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Abstract

The majority of apparently balanced translocation (ABT) carriers are phenotypically normal.

However, several mechanisms were proposed to underlie phenotypes in affected ABT

cases. In the current study, whole-genome mate-pair sequencing (WG-MPS) followed by

Sanger sequencing was applied to further characterize de novo ABTs in three affected indi-

viduals. WG-MPS precisely mapped all ABT breakpoints and revealed three possible under-

lying molecular mechanisms. Firstly, in a t(X;1) carrier with hearing loss, a highly skewed X-

inactivation pattern was observed and the der(X) breakpoint mapped ~87kb upstream an X-

linked deafness gene namely POU3F4, thus suggesting an underlying long-range position

effect mechanism. Secondly, cryptic complexity and a chromothripsis rearrangement was

identified in a t(6;7;8;12) carrier with intellectual disability. Two translocations and a hetero-

zygous deletion disrupted SOX5; a dominant nervous system development gene previously

reported in similar patients. Finally, a direct gene disruption mechanism was proposed in a t

(4;9) carrier with dysmorphic facial features and speech delay. In this case, the der(9) break-

point directly disrupted NFIB, a gene involved in lung maturation and development of the

pons with important functions in main speech processes. To conclude, in contrast to familial

ABT cases with identical rearrangements and discordant phenotypes, where translocations

are considered coincidental, translocations seem to be associated with phenotype presenta-

tion in affected de novo ABT cases. In addition, this study highlights the importance of inves-

tigating both coding and non-coding regions to decipher the underlying pathogenic

mechanisms in these patients, and supports the potential introduction of low coverage WG-

MPS in the clinical investigation of de novo ABTs.
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Introduction

The great majority of apparently balanced translocation (ABT) cases are phenotypically nor-

mal since theoretically there is no obvious loss or gain of genetic material. However, associa-

tion with specific clinical phenotypes has been originally estimated in 6–10% of de novo ABT

cases [1], while recent studies assessing long-term outcomes in de novo ABT carriers estimated

a morbidity risk of 27% [2].

Many molecular mechanisms have been suggested to account for clinical phenotypes

observed in ABT carriers. First of all, this may be due to direct disruption of dosage-sensitive

genes [3], which also exhibit haploinsufficiency [4]. Apart from direct protein-coding gene dis-

ruption, ABT breakpoints can also map in intragenic areas, and may affect the regulation of

nearby genes by disrupting cis-regulatory elements, such as enhancers, through long-range

position effect (LRPE) [5,6]. For example, ABTs may affect the regulatory landscape of genes

by disrupting highly-conserved topologically associated domains (TADs) [7] within which

physical contact of genes and their regulators is achieved, via chromatin looping, for correct

expression to occur [8]. Specifically, a translocation can remove an enhancer/silencer from its

target gene or place a gene next to an enhancer/silencer that is not its own, therefore leading to

gene repression, overexpression, or ectopic expression. A third mechanism underlying pheno-

type presentation in ABT carriers is the presence of cryptic genomic imbalances near the trans-

location breakpoints or elsewhere in the genome [9,10], or the presence of complex

chromosomal rearrangements (CCRs) [9–11]. Other rarer molecular mechanisms include dis-

ruption of an imprinting locus in uniparental disomy (UPD) cases [12], unmasking of reces-

sive gene variants by loss-of-function at the translocation breakpoints leading to functional

homozygosity [13], as well as gene fusion generation which may result in a novel, non-func-

tional or pathogenic protein [14]. Finally, the presented phenotypes in ABT carriers may be

unrelated to the translocation and simply coincidental [15].

Detailed characterization of translocations and accurate breakpoint mapping in affected

ABTs carriers are crucial for positioning disease-candidate genes at or near the breakpoints

[16]. The overall purpose of this study was the use of Whole-Genome Mate-Pair Sequencing

(WG-MPS) (low coverage) to decipher the pathogenic molecular mechanisms underlying phe-

notype associations in three affected de novo ABT cases. Based on the results, a causative link

between translocation rearrangements and phenotype presentation in affected de novo ABT

carriers was established.

Materials and methods

Bioethics statement and consent form collection

This study was approved by the National bioethics committee as part of the Translation Facil-

ity Application with number EEBK/EII/2-13/09. Written informed consent was obtained from

all patients prior to initiation of the study.

Whole-genome mate-pair sequencing and translocation validation

In the current study, 1μg of high quality DNA sample from each ABT case was used to prepare

WG-MPS libraries (~2-4kb insert length) by following the Nextera Mate-Pair Sample Prepara-

tion Guide, gel-free protocol (Part #15035209 Rev.C) from Illumina (http://www.illumina.

com/). WG-MPS library preparation, library pooling, sequencing on an Illumina HiSeq2500

system, data analysis and filtering, translocation breakpoint validation, as well as LRPE investi-

gation were performed as described previously [15]. PCR primers used for translocation

breakpoint validation are available in S1 Table.

Disease mechanisms in de novo apparently balanced translocations
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Depth of coverage analysis

In order to identify any imbalances as a change in the depth of coverage of the WG-MPS

paired-end reads, the WG-MPS aligned files from selected samples were used as an input in

the cnv tool incorporated in the SVDetect software [17]. This tool calculates depth of coverage

log ratios from an affected (patient) and a non-affected (reference) sample. The log ratio data

were then used as input in order to create density plots in CIRCOS, a software package to visu-

alize data in circular output [18].

X-inactivation analysis

The X-chromosome inactivation status in a female patient (Case 1) carrying an X:autosome

translocation was determined by methylation analysis of the human androgen receptor (AR)

gene at Xq11.2, as described previously [19]. PCR products were run using a Fragment Analy-

sis protocol on a 3130xl Genetic Analyzer (Applied Biosystems), and X-inactivation analysis

results were analyzed by using the Microsatellite application of the GeneMapper v4.1 Software

(Applied Biosystems), according to the manufacturer’s instructions.

RNA extraction and DNase treatment

Total RNA from Epstein-Barr virus-transformed lymphoblastoid cell lines from patients and a

control sample was extracted with RNeasy Midi Kit (Qiagen, Hilden, Germany) following the

manufacturer’s instructions, and RNA concentration was measured with an ND-1000 Spectro-

photometer (Thermo Fisher Scientific, Waltham, MA, USA). For reverse transcription PCR

(RT-PCR) experiments, 10μg RNA was treated with DNase I (New England Biolabs (NEB),

Ipswich, MA, USA) to remove residual genomic DNA according to the manufacturer’s

protocol.

Reverse-transcription PCR primer design and procedure

RT-PCR primer pairs (Metabion, Planegg, Germany) were designed using the Primer3 web

interphase tool [20]. Wherever possible, forward and reverse primers were designed on two

consecutive exons spanning an intermediate large intron of the gene of interest. If a gene of

interest has only one protein-coding exon and no intermediate introns, RT-PCR primer pairs

were designed within the same exon. DNase-treated RNA (10pg-1μg) was reverse transcribed

using the ProtoScript First Strand cDNA Synthesis Kit (NEB) with oligo-dT primers, accord-

ing to the kit’s manual. ~50ng cDNA from each sample was amplified by 40 cycles of PCR

using pre-designed RT-PCR primer pairs within the genes of interest. An RNA sample not

reverse transcribed and a no template sample were used as negative controls. Finally the integ-

rity of the cDNA samples was shown by amplification of a 215bp fragment from the house-

keeping gene ACTB (β-actin). RT-PCR primer pairs and PCR conditions are available on

request.

Results

By using WG-MPS, translocation breakpoint junctions in all three affected de novo ABT carri-

ers included in the present study were successfully identified and mapped down to a region

ranging between 407bp and 1.9kb (Table 1). Direct and indirect disease-candidate gene dis-

ruption occurred in 2/3 and 1/3 cases, respectively, while cryptic complexity was identified in

1/3 cases. Microhomology (1-5bp) and imbalances (1-6bp) were also detected at the transloca-

tion breakpoint sites (Table 1). Detailed results are presented below:

Disease mechanisms in de novo apparently balanced translocations
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Case 1—46,X,t(X;1)(q13;p31)dn

Case 1 is a female patient with hearing loss and a de novo t(X;1)(q13;p31) translocation

(Fig 1A) as detected by previous karyotype and FISH analyses. WG-MPS followed by Sanger

sequencing accurately identified and mapped both translocation breakpoints (Fig 1B; Table 1).

The der(1) breakpoint disrupted the non-pathogenic leucine rich repeats and IQ motif con-

taining 3 (LRRIQ3) gene (intron 7/7) (NM_001105659.1), while the der(X) breakpoint mapped

~87kb upstream the POU class 3 homeobox 4 (POU3F4) gene (OMIM-300039)

(NM_000307.4) (Fig 1C; Table 1). Mutation screening revealed no variants in the coding

sequence of POU3F4 apart from two benign single nucleotide polymorphisms (rs5921978 and

rs5921979; S1 Fig). In addition, RT-PCR analysis revealed absence of POU3F4 expression in

the patient as compared with a normal control (Fig 1D). Finally, a highly skewed X-inactiva-

tion pattern (100:0) was observed in Case 1 after pre-digestion with the methylation-sensitive

restriction enzyme HpaII (Fig 1E).

Case 2—46,XX,t(6;7;8;12)(p22.2;q31.3;q24.3;q13.1)dn

Case 2 is an affected female presenting with mild to moderate intellectual disability (ID). Initial

G-banding and FISH analyses detected a de novo apparently balanced CCR involving chromo-

somes 6, 7, 8, and 12, and seven breakpoints [11]. Previous array-CGH revealed a heterozygous

Table 1. Translocation breakpoints as identified by Whole-Genome Mate-Pair Sequencing and validated by Sanger sequencing (hg19).

Translocation junctions as

estimated by WG-MPS

Junction

Length

Translocation breakpoint position as

defined by SS

Disrupted Genes Insertions/deletions

(+ strand)

Microhomology

(+ strand)

Case 1—Female with hearing loss

chr1:74499775–74500253 479bp chr1:74500101–74500108 LRRIQ3 AATTCA duplication AATTC

chrX:82675876–82676282 407bp chrX:82676074–82676079 ~87kb upstream

POU3F4
GAATT duplication

G deletion

GAATT

Case 2—Female with mild to moderate intellectual disability

chr6:16754266–16755111 845bp chr6:16754305–16754306 ATXN1 ND -

chr7:120530428–120531641 1214bp chr7:120530522–120530523 - ND G

chr7:124121849–124122971 1123bp chr7:124122363–124122371 - ATCTTTT deletion

T insertion

-

chr8:129588349–129589617 1269bp chr8:129589008–129589009 - ND CTGG

chr8:132602314–132603246 933bp chr8:132602994–132602995 - - -

chr8:132899241–132900431 1191bp chr8:132899713–132899714 - T insertion -

chr8:132937706–132938936 1231bp chr8:132938698–132938699 EFR3A ND -

chr12:24016019–24017286 1268bp chr12:24016112–24016113 SOX5 ND C

chr12:27177142–27177824 682bp chr12:27177486–27177487 MED21 ND -

chr12:55357036–55357802 767bp chr12:55357553–55357554 TESPA1 ND CCAG

chr12:65386366–65387285 920bp chr12:65386836–65386837 - ND -

chr12:68784020–68784572 553bp chr12:68784362–68784363 - ND -

Case 3—Female with dysmorphic facial features and speech delay

chr4:118195375–118197310 1936bp chr4:118195456–118195460 - AGG duplication G

chr9:14104333–14104994 662bp chr9:14104378–14104384 NFIB GTCTA deletion -

The junction length, disrupted genes, as well as insertions/deletions and microhomology at the breakpoint junctions are also given. In Case 2, only those translocation

breakpoint junctions mapped to the base-pair level are included in Table 1. Due to the highly repetitive regions at most chromothripsis rearrangement breakpoints in

Case 2, validation was not feasible for all breakpoint junctions, and hence, possible insertions/deletions could not be determined in most cases. (bp = base-pairs; dn = de
novo; WG-MPS = Whole-Genome Mate-Pair Sequencing; ND = not determined; SS = Sanger sequencing)

https://doi.org/10.1371/journal.pone.0205298.t001
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Fig 1. Summarized karyotype, WG-MPS, Sanger sequencing, RT-PCR and X-inactivation results from Case 1. A)

Partial ideograms showing the normal and derivative (der) chromosomes (chr) X (purple) and 1 (orange) (not to scale) in

Case 1. Xq13 and 1p31 breakpoints are indicated by arrows. B) Derivative translocation junction sequences (middle line)

and matching reference sequences (top and bottom lines) as identified by Sanger sequencing. Microhomology is

highlighted in yellow, deleted sequences are underlined, and duplicated sequences are in bold letters. C) Schematic

illustration of the Topologically Associated Domain (TAD) structure at the POU3F4 locus (indicated with a dashed line and

Disease mechanisms in de novo apparently balanced translocations
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deletion on chromosome 8q24.22; arr[GRCh37] 8q24.22(131465786_132161678)x1, overlap-

ping the adenylate cyclase 8 (ADCY8) (OMIM-103070) gene. This chr8 deletion was also iden-

tified from the depth of coverage analysis in this study, which additionally detected a patient-

specific ~108kb heterozygous deletion on 12p12.1 overlapping exons 1–3 of the SRY-box 5

(SOX5) gene (OMIM-604975) (NM_006940.4) (Fig 2A). Interestingly, by using WG-MPS,

cryptic complexity and a chromothripsis rearrangement was revealed including thirty-eight

interchromosomal and intrachromosomal translocation junctions in total (Fig 2A) (Table 1;

S2 Table). After accurate derivative chromosome reconstruction of the complex rearrange-

ment (Fig 2B), a number of translocation breakpoints (marked with a black asterisk in Fig 2B)

were validated by Sanger sequencing (Fig 2C; Table 1). In the remaining translocation break-

point junctions, sequence-specific PCR primer design was challenging as most were spanning

very long repeats. In some of these cases, a PCR product was obtained by long-range PCR;

however, breakpoint mapping to the base-pair level with Sanger sequencing was not feasible

(marked with a red asterisk in Fig 2B).

Case 3—46,XX,t(4;9)(q26;p24)dn

Case 3 is a female patient presenting with dysmorphic facial features and speech delay. Initial

karyotype analysis detected a de novo apparently balanced t(4;9)(q26;p24) translocation (Fig

3A). FISH analysis confirmed the rearrangement, while array-CGH at 1MB resolution revealed

no chromosomal imbalances. In the present study, WG-MPS followed by Sanger sequencing

accurately detected the t(4;9) translocation and mapped both breakpoints (Fig 3B; Table 1).

The der(4) breakpoint did not disrupt any genes, whereas the der(9) breakpoint directly dis-

rupted intron 10/10 of the Nuclear Factor I B (NFIB) gene (OMIM-600728)

(NM_001190737.1) (Fig 3C).

Discussion

In contrast to our recent findings concerning familial cases with identical ABTs and discordant

phenotypes [15], breakpoint mapping results from the present study demonstrated that trans-

locations appear to be correlated with phenotype presentation in de novo ABT cases. This is

achieved through a number of underlying molecular mechanisms including LRPE, cryptic

complexity, and direct disease-associated gene disruption by the translocation breakpoints.

In the ABT Case 1 with hearing loss and a t(X;1) translocation, WG-MPS mapped the der

(X) breakpoint ~87kb upstream the POU3F4 gene (also known as Brain-4 or BRN-4)
(NM_000307.4) (Fig 1C; Table 1). This gene encodes for the POU domain, class 3, transcrip-

tion factor 4, which is important for the development of the inner ear [21]. Missense, non-

sense, and frameshift variants as well as deletions overlapping the POU3F4 gene have been

identified in patients with X-linked recessive deafness [22–24]. Structural variants upstream

the coding POU3F4 region, including microdeletions, inversions, and duplications, have also

a blue bar) as created by the 3D Genome Browser (http://promoter.bx.psu.edu/hi-c/). Each dot within individual TADs

reflects the interaction between two DNA positions. The corresponding region from the UCSC Genome Browser was

aligned underneath the heat map. This illustrates among other genes POU3F4 (red rectangle), the der(X) breakpoint

identified in the current study mapping ~87kb upstream POU3F4 (vertical red arrow), as well as specific enhancers

identified by Naranjo et al., 2010 upstream POU3F4 (red vertical bars). D) RT-PCR results showing absence of POU3F4
expression in the patient as compared with a normal control. cDNA = RNA reverse transcribed; RNA = RNA not reverse

transcribed; H2O = no template sample. E) X-inactivation analysis results showing a skewed X-inactivation pattern (100:0).

A PCR product is obtained only from the inactive (methylated) chromosomes. AfterHpaII digestion, only one peak was

shown in the female patient, whereas, no peak was observed in the male control.

https://doi.org/10.1371/journal.pone.0205298.g001
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Fig 2. Summarized WG-MPS and Sanger sequencing results in Case 2. A) Circos plot illustrating partial chr6, chr7,

chr8, and chr12 ideograms (outer circle), deletions (red) and duplications (blue) based on the depth of coverage

analysis (inner circle) as well as inter-translocation (green lines) and intra-translocation (purple lines) junctions

identified by WG-MPS in Case 2. SOX5 disruption by a heterozygous deletion and two inter-translocation breakpoints

is highlighted. B) Derivative chromosome reconstruction of the chromothripsis rearrangement. Fragments from

chromosomes 6, 7, 8, and 12 are in red, green, blue, and yellow, respectively. Arrows: fragment orientations; black

Disease mechanisms in de novo apparently balanced translocations
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been reported in patients with similar hearing loss phenotypes, thus indicating the presence of

cis-regulatory elements (e.g. enhancers) within those regions (even up to 900kb upstream),

which if disturbed result in altered POU3F4 expression through LRPE [25–27]. The majority

of POU3F4 disruption cases have been reported in affected males. In contrast, female carriers

are rarely reported, and in these cases, normal, late-onset, or progressive mild to moderate

hearing loss is usually observed [28]. This is due to the presence of a second, normal X-chro-

mosome in females and random X-inactivation; however, in the case of non-random or

skewed X-inactivation, mild symptoms or clinical phenotypes resembling those seen in

affected males are also observed in heterozygous female carriers [29]. To the best of our knowl-

edge, Case 1 is the second female patient reported carrying an X-autosome translocation, with

asterisks: translocation junctions sequenced to the base-pair level; red asterisks: translocation junctions amplified but

not sequenced. C) Derivative translocation junction sequences (middle line) and matching reference sequences (top

and bottom lines) as identified by Sanger sequencing in Case 2. Microhomology is highlighted, and inserted sequences

not aligning to either chromosome are in lower-case letters.

https://doi.org/10.1371/journal.pone.0205298.g002

Fig 3. Summarized WG-MPS and Sanger sequencing results in Case 3. A) Partial ideograms showing the normal and derivative

(der) chromosomes (chr) 4 (dark purple) and 9 (brown) (not to scale) in Case 3. 4q26 and 9p24 breakpoints are indicated by arrows.

B) Derivative translocation junction sequences (middle line) and matching reference sequences (top and bottom lines) as identified

by Sanger sequencing. Microhomology is highlighted in yellow, deleted sequences are underlined, duplicated sequences are in bold

letters, and inserted sequences not aligning to either chromosome are in lower-case letters. C) IGV screenshot illustrating the der(9)

breakpoint disrupting theNFIB gene within intron 10/10 (NM_001190737.1).

https://doi.org/10.1371/journal.pone.0205298.g003
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the der(X) breakpoint mapping upstream the POU3F4 gene [30]. A highly skewed X-inactiva-

tion pattern was observed in Case 1 (Fig 1E); even though the X-inactivation analysis does not

provide information on the identity of the inactivated chromosome, a favourable inactivation

of the normal, non-translocated X chromosome is hypothesized. This was supported by the

absence of a PCR product after amplification of the patient’s cDNA with POU3F4 primer pairs

(Fig 1D). Collectively, we suggest that the t(X;1) translocation in Case 1 disrupts the TAD

structure of the POU3F4 locus by physically dissociating the gene from important upstream

otic enhancers regulating its expression (Fig 1C) [31]. Thus, absence of a functional POU3F4
gene, caused by LRPE and skewed X-inactivation, underlies hearing loss seen in the ABT

Case 1.

In the ABT Case 2 presenting with mild to moderate ID, WG-MPS detected cryptic rear-

rangement complexity including thirty-eight translocation breakpoints (Fig 2; S2 Table). Such

complex chromosomal profiles resemble those seen in chromothripsis during which a single

catastrophic event occurs followed by rearrangement of the broken segments in a random

order and orientation [32]. In addition, depth of coverage analysis detected a heterozygous

12p12.1 deletion covering exons 1–3 of the SOX5 gene (NM_006940.4) and flanking two trans-

location breakpoints (Fig 2A). This deletion was missed by previous array-CGH, highlighting

the power of low-coverage WG-MPS in identifying smaller deletions below the resolution of

detection of array-CGH. The SOX5 gene encodes for the SRY-box 5 protein; which is involved

in the generation of the cranial neural crest and the proper development of corticofugal neu-

rons [33,34]. Heterozygous 12p12 deletions and a reciprocal t(11;12) translocation disrupting

either SOX5 alone or SOX5 together with other genes have been reported in patients presenting

with ID, global developmental delay, language and motor impairment, and mild dysmorphic

facial features [35], which collectively characterize the neurodevelopmental disorder Lamb-

Shaffer syndrome (OMIM-616803). SOX5 is predicted as extremely intolerant to loss of func-

tion and copy number variants (pLI = 1.00) with a haploinsufficiency score of 0.74% [4]. The

above together with a report by Lelieveld et al. (2016) identifying SOX5 as a new ID gene from

a meta-analysis of 2,104 whole-exome sequencing trios [36], strongly support that the ID phe-

notype in Case 2 is due to SOX5 haploinsufficiency caused by the cryptic chromothripsis

rearrangement.

In the ABT Case 3 with dysmorphic facial features, speech delay and a t(4;9)(q26;p24) trans-

location, WG-MPS successfully mapped the der(9) breakpoint directly within intron 10/10 of

the NFIB gene (NM_001190737.1). NFIB encodes for Nuclear Factor I/B, a cellular transcrip-

tion factor involved in lung maturation and brain development [37]. Additional studies dem-

onstrated another important role of NFIB in the development of the pons, which is part of the

brainstem, and pontine nuclei involved in the motor regulation of facial expressions, chewing,

and swallowing [37,38]. In Latin, pons literally means bridge resembling its function serving as

a connection between different parts of the brain, including the cerebral cortex and the cere-

bellum, both of which have important roles in speech development, as well as language- and

other communication-related functions [39,40]. Since the pons is involved in the regulation of

two main speech processes, i.e. respiration (mediated by the lungs) and articulation (mediated

by movements of the jaw and mouth), it is therefore hypothesized that NFIB heterozygous dis-

ruption by the t(4;9) translocation causing dysfunction of the pons could underlie speech

delay in Case 3. NFIB expression should be investigated next to determine the functional

impact of the translocation; however, since its expression is very low in lymphocytes, an alter-

native tissue suitable to carry out this test cannot be obtained. Finally, a brain MRI would aid

to visualize any hypodevelopment of the pons, thus further supporting a possible functional

association between NFIB disruption and speech delay in Case 3.

Disease mechanisms in de novo apparently balanced translocations

PLOS ONE | https://doi.org/10.1371/journal.pone.0205298 October 5, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0205298


In conclusion, WG-MPS utilized in this study proved to be a highly powerful universal

method allowing rapid mapping of ABT breakpoints as well as identification of additional

structural variants, independent of the chromosomes involved each time. Results from our

recently published paper, demonstrated that translocations are coincidental and unrelated to

phenotype presentation in the majority of familial ABT carriers with identical rearrangements

and differential phenotypes [15]. In contrast, in line with previous reports and as demon-

strated here, de novo translocations usually occur within or close to pathogenic genes and they

seem to be associated with phenotype presentation in affected carriers via cryptic complexity,

LRPE, and direct gene disruption. Collectively, this study highlights the efficacy of low cover-

age WG-MPS in accurately characterizing ABT breakpoints in both coding and non-coding

regions, and suggesting underlying molecular mechanisms for phenotype association, thus

supporting its potential introduction in the clinical investigation of ABTs.
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S1 Table. List of PCR primers used for translocation breakpoint validation. The primer

name, sequence, and melting temperature for each primer used for translocation breakpoint

validation is given. The annealing temperature and extension time used as well as the approxi-
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rangement, each translocation breakpoint split the chromosome into two fragments onto
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orientations (5th column) are also given. Forward-Forward (FF) and Reverse-Reverse (RR)

orientations indicate that one of the two joining fragments has been inverted.
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S1 Fig. POU3F4 mutation screening results in Case 1. A) Sanger sequencing electrophero-

gram screenshot illustrating the two benign POU3F4 SNPs identified in Case 1 (red arrows).
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the corresponding reference sequence (top line). The two mismatches indicating the SNP posi-

tions are indicated with dots.

(PDF)

Acknowledgments

We are deeply grateful to all patients for participating in the study. We would also like to thank

the Department of Molecular Medicine staff, Aarhus University Hospital, Denmark for WG-

MPS library sequencing on HiSeq2500, and the Department of Cytogenetics and Genomics

staff for their technical assistance.

Author Contributions

Conceptualization: Carolina Sismani.

Disease mechanisms in de novo apparently balanced translocations

PLOS ONE | https://doi.org/10.1371/journal.pone.0205298 October 5, 2018 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205298.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205298.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205298.s003
https://doi.org/10.1371/journal.pone.0205298


Formal analysis: Athina Theodosiou, Mads Bak.

Funding acquisition: Niels Tommerup, Carolina Sismani.

Investigation: Constantia Aristidou, Mana M. Mehrjouy, Efthymia Constantinou, Angelos

Alexandrou, Ioannis Papaevripidou.

Methodology: Niels Tommerup, Carolina Sismani.

Project administration: Carolina Sismani.

Resources: Violetta Christophidou-Anastasiadou, Nicos Skordis, Sophia Kitsiou-Tzeli, Niels

Tommerup, Carolina Sismani.

Software: Athina Theodosiou, Mads Bak.

Supervision: Niels Tommerup, Carolina Sismani.

Validation: Niels Tommerup.

Visualization: Constantia Aristidou, Carolina Sismani.

Writing – original draft: Constantia Aristidou.

Writing – review & editing: Constantia Aristidou, Carolina Sismani.

References
1. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identi-

fied at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet. 1991;

49(5):995–1013. PMID: 1928105

2. Halgren C, Nielsen NM, Nazaryan-Petersen L, Silahtaroglu A, Collins RL, Lowther C, et al. Risks and

Recommendations in Prenatally Detected De Novo Balanced Chromosomal Rearrangements from

Assessment of Long-Term Outcomes. Am J Hum Genet. 2018 Jun 7; 102(6):1090–103. https://doi.org/

10.1016/j.ajhg.2018.04.005 PMID: 29805044

3. Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, et al. Disruption of the ProSAP2

gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet.

2001; 69(2):261–8. https://doi.org/10.1086/321293 PMID: 11431708

4. Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the

human genome. PLoS Genet. 2010; 6(10):e1001154. https://doi.org/10.1371/journal.pgen.1001154

PMID: 20976243

5. Kleinjan D-J, van Heyningen V. Position Effect in Human Genetic Disease. Hum Mol Genet. 1998; 7

(10):1611–8. PMID: 9735382

6. Kleinjan DA, Van Heyningen V. Long-range control of gene expression: emerging mechanisms and dis-

ruption in disease. Am J Hum Genet. 2005; 76(1):8–32. https://doi.org/10.1086/426833 PMID:

15549674

7. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes

identified by analysis of chromatin interactions. Nature. 2012; 485(7398):376–80. https://doi.org/10.

1038/nature11082 PMID: 22495300

8. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the

human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7):1665–

80. https://doi.org/10.1016/j.cell.2014.11.021 PMID: 25497547

9. Sismani C, Kitsiou-Tzeli S, Ioannides M, Christodoulou C, Anastasiadou V, Stylianidou G, et al. Cryptic

genomic imbalances in patients with de novo or familial apparently balanced translocations and abnor-

mal phenotype. Mol Cytogenet. 2008; 1:15. https://doi.org/10.1186/1755-8166-1-15 PMID: 18644119

10. Schluth-Bolard C, Delobel B, Sanlaville D, Boute O, Cuisset J-MM, Sukno S, et al. Cryptic genomic

imbalances in de novo and inherited apparently balanced chromosomal rearrangements: Array CGH

study of 47 unrelated cases. Eur J Med Genet. 2009; 52(5):291–6. https://doi.org/10.1016/j.ejmg.2009.

05.011 PMID: 19505601

11. Patsalis PC, Evangelidou P, Charalambous S, Sismani C. Fluorescence in situ hybridization characteri-

zation of apparently balanced translocation reveals cryptic complex chromosomal rearrangements with

Disease mechanisms in de novo apparently balanced translocations

PLOS ONE | https://doi.org/10.1371/journal.pone.0205298 October 5, 2018 11 / 13

http://www.ncbi.nlm.nih.gov/pubmed/1928105
https://doi.org/10.1016/j.ajhg.2018.04.005
https://doi.org/10.1016/j.ajhg.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29805044
https://doi.org/10.1086/321293
http://www.ncbi.nlm.nih.gov/pubmed/11431708
https://doi.org/10.1371/journal.pgen.1001154
http://www.ncbi.nlm.nih.gov/pubmed/20976243
http://www.ncbi.nlm.nih.gov/pubmed/9735382
https://doi.org/10.1086/426833
http://www.ncbi.nlm.nih.gov/pubmed/15549674
https://doi.org/10.1038/nature11082
https://doi.org/10.1038/nature11082
http://www.ncbi.nlm.nih.gov/pubmed/22495300
https://doi.org/10.1016/j.cell.2014.11.021
http://www.ncbi.nlm.nih.gov/pubmed/25497547
https://doi.org/10.1186/1755-8166-1-15
http://www.ncbi.nlm.nih.gov/pubmed/18644119
https://doi.org/10.1016/j.ejmg.2009.05.011
https://doi.org/10.1016/j.ejmg.2009.05.011
http://www.ncbi.nlm.nih.gov/pubmed/19505601
https://doi.org/10.1371/journal.pone.0205298


unexpected level of complexity. Eur J Hum Genet. 2004; 12(8):647–53. https://doi.org/10.1038/sj.ejhg.

5201211 PMID: 15162125

12. Calounova G, Novotna D, Simandlova M, Havlovicova M, Zumrova A, Kocarek E, et al. Prader-Willi

syndrome due to uniparental disomy in a patient with a balanced chromosomal translocation. Neuroen-

docrinol Lett. 2006; 27(5):579–85. PMID: 17159828

13. Buhler EM. Unmasking of heterozygosity by inherited balanced translocations. Implications for prenatal

diagnosis and gene mapping. Ann Genet. 1983; 26(3):133–7. PMID: 6606374
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