °C in a humidi-
fied environment containing 5% CO2.

Phenotypic assays
Cell proliferation assays were performed by plating
BJ-4F3 cells at a density of 2 × 104 cells/cm2 in triplicate
wells. Cells were grown for 3, 24, 48, 72 or 96 h and then
fixed with 4% formaldehyde (Sigma-Aldrich). The num-
ber of DAPI-stained nuclei was counted in representa-
tive images of each well, at each time point. Data are
presented as the fold change in cell number over time
(± standard error of the mean).
Wound healing assays were performed by plating trans-

duced BJ-4F3 cells (at 4 × 104 cells/cm2), HUH7 cells (7 ×
104 cells/cm2) and CAKI2 cells (5 × 104 cells/cm2). Cells
were allowed to form a monolayer for 24 h. A stripe
was cleared by dragging a pipet tip across the surface of
the plate, and the culture medium was changed to wash
away floating cells. The initial state was recorded by
taking 2–4 images at defined places (4x magnification;
t = 0). Cells were allowed to migrate for 24 h and im-
ages were taken of the same regions. The area devoid of
cells was measured and the average migrated distance
calculated.
Invasive migration assays (transwell) were performed

using transduced BJ-4F3 cells, that had been serum-starved
for 24 h. Matrigel invasion chambers with 8.0 μm Polyethyl-
ene Terephthalate membranes were used according to
manufacturer’s protocol (Fisher Scientific, #11553570).
Complete DMEM supplemented with 20% FCS was used
as attractant at the bottom of the well. 5 × 104 cells were

seeded on top of the Matrigel in serum-free complete
DMEM. After 24 h the chamber was washed once with
PBS and cells were fixed with 4% formaldehyde. Nuclei
were stained with DAPI and counted to determine the
number of cells in the upper invasion chamber. The in-
side of the chamber was then cleared and the cells that
had migrated through the gel were counted. Ten pic-
tures were taken per chamber at 10x magnification.
The total number of cells in the invasion chamber was
used for normalization. Cell number and migrated dis-
tance were measured with ImageJ Fiji software.
Cells were treated with Ciprofibrate, GW501516, or

Rosiglitazone at the concentration indicated in the fig-
ures at t = 0 of the scratch assay, and at seeding time in
the invasion assays (both chambers).

TCGA data
The publicly available RNA sequencing data and clinical
information was downloaded from The Broad Institute
TCGA GDAC Firehose on 08.08.2016, release version
2016_01_28. (https://portal.gdc.cancer.gov/) (http://fire
browse.org/). Normalized (RNA-seq expectation by ma-
ximization) data was used. Patient follow up information
was downloaded from https://portal.gdc.cancer.gov/ using
R package “TCGAbiolinks” on 01.12.2016 [18]. For
Additional file 1: Figure S4, RNA sequencing data were
downloaded from TCGA (version 8.0) (https://portal.gdc.-
cancer.gov/), using “TCGAbiolinks”. Upper quartile nor-
malized fragments per Kilobase of transcript per million
mapped reads data was used. Reverse phase protein array
data were downloaded from http://tcpaportal.org/tcpa/ on
12.10.2017.

Expression, correlation and survival analysis
Statistical analysis was performed using R Software. For
mRNA expression, significance was determined using
the Mann–Whitney U test. To calculate comparison be-
tween multiple groups, pairwise Wilcoxon test with Bon-
ferroni correction for multiple testing was applied. For
overall survival analysis, cancer patients were divided into
three equally sized groups based on ALDH7A1 mRNA ex-
pression levels (low, middle, high). Cox proportion hazard
regression models were used to calculate p-values between
groups.
For Additional file 1: Figure S4 patients were divided

into two equally sized groups based on ALDH7A1 ex-
pression, EGFR expression and sum of scaled and cen-
tered relative protein levels EGFR_pY1068 (CST; 2234),
EGFR_pY1173 (Abcam; ab32578). Hazard Ratio for low
ALDH7A1 expression and associated p-value was calcu-
lated in EGFR low and high groups separately. For correl-
ation analysis Spearman coefficients and corresponding
p-values were calculated between ALDH7A1 RNA
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expression and EGFR RNA expression, and the sum of
scaled and centered phosphorylated EGFR protein levels.

Pathway and gene set enrichment analysis
The R/bioconductor package limma [19] was used to
identify genes differentially expressed between the top
and bottom third ALDH7A1 expression groups. Data
were filtered using RSEM > 10 in at least in 33% of
samples to reduce noise from low expressed transcripts.
Genes with log2-fold change +/− 0.4 with adjusted
p-value threshold < 0.05 were defined as differentially
expressed between groups. All genes not eliminated by
filtering were used to define the “gene universe” for
pathway enrichment analysis.
The following algorithm packages were used for analysis:

SPIA [20], CEPA [21], GRAPHITE [22], PIANO [23],
GAGE [24], ESEA [25]. The following databases were
employed: REACTOME (http://reactome.org/), BIOCARTA
(http://www.biocarta.com/), please note that the biocarta
server is not available anymore. NCI (http://www.ndex-
bio.org/#/), KEGG (http://www.genome.jp/kegg/) [26, 27],
MSigDB (http://software.broadinstitute.org/gsea/index.jsp)
(H: hallmark gene sets, CP:BIOCARTA: BioCarta gene sets,
CP:KEGG: KEGG gene sets, CP:REACTOME: Reactome
gene sets). Unless otherwise specified pathway databases in-
cluded in these packages were used. For SPIA analysis path-
ways were downloaded directly from KEGG. For GAGE and
PIANO, annotation sets were downloaded from the Mo-
lecular Signatures Database v5.2 (http://software.broadinsti-
tute.org/gsea/msigdb).
After SPIA analysis with the KEGG annotation data-

base, pathways and biological processes most likely to be
affected were selected after filtering results by criteria -
pG < 0.05, NDE > 3. pG represents the combined p-value
from gene enrichment and probability of perturbation
accumulation in the pathway and NDE represents differ-
entially expressed genes per pathways. The same criteria
were applied for Graphite “runSpia” analysis with the
Reactome, Biocarta and NCI annotation databases. For
Piano gene set enrichment analysis, an adjusted p-value
of < 0.05 for up and down regulated gene sets was set as
filtering criterion. Minimum and maximum number of
genes per set was defined as 3 and number of DE/5.
Piano analysis was run using MSigDB “Hallmark gene
sets” (h.all.v5) and “CP:BIOCARTA: BioCarta gene sets”,
“CP:KEGG: KEGG gene sets”, “CP:REACTOME: Reac-
tome gene sets” annotation sets. In case of CEPA pathway
analysis, affected pathways were selected if 3 out of 6
(equal.weight, in.degree, out.degree, betweenness, in.reach,
out.reach) statistics were p-value < 0.05 for all annotation
databases used. For GAGE analysis log2-fold change for all
genes after filtering were used and a p-value < 0.05 was set
as filtering criterion for the results. For ESEA analysis, the
expression matrix of all genes after filtering was used.

NOM p-value was used as significant criterion for Gain-
of-correlation and Loss-of-correlation result filtering. Af-
fected pathways and biological processes that were not
detected at least by 2 different methods with the same an-
notation database were filtered out. Only changes that oc-
curred in both LIHC and KIRC patients with low
ALDH7A1 expression were kept. KEGG pathway maps
were rendered with “Pathview” [28].

1H NMR spectrometry
Twelve control and twelve ALDH7A1-depleted cell sam-
ples from 3 independently transduced polyclonal cell
lines were analyzed in duplicate. Samples were extracted
in chloroform-methanol-water [29]. The aqueous super-
natant was lyophilized and stored at − 80 °C. Immedi-
ately before measurement, samples were rehydrated in
200 μl of 50 mM phosphate buffer (pH 7.4) in D2O, and
180 μl was transferred to a 3 mm NMR tube. The buffer
contained the chemical shift reference 3-(trimethylsilyl)-
propionic acid-D4, sodium salt and NaN3.
NMR measurements were performed at 25 °C on a

Bruker Avance III HD 800 spectrometer, operating at a
1H frequency of 799.87MHz, equipped with a 3 mm TCI
cold probe. 1H NMR spectra were acquired using a
single-90°-pulse experiment with a Carr-Purcell-Meiboom-
Gill (CPMG) delay added, in order to attenuate broad sig-
nals from high-molecular-weight components. The total
CPMG delay was 194ms and the spin-echo delay was 4ms.
The water signal was suppressed by excitation sculpting. A
total of 128 transients of 32 K data points spanning a spec-
tral width of 20 ppm were collected, corresponding to a
total experimental time of 6.5min. The spectra were proc-
essed using iNMR (http://www.inmr.net). An exponential
line-broadening of 0.5 Hz was applied to the free-induction
decay prior to Fourier transformation. Spectra were refer-
enced to the TSP signal at − 0.017 ppm, automatically
phased and baseline corrected.
Drifting baseline of NMR spectra was corrected using

the “rollingBall” algorithm. Spectra from BJ-4F3 cells were
normalized against total intensity by dividing each inten-
sity value by the sum of all intensity values. This method
was chosen since total concentration of metabolites
should be comparable across all samples. However, in our
case spectra contained large peaks with significant vari-
ation between control and ALDH7A1 down-regulated
cells, which could drastically affect total intensity
values. Therefore, spectra were normalized against total
intensity of a spectral region (above 4) that does not
contain large peaks with significant variation. The
“CluPA” algorithm was used to align peaks. Baseline
correction, normalization and peak alignment was done
using R package “ChemoSpec” (https://cran.r-project.
org/web/packages/ChemoSpec/). Principal Component
Analysis with “pareto” scaling was performed using R
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package “muma” [30]. One sample was excluded from
analysis due to technical problems. Two samples were
defined as outliers in the PCA analysis and were there-
fore also excluded.
To identify metabolites that are changed in

ALDH7A1 depleted cells, the intensity values for sig-
nals above the baseline threshold defined as mean +
1SD of all intensity signals were compered. Non-para-
metric pairwise Wilcoxon-Mann Whitney U test with
Benjamini-Hochberg correction for multiple testing
was used to calculated p-values.
In the case of HUH7 and CAKI2 cells, 1H NMR spec-

tra were processed and analyzed as above with minor
adjustments. Six control and six ALDH7A1-depleted cell
samples from 3 independently transduced cell lines were
analyzed. Spectra were normalized against total intensity
of a spectral region (above 1.5). “CluPA” algorithm was
used to align peaks. “Rolling ball” algorithm (span – 50)
was applied to correct shifting baseline. Baseline correc-
tion, data binning (bin = 4), normalization and peak
alignment was done using R package “ChemoSpec”.

Gene expression clustering
PPAR transcriptional targets were selected from KEGG
database (http://www.genome.jp/kegg-bin/show_pathway?
hsa03320). Low expressed genes were filtered out. Un-
supervised hierarchical clustering analysis was applied to
cluster LIHC and KIRC patient normal and tumor tissues
into groups based on median centered log2 PPAR target
gene expression values. Control and tumor samples were
clustered separately.

Immunohistochemistry
Liver and kidney cancer arrays presenting tumors and ad-
jacent normal tissue biopsy samples were obtained from
US Biomax (Rockville, MD, USA; HLiv-HCC180Sur-02,
HLiv-HCC180Sur-03 and HKid-CRC180Sur-01). Add-
itionally, 72 archival patient samples from the pathology
department, Rigshospitalet Copenhagen were examined.
Ethical approval was obtained from the Danish National
Committee on Biomedical Research Ethics. Immuno-
staining was performed using rabbit anti-ALDH7A1
(Sigma: HPA023296) [31] and the streptavidin–biotin
peroxidase complex method according to the manufac-
turer’s instructions (UltraVision HRP DAB system,
Thermo). Sections were examined by an experienced
pathologist to confirm the tissue identity and assigned
a score: 0 (no staining), 1 (weak staining up to 10% of
tissue), 2 (weak staining 10–25% of tissue), 3 (weak to
moderate staining ≥50% of tissue), 4 (moderate to
strong staining of 50–75% of tissue) and 5 (moderate to
strong staining > 75% of tissue). The score for each
tumor was calculated by subtracting the score of the
normal tissue from that of that tumor.

Multivariate regression analysis
Patients with complete set of information on survival time,
status, stage and ALDH7A1 regulation were included in
the study. Hepatocellular carcinoma patients with stage
I (7) and stage IV (3) disease were excluded from multi-
variate analysis due to small sample size. We also ex-
cluded patients with hepatic cirrhosis. All covariates
were tested for the proportional hazards assumption,
and the multivariate Cox proportional hazards regres-
sion models were created using R package “Survival”
(https://cran.r-project.org/package=survival). Different
models were compered by Likelihood ratio test and
chi-square test. A forest plot was produced from the
regression model with R package “forestmodel” (https://
cran.r-project.org/web/packages/forestmodel). Likelihood
ratio test were used to calculate p-values for the Kaplan
Meier plots.

Results
ALDH7A1 depletion promotes invasive cell migration
Using an in vivo Drosophila tumor model, we identified an
aldehyde dehydrogenase as a potential tumor suppressor
that cooperated with EGFR (Additional file 1: Figure S1).
ALDH7A1 is the presumptive human orthologue of the
Drosophila enzyme (www.flybase.org). To investigate the
role of ALDH7A1 in human cells, we first made use of par-
tially transformed primary human BJ cells, which serve as a
model for oncogene-dependent cellular transformation [32].
These cells have the advantage of a defined genetic back-
ground, free of the diverse mutational backgrounds and se-
lection pressures associated with established cancer cell
lines, but they show the increased migratory and invasive
and anchorage-independent growth behaviors associated
with cancer cells. BJ cells were stably transduced to express
shRNAs targeting ALDH7A1. Depletion of ALDH7A1 was
efficient using two independent shRNAs (Fig. 1a). This had
little or no effect on cell proliferation (Fig. 1b), but
ALDH7A1-depleted cells showed a significant increase in
migration using an in vitro wound healing ‘scratch’ assay
(Fig. 1c). ALDH7A1-depleted cells also showed an increase
in invasiveness using a Matrigel trans-well invasion assay
(Fig. 1d). These changes in cell behavior prompted us to
examine ALDH7A1 levels in human cancer.

ALDH7A1 mRNA levels correlate with clinical outcome in
liver and kidney cancer
Expression data was examined for 17 human cancer
types from the TCGA database. ALDH7A1 mRNA was
significantly lower in tumors from 7 cancers compared
to normal tissue controls (Additional file 1: Figure S2).
To ask if low ALDH7A1 mRNA expression correlated
with clinical features, the patient population for each
tumor type was subdivided into lower, middle and top
thirds based on ALDH7A1 mRNA level. A significant
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reduction in overall survival was observed in the low ex-
pressing patient cohorts for hepatocellular carcinoma
(LIHC, Fig. 2a, c) and for renal clear cell carcinoma
(KIRC, Fig. 2b, d), but not for the other cancers (Add-
itional file 1: Figure S2). ALDH7A1 levels were signifi-
cantly lower in LIHC tumors of more advanced stage and
histological grade (Fig. 2e, g). Within early and late stage
groups, patients with low ALDH7A1 expression showed
worse survival outcome: 5-year survival probability for the
patients with late stage cancer and high ALDH7A1 ex-
pression was ~ 40% vs ~ 20% for patients with low
ALDH7A1 (Fig. 2i). Similar results were obtained for
KIRC, with low ALDH7A1 expression linked to poor sur-
vival for both early and advanced stage patients (Fig. 2j),
although there was no significant difference in ALDH7A1
levels between the early and more advance stage or grade
kidney cancer patients (Fig. 2f, h).
To ask how ALDH7A1 levels correlate with EGFR ac-

tivity in these cancers, we used reverse-phase protein
array data on EGFR phosphorylation, which provides a
measure of EGFR pathway activation in the tumors.

ALDH7A1 expression positively correlated with EGFR
phosphorylation status in LIHC, but not KIRC. We per-
formed Cox proportional hazards regression analysis to
assess the association between ALDH7A1 mRNA and
EGFR levels (Additional file 1: Figure S2). For LIHC,
survival was significantly worse for patients with low
ALDH7A1 in the high EGFR activity group, while it was
not significant in low EGFR group. This was not the case
for KIRC: low ALDH7A1 expression was significantly as-
sociated with poor clinical outcome in both low and
high EGFR RNA expression groups. These findings sug-
gest that the effect of low ALDH7A1 is closely linked
with EGFR activity in liver cancer, but not in kidney can-
cer. Overall, these findings suggest that low ALDH7A1
expression might be a useful independent predictor of
clinical outcome in liver and kidney cancers.

Pathway and gene set enrichment analysis of LIHC and
KIRC patients with low ALDH7A1
To generate hypotheses about possible causes of the
poor outcome in the low-ALDH7A1 LIHC and KIRC

Fig. 1 Behavior of ALDH7A1-depleted cells. a Immunoblot of BJ-4F3 cells transduced to express two independent shRNAs targeting ALDH7A1
mRNA (sh-1 and sh-2). Control 1 (C-1) indicates cells transduced with the empty vector. Control 2 (C-2) expressed a non-targeting shRNA. The blot was
probed with anti-ALDH7A1. Anti-ACTIN was used as loading control. b Proliferation of BJ-4F3 cells treated as in (a). Cell number was measured by
counting DAPI labeled nuclei. X-axis: time in hours, y-axis: relative cell number. Data represent average ± standard error of the mean (SEM) from 3
independent experiments normalized against number of plated cells. ns: the difference was not statistically significant. The two-tailed Mann Whitney test
was used to calculate p-values. c Scratch assays to measure cell migration. Images show cells at t = 0 and 24 h. The empty area is shaded red for better
visibility. Scale bar: 1000 μm. Average migration distance is shown in μm after 24 h for three independent experiments ± SEM in the panel below. The two-
tailed Mann Whitney test was used to calculate p-values. d Matrigel transwell migration assay to measure cell invasiveness. Images show cells labeled with
DAPI. Left panels show all cells on the top and bottom surface of the assay well after 24 h. Right panels show cells that successfully migrated through the
matrix, which was removed for imaging. The percent of cells that crossed the gel barrier is shown below (average of 3 independent experiments ± SEM).
The two-tailed Mann Whitney test was used to calculate p-values
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patient groups, we analyzed TCGA gene expression data
and performed pathway analysis to compare tumors
from the patient groups with top versus bottom third
ALDH7A1 expression. Multiple reference databases and
analytical tools were applied, since no accepted standard
exists for this field at this time [33, 34]. These are sum-
marized in Fig. 3(a). After filtering, we focused on
changes that were found in both the LIHC and KIRC
tumor comparisons and that were captured by at least
two algorithms (Fig. 3b, Additional file 1: Figure S3A).
Pathways and gene sets associated with extracellular
matrix, cell adhesion and epithelial-mesenchymal transi-
tion were upregulated in the low-ALDH7A1 tumors
(Fig. 3b). This was intriguing in light of the changes in
cell migration and invasion that resulted from depletion
of ALDH7A1. Many pathways and gene sets involved in
cellular metabolism were downregulated in the low-
ALDH7A1 tumors. These included energy metabolism,
amino acid metabolism, lipid and fatty acid metabolism
and bile salt metabolism. This analysis also showed a sig-
nificant correlation between low ALDH7A1 expression
and lower PPAR signaling activity. This was noteworthy
because PPARs are transcription factors that regulate
cellular metabolism. Figure 3(c) illustrates changes in
the expression levels of genes regulated by PPAR iso-
forms in the LIHC data set. The corresponding data for
KIRC and data for other pathways are provided in

Additional file 1: Figure S3B. If this relationship is
causal, ALDH7A1 activity levels could act via PPARs to
affect a number of metabolic pathways and cellular
phenotypes.

Metabolic profiling
As an independent approach to explore the impact of
ALDH7A1-depletion, metabolic profiling was performed
on aqueous extracts from control and ALDH7A1-depleted
primary BJ cells using high-resolution 1H NMR spectros-
copy. Metabolite spectra were normalized, peaks aligned
and unsupervised principal component analysis was per-
formed to assess variation between the control and
ALDH7A1-depleted cells. This analysis showed a clear sep-
aration between control cells and the cells depleted of
ALDH7A1, indicating major differences in metabolite com-
position (Fig. 4a). Figure 4(b) shows a volcano plot of log2--
fold change vs. odds ratio (−log10(adj.p.value)) for all
spectral points above background, to visualize the distri-
bution and magnitude of significant changes in metab-
olite composition.
Twenty-six endogenous metabolites were identified by

comparing chemical shifts to reference libraries [35, 36].
Eighteen of these were significantly different between
control and ALDH7A1-depleted cells, with adjusted
p-value < 0.001 and log2-fold changes +/− 0.5 (Fig. 4c).
ALDH7A1-depletion led to increased levels of several

Fig. 2 ALDH7A1 mRNA levels in liver (LIHC) and kidney (KIRC) cancer. a, b ALDH7A1 mRNA levels in normal (control) and tumor tissue from the
LIHC and KIRC TCGA datasets. RSEM (RNA-seq expectation by maximization) reads are plotted on the Y-axis. P-values were calculated with the
Mann–Whitney U test. c, d Kaplan-Meier plots showing overall survival of LIHC and KIRC patients as a function of ALDH7A1 mRNA expression.
Patients were divided into three equal groups based on ALDH7A1 mRNA expression levels. Blue = lower 1/3; Black = middle 1/3; red = top 1/3.
P-values were determined by Cox proportion hazard regression models. e-h ALDH7A1 mRNA levels as a function of tumor stage (e, f) and
grade (g, h) for LIHC and KIRC patients. The two-tailed Mann Whitney test was used to calculate p-values. i, j Kaplan-Meier plots showing
overall survival of LIHC and KIRC patients as a function of ALDH7A1 mRNA expression and stage. Patients were divided into early (stage I and II) and late
(stage III and IV) stage groups. Each group was divided into two subgroups based on ALDH7A1 expression (at median). Significance was determined using
the likelihood ratio test
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amino acids, fatty acids and glucose, while NAD, ATP
and lactate levels were lower (Fig. 4c). These changes are
consistent with the pathway analysis in Fig. 3, indicating
reduced degradation of branched chain amino acids and
lysine, as well as changes in energy metabolism. Some of
these pathways are regulated by PPAR signaling [15].
We also observed a decrease in glycerolphosphocholine

(GPC) and phosphocholine (PC) levels in the
ALDH7A1-depleted cells (Fig. 4d). Isoforms of GPC
have been identified as activating ligands for PPARα
[13, 14]. Metabolite analysis was also carried out on the
liver carcinoma cell line HUH7 and on CAKI2 kidney
cancer cells (Additional file 1: Figure S4). As in the pri-
mary cells, lactate levels decreased and glucose levels

Fig. 3 Pathway and gene set enrichment analysis. a Workflow of pathway and gene set enrichment analysis between ALDH7A1 high and low
expression groups of LIHC and KIRC patients. Low expressed genes were filtered out by requiring RSEM > 10 in > 33% of patients. Genes differentially
expressed between the low and high ALDH7A1 mRNA tumor groups were selected using a minimum threshold of +/− 0.4 log2-fold change, with an
adjusted p-value of < 0.05. Fold change and p-values were used according to requirements of each specific method. Six different R packages (ESEA,
GRAPHITE, SPIA, CEPA, PIANO and GAGE) were applied to the Reactome, BioCarta, NCI and KEGG pathway databases and the MsigDB gene set
annotation collections, as indicated. b Summary of significantly affected pathways and biological processes after filtering. ↓ - pathway inactivated /down
regulated; ↑ pathway activated /up regulated, ↕ - direction not provided. Light blue – amino acid metabolism; bright red – PPAR signaling pathway; light
violet – energy metabolism; dark red – bile acid metabolism; light green – lipid, fatty acid metabolism; light orange - processes related to cell motility.
c Map of the PPAR signaling pathway from the KEGG database, showing genes that were differentially expressed in LIHC tumors with low ALDH7A1
expression. Scale – log2FC; Blue: lower expression in tumors. Red: higher expression in tumors. Image rendered by Pathview [28]
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increased after ALDH7A1-depletion in both cell lines.
GPC, PC and choline levels were also reduced in HUH7
cells (PC and GPC were not at detectable levels in the
CAKI2 cells). Together with the data in Fig. 3, these ob-
servations suggested a link between PPAR activity and
ALDH7A1-depletion.

PPAR activity in LIHC and KIRC
To test the hypothesis that ALDH7A1-depletion might
act via PPAR activity, we examined the expression of
PPAR targets in ALDH7A1-depleted cells. Figure 5(a)
shows that the expression of several known PPAR target
genes was reduced following ALDH7A1-depletion in pri-
mary BJ cells (Fig. 5a). Next we examined PPAR tran-
scriptional activity in the LIHC and KIRC TCGA
datasets. If the effects of low ALDH7A1 activity are me-
diated though regulation of PPAR activity, we should
find a corresponding correlation between PPAR tran-
scriptional activity and survival outcome in patient data-
sets. Tumors and control samples were clustered into

groups based on expression of annotated PPAR targets
(KEGG map version 6/3/16). PPAR target expression
varied significantly among liver and kidney cancer pa-
tients. One group showed expression signatures resem-
bling control samples for both tumor types (Fig. 5b, c,
‘normal-like’). A second group showed a ‘low activity’
signature, consisting of reduced expression of the PPAR
targets that were high in the controls and reciprocally
increases in some low-expressed targets (PPARs can
regulate transcriptional activity positively as well as
negatively). A third group showed intermediate expression
levels. Patients with the low PPAR activity profile had
lower survival in both tumor types (Fig. 5d, e). For LIHC
patients the survival difference between the normal-like
and low PPAR groups was significant (p = 0.006). For
KIRC patients, the range of survival outcomes was larger,
and all pairwise combinations were significantly different.
These results indicate that PPAR signaling activity can
predict poor clinical outcome, suggesting the importance
of this pathway in aggressive liver and kidney cancers.

Fig. 4 Metabolite profile of control and ALDH7A1-depleted primary cells. a Principal component analysis score plot with pareto scaling. First and
second component scores were plotted. Blue dots show control cells (C1 and C2). Red dots show ALDH7A1-depleted cells (sh1 and sh2). The first
PCA component accounted for 77% of the variation and significantly discriminated between control and ALDH7A1-depleted cells. b Volcano plot
of significance versus log2-fold change of all intensity points of the spectra above background. The x axis shows log2FC between control and
ALDH7A1-depleted cells of all intensity points, while the y axis shows the odds ratio (−log10(adjusted p-value)). Significantly increased and decreased
spectral points are shown in red and blue, respectively. Adjusted p-value threshold < 0.001, log2FC +/− 0.5. c 1H NMR spectra. Average spectra of all
control (blue) and ALDH7A1-depleted cell samples (red). All assigned metabolite signals are indicated. Significantly upregulated metabolites appear as
red. Significantly down-regulated metabolites appear as blue. Overlap, indicating no change, appears black. d Detail showing region (3.15–3.25)
containing the identified phosphocholine and glycerophosphocholine signals
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Interestingly, the low PPAR activity group also showed
significantly lower expression ALDH7A1 (Fig. 5f, g).
This observation supports the hypothesis that the meta-
bolic consequences of low ALDH7A1 activity are a sig-
nificant cause of the low PPAR activity in these tumors.
To further investigate this correlation, we examined the

5 cancer types with lower ALDH7A1 expression, that did
not show worse survival outcome (Additional file 1:
Figure S5). None of the 5 showed a correlation between
low PPAR activity and low ALDH7A1 expression, and
there was no decrease in overall survival probability
compared to the “normal-like” PPAR group for 4 of
them. Thus, low ALDH7A1 expression does not seem
to be causally linked to low PPAR activity in other can-
cers. Nor does low PPAR activity always correlate with
low survival in other cancers. The three-way correlation
between ALDH7A1 expression, PPAR activity and clin-
ical outcome appears to be a feature of kidney and liver
cancers, but not other cancer types.

Activation of PPARs rescues ALDH7A1-depleted cell
phenotypes
If the invasive and migration phenotypes observed in
ALDH7A1-depleted cells are due to reduced activation

of PPARs, we reasoned that restoring PPAR activity by
treating cells with activating ligands should result in
more normal cell behavior. The PPARα agonist Ciprofi-
brate lowered the migration of ALDH7A1-depleted BJ
cells while having little effect on the migration of control
cells in the scratch assay (Fig. 6a). Treatment with the
PPARα agonist Ciprofibrate did not affect the level of
ALDH7A1 protein in these cells, but Ciprofibrate treat-
ment was effective in restoring PPAR target gene expres-
sion in ALDH7A1-depleted cells to a level comparable
to the control cells (Additional file 1: Figure S6). The
PPARβ agonist GW501516 also restored migration to
near normal levels, while the PPARγ agonist Rosiglita-
zone did not (Additional file 1: Figure S6). To extend
these results, we tested ALDH7A1-depletion in several
cancer cell lines (Additional file 1: Figure S7). Among
those, HUH7 and CAKI2 showed reduced expression of
PPAR targets after ALDH7A1-depletion. The PPARα
agonist also normalized the migration of the ALDH7A1-
depleted HUH7 and CAKI2 cells in the scratch assay
(Fig. 6b, c). BJ cells treated with the PPARα agonist
showed a decrease in transwell invasive migration, to-
ward that seen in the control cells (Fig. 6d); the PPARβ
agonist GW501516 did not (Additional file 1: Figure S6).

Fig. 5 Correlation between PPAR signaling, ALDH7A1 levels and patient survival in LIHC and KIRC. a qPCR of PPAR transcriptional targets. Light
grey – control BJ cells transduced with the empty vector and non-targeting shRNA, accordingly. Blue – ALDH7A1-depleted cells transduced with
two independent shRNAs (sh-1 and sh-2). Data represent average ± standard error of the mean (SEM) from 3 independent experiments normalized
β-ACTIN, KIF and TBP. The two-tailed Mann Whitney test with adjustment for False Discovery Rate was used to calculate p-values. b-c Heatmaps of median
centered log2 RSEM expression values of PPAR target genes (selected from KEGG, version 6/3/16) for LIHC (b) and KIRC (c) data sets. Hierarchical clustering
(Wards.D) was applied. X-axis patients, y-axis genes. Red – higher, blue – lower then median expression. d-e Overall survival analysis for patients divided
into three groups based on the clustering analysis: normal-like (red), intermediate (black) and low PPAR activity (blue). Kaplan-Meier survival curves were
plotted and Cox proportion hazards regression models were used to calculate p-values between groups. f-g Expression of ALDH7A1 mRNA levels in the
patient groups defined as normal-like (red), intermediate (black) and low PPAR activity (blue). Boxplots indicate the mean RSEM value, upper and lower
quartile. The two-tailed Mann Whitney test was used to calculate p-values
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These data provide evidence that the behavioral changes
that result from ALDH7A1-depletion can be offset by re-
storing PPAR activity, with PPARα agonists improving
both invasive and scratch assay behaviors.

ALDH7A1 protein levels predict clinical outcome
The data provided thus far have shown that expression
of ALDH7A1 and the PPAR target signature profile both
correlate with patient outcome, and so could provide
clinically relevant information. However, expression pro-
filing is not in routine use as a clinical diagnostic tool,
so an approach based on immunohistochemistry (IHC)
would have advantages. We used ALDH7A1 antibody
IHC on tissue arrays that pair the tumor samples with
adjacent normal tissue for hepatocellular carcinoma
(HCC) and renal clear cell carcinoma (ccRCC). For kid-
ney cancer we also included 72 archival patient samples.
Representative images are shown in Fig. 7(a, b). For
HCC, we observed lower ALDH7A1 levels in 62% of tu-
mors compared to the adjacent normal tissue (Fig. 7c:
IHC score for tumor minus the score for normal tissue).
For ccRCC, the ALHD7A1 score was low in 46% of sam-
ples (Fig. 7d). Information about the patients is compiled
in Additional file 1: Figure S8.
Using these data, we asked whether the ALDH7A1

IHC score (tumor-normal) was an informative parameter
in the context of well established clinical parameter such
as stage for patient survival using multivariate Cox pro-
portional hazards regression analysis. Regression analysis
showed a significantly increased hazard ratio for the pa-
tients with low ALDH7A1 scores and for those with
higher stage for both cancers (Fig. 7e, f ). Next, we com-
pared two regression models, one based solely on tumor
stage, and one that incorporated the ALDH7A1 score in
addition to tumor stage. The likelihood ratio test showed
that including the ALDH7A1 parameter added signifi-
cant value to the model’s predictive power (chi-square
test: p = 0.03 and p = 0.004; Fig. 7e, f ).
Kaplan-Meyer curves were used to visualize patient

survival as a function of stage and ALDH7A1 IHC score
(Fig. 7g, h). Within the lower-stage groups, there was no

significant difference in survival with ALDH7A1 score.
However, in the patients with more advanced stage tu-
mors, a low ALDH7A1 score correlated with signifi-
cantly reduced survival probability. Differences between
groups were statistically significant (likelihood ratio test
p = 0.02 for HCC and p < 0.001 for ccRCC). On this
basis, we propose that IHC scoring for ALDH7A1 pro-
tein, combined with standard histopathological criteria
may provide prognostic information on survival prob-
ability to identify HCC and ccRCC patients with more
aggressive disease.

Conclusions
To date, little is known about the role of ALDH7A1 in
cancer. Metabolic roles of ALDH7A1 include protecting
cells from oxidative stress by metabolizing aldehydes de-
rived from lipid peroxidation [37], and protecting cells
from osmotic stress by metabolizing betaine aldehyde to
betaine, which serves as a cellular osmolyte [38]. Our
metabolic profiling data now links ALDH7A1 activity to
the levels of activating ligands for the PPAR transcrip-
tion factors. We have provided evidence that the effects
of ALDH7A1 on cellular migration and on invasive behav-
iors is mediated through decreased PPAR activity. These
data suggest a mechanism by which the ALDH7A1 activ-
ity can influence a wide range of metabolic pathways and
cellular functions, with the potential to impact disease
progression.
Literature on the role of ALDH7A1 in cancer suggests

a somewhat complex scenario, with different outcomes
in cancers of different tissue origin. In some reports,
high ALDH7A1 has been linked to more severe disease.
Positive ALDH7A1 protein staining correlates with in-
creased cancer recurrence in non-small cell lung carcin-
oma [39]. High ALDH7A1 protein expression has been
reported in ovarian cancer, with highest expression in in-
vasive ovarian cancer cells comparing to healthy ovarian
epithelia [40]. On the other hand, our analysis of 17 can-
cer types, using TCGA RNAseq data showed that
ALDH7A1 expression was lower in several cancer types
and that lower expression correlated with poor clinical

Fig. 6 Effect of PPAR agonists on the cell invasion and migration phenotype of ALDH7A1-depleted cells. a-c Quantification of wound healing
assays after 24 h migration. a Primary BJ cells, HUH7 and c CAKI2 cancer cells were treated with PPARα agonist or DMSO as a control. The migrated
distance was measured (μm), and averages from three independently transduced cell lines were calculated (± SEM). d Quantification of cell invasion of
primary BJ cells through Matrigel over 24 h. The bar plots show the percent of cells that crossed the gel barrier (average of 3 independent experiments
± SEM). The two-tailed Mann Whitney test was used to calculate p-values
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outcome for HCC and renal ccRCC. ALDH7A1 activity
impacts a number of metabolite pathways directly, and
acts indirectly via PPARs on others. These metabolic
shifts appear to impact different types of cancer differ-
ently. Why are liver and kidney cancer sensitive to the
effects of low ALDH7A1? ALDH enzyme family mem-
bers have distinct activities and substrate specificities.

ALDH7A1 expression is high in the metabolically active
kidney and liver tissues, whereas lung and prostate tissue
express only low or moderate ALDH7A1 levels. ALDH7A1
is also to protect cells from osmotic stress. This might be
important in liver and kidney, where turnover of osmolites
such as betaine and glycerophosphocholine are tightly regu-
lated. If high ALDH7A1 expression is important for liver

Fig. 7 Association between ALDH7A1 protein levels and patient survival in liver and kidney cancer. a-b Representative images of hepatocellular
carcinoma (HCC) and renal clear cell carcinoma (ccRCC) patient biopsies stained with anti-ALDH7A1. Scale bar: 100 μm. Upper panel adjacent
normal tissue and lower panel corresponding tumor tissue from the same patient. c-d 120 hepatocellular carcinoma and 149 renal clear cell
carcinoma tissue and paired adjacent normal tissue were labeled with anti-ALDH7A1 and scored for antigen expression. The staining score shown
was calculated by subtracting the normal tissue score from the corresponding tumor score. The p-value was determined by the Wilcoxon
matched-pairs signed rank test. e-f Forest plot representing multivariate Cox proportional hazards regression models of the hepatocellular
carcinoma and renal clear cell carcinoma data scored in (c-d). For each variable the square and horizontal lines represent the estimated Hazard
Ratio (HR) and corresponding confidence interval, respectively. The value of the model was estimated by the likelihood ratio test, and different
models were compared by chi-square test. g, h Kaplan-Meier plots to visualize the association shown in (e) and (f). Survival plots show early and
late stage patient groups divided by the ALDH7A1 immunohistochemistry score. The p-values were determined by likelihood ratio testing
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and kidney homeostasis, it is tempting to speculate that low
expression of this enzyme might contribute to cancer devel-
opment in these tissues to a greater extent than in other tis-
sue types.

PPARs as therapeutic targets for cancer
PPARs are ligand activated transcription factors that play
an important role as regulators of metabolism and cellular
homeostasis. PPARs are known to regulate fatty acid syn-
thesis, uptake and storage, mitochondrial and peroxisomal
fatty acid oxidation and ketogenesis, insulin sensitivity,
glucose metabolism, drug metabolism and amino acid me-
tabolism. In addition, PPARs have anti-inflammatory and
immune suppressive functions. Given these wide-ranging
effects on cellular metabolism and defense mechanisms, it
may not be surprising that PPARs have been implicated as
oncogenes in some cancer models and as tumor suppres-
sors in others [41, 42].
PPAR agonists are in clinical use for metabolic disor-

ders and have been considered as cancer therapeutics.
However, a number of safety concerns have been raised
due to unwanted side effects and cancer development in
rodent models [17]. PPAR activators used as dietary sup-
plements induced liver enlargement accompanied by
oxidative stress in rats and mice [43]. The PPARγ agon-
ist Rosiglitazone was withdrawn due to increased risk of
myocardial infarction [44]. A meta-analysis found a
modest but clinically significant increase in overall risk
of bladder cancer upon long term treatment of another
PPARγ agonist Pioglitazone [45]. However, two large
meta-analysis studies showed no statistically significant
association between Fibrate (PPARα agonist) and cancer
incidence [46, 47]. To exploit the potential of PPARs as
drug targets for cancer, we will require a more nuanced
understanding of the role of specific PPAR isoforms in
specific cancers, as well as means to identify patient
groups who might benefit from therapeutics targeting
PPARs.
Our studies reveal a striking three-way connection be-

tween low ALDH7A1 abundance, low PPAR activity and
poor clinical outcome. Notably, patients with low PPAR
activity also have low ALDH7A1 levels, suggesting a
causal link between these two. This is likely due to the
effects of ALDH7A1 on PPAR ligand levels, and is
reflected experimentally by reduced PPAR target ex-
pression in cells depleted of ALDH7A1. Low PPAR ac-
tivity is a useful predictor of poor clinical outcome, but
it is difficult to measure in a clinical setting. We have
provided evidence that scoring for ALDH7A1 levels by
IHC may be a useful surrogate for PPAR activity to pre-
dict clinical outcome for patients with HCC and
ccRCC.
Clinical trials are evaluating PPARα activation for

treating non-alcoholic fatty liver disease and primary

biliary cirrhosis, in combination with existing treatments
(ClinicalTrials.gov identifier: NCT00262964, NCT00
575042, NCT02823353, NCT02965911, NCT02823366).
A trial evaluating the effect of the PPARα agonist Fenofi-
brate on patients with multiple myeloma (NCT
01965834) is ongoing. However, to our knowledge, trials
evaluating the effects of PPARα agonists on patients with
HCC or ccRCC have not been started. We propose that
selecting HCC or ccRCC patients according to
ALDH7A1 IHC status might be a promising avenue for
future study.

Additional file

Additional file 1: Figure S1. ALDH7A1 depletion promotes tumor
formation in vivo. Describes effect of depleting Drosophila ALDH on
tumor formation in vivo. Figure S2. ALDH7A1 mRNA level in human
cancers. (A) Compares ALDH7A1 expression levels in TCGA datasets for
19 human cancers and compares survival outcome in low middle and
high expressing patient groups. (B) Heatmap of the correlation between
ALDH7A1 mRNA expression and EGFR RNA and EGFR phosphorylation in
all cancer types. (C) Cox proportional hazard regression analysis of the
association between ALDH7A1 mRNA and EGFR levels for liver and
kidney cancer. Figure S3. Pathway analysis. (A) Gene set and pathway
analysis comparing low vs high ALDH7A1 tumors. (B) Effects of low
ALDH7A1 on pathways in KIRC. Figure S4. Metabolite profiles on cancer
cell lines. Figure S5. Assessment of correlation between PPAR activity and
ALDH7A1 on other cancers. Shows shows survival outcome for patients
groups by PPAR target signature groups, and comparison with ALDH7A1
expression. Figure S6. Effects of PPAR agonists. Shows the effects of PPAR
agonist treatment on ALDH7A1 protein levels, would healing assays,
invasive migration (transwell) assays and PPAR target gene expression levels.
Figure S7. Assays on cancer cell lines. Summarizes assays carried out on
cancer cell lines. Figure S8. Clinical characteristics of the patients included
in the study Summarizes TCGA clinical data. (PDF 40809 kb)
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