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Abstract: Sample entropy (SE) has relative consistency using biologically-derived, discrete data
>500 data points. For certain populations, collecting this quantity is not feasible and continuous data
has been used. The effect of using continuous versus discrete data on SE is unknown, nor are the
relative effects of sampling rate and input parameters m (comparison vector length) and r (tolerance).
Eleven subjects walked for 10-minutes and continuous joint angles (480 Hz) were calculated for each
lower-extremity joint. Data were downsampled (240, 120, 60 Hz) and discrete range-of-motion was
calculated. SE was quantified for angles and range-of-motion at all sampling rates and multiple
combinations of parameters. A differential relationship between joints was observed between
range-of-motion and joint angles. Range-of-motion SE showed no difference; whereas, joint angle SE
significantly decreased from ankle to knee to hip. To confirm findings from biological data, continuous
signals with manipulations to frequency, amplitude, and both were generated and underwent similar
analysis to the biological data. In general, changes to m, r, and sampling rate had a greater effect
on continuous compared to discrete data. Discrete data was robust to sampling rate and m. It is
recommended that different data types not be compared and discrete data be used for SE.

Keywords: range of motion; joint angle; gait; complexity; regularity

1. Introduction

Measures of entropy have become increasingly popular as a means to describe the predictability
of a signal. Approximate entropy was introduced as a measure of regularity useful in differentiating
periodic, deterministic, and chaotic signals [1]. This measure was originally developed on QRS intervals
of heart rate data from the electrocardiogram [2] and has since been widely used for the assessment of
heart rate variability [3–9]. Subsequent applications on discrete data types have included hormone
secretion rate [10], respiration rate [11], stride-to-stride minimum toe clearance [12,13], and stride and
step time [14–17]. The application of entropy measures to human gait data (e.g., joint angles and stride
characteristics) provides valuable information of the movement dynamics executed by the human
motor control system [18,19].

It has been noted that the calculation of approximate entropy has a statistical bias [20], and sample
entropy [21] was introduced to overcome this bias. Since its introduction, sample entropy has become
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a popular measure to describe the regularity of human data [14,15]. Sample entropy is a measure of
the likelihood that vectors of length m, which are similar in a time series, remain similar for length
m +1. Sample entropy has been found to be robust in the presence of observational noise [14,20].
Yentes et al. [14] concluded that 2000 points of theoretical data are necessary for a stable calculation of
sample entropy values. Using biological data, sample entropy appeared to be stable under discrete
data lengths from 500 to 5000 data points with most combinations of m and r [15]. To calculate sample
entropy for 2000 stride intervals would require walking data to be recorded for approximately 33 min
for a person walking at 60 strides per minute. These data collection times are generally not feasible,
and for many less healthy subjects they are impossible to achieve. Consider a person with impaired
or slower walking, collecting the minimum of 500 strides would require 15 minutes of continuous
walking at a pace of 45 strides per minute. For this reason sample entropy has been calculated using a
smaller number of data points or, in some cases, using continuous data [22–26].

Continuous data may be appropriate in cases where the regularity of the patterns within the
interval of movement, e.g., within a stride, is of interest. Various forms of continuous data including
joint angles [22–24,27] and trunk accelerations [25,26] have been used for the calculation of sample
entropy. A simple understanding of the manner in which sample entropy is calculated would suggest
that very small values of entropy would result from continuous, cyclical data. This is due to repetitive
vectors of consecutive points being counted as similar because they fall within a radius, determined
from the standard deviation calculated from the complete range of signal values. As the sampling rate
is increased the interval between consecutive points will be reduced accordingly, resulting in a further
reduction in calculated sample entropy values. The depressive effect sampling frequency has on
sample entropy has been noted previously [27–29]. Another alternative method of calculating sample
entropy has been to downsample the continuous data by introducing a lag value into the calculation
to remove correlations unrelated to the dynamics of the system [30]. It is unknown if comparisons
between groups, conditions, or body segments using continuous data will result in similar findings to
discrete data types.

For both discrete and continuous data, it might be expected that sample rate will have an influence
on the calculated value [27,31,32]; however, if the effect is consistent then comparisons between groups
might be performed as long as the data are collected in the same manner. Using peaks, or the timing
of any recognizable point in cyclical data, to define intervals will be affected by the sampling rate
of the data. The intervals will fall into bins which are integral multiples of the sampling interval.
This binning effect will increase as the sampling rate is reduced and there are relatively fewer bins for
interval values to fall into.

Due to a lack of consistency in findings within the body of literature examining entropy during
human movement [14,33,34], it is imperative to determine the best methodologies for data collection
and thereby, results reporting. If the lack of consistency is due to the types of data being utilized, this
is an important factor that must be considered when reporting results. Further, if methodological
or parameter combination differences contribute to the lack of consistency within reported results,
this must also be considered. Therefore, the purpose of this paper was to determine if comparison of
sample entropy values between body segments (ankle v. knee v. hip) using continuous data would
provide similar results to comparisons of sample entropy values calculated for discrete data extracted
from the same continuous data. Further, we aimed to understand if these comparisons are affected
by the sampling rate and the input parameters of m and r. For this purpose, biological data were
collected from subjects walking on a treadmill. To confirm findings from biological data, and to
provide an understanding of how sample entropy is affected by changing sampling frequency and
input parameters for known theoretical data, mathematically generated signals were analyzed as well.
These generated signals were controlled for periodic, chaotic, and random changes in amplitude and
period length. With aging and pathology gait patterns become more random [35], making it important
to understand how the sample entropy algorithm is biased when applied to data with changes to the
structure or underlying dynamics.
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2. Materials and Methods

2.1. Biological Data

Eleven healthy young adult subjects (8M, 3F; age: 24 ± 3 years; height: 1.74 ± 0.7 m; weight:
75 ± 12 kg) were recruited to participate. All subjects provided informed consent as approved by the
local Institutional Review Board. Subjects were required to have no injury nor related surgeries within
the last year, no cardiac disease, and no musculoskeletal or neurological abnormalities that would
alter gait.

Subjects wore a tight-fitting suit during data collection. Retroreflective markers were positioned
on the sacrum and bilaterally on the anterior superior iliac spines, posterior superior iliac spines,
greater trochanters, midthighs, lower front thighs, lateral knees, tibial tubercles, lower lateral
shanks, lateral ankles, top of the second metatarsophalangeal joints, posterior heels, lateral fifth
metatarsophalangeal joints, and lateral calcanei. Subject’s self-selected treadmill walking speed was
determined using a previously described method [14]. After a minimum of five minutes of rest,
subjects walked for 10 min at their self-selected speed on the treadmill (AMTI, Watertown, MA, USA).
Marker trajectories in 3D space with a measurement error of less than 1mm, were recorded at 480 Hz
using a 12-camera motion capture system (Motion Analysis Corp., Santa Rosa, CA).

Continuous sagittal plane ankle, knee, and hip joint angles of the right leg were calculated using
Visual3D (C-Motion, Germantown, MD, Montgomery) (Figure 1). The trajectories of markers on the
pelvis, thigh, shank, and foot were used to determine the instantaneous position and orientation
of each of these segments in 3D space throughout each trial [36]. From these known orientations,
the angles between each adjacent segment were calculated using the Cardan convention [37]. Tracking
and calculating joint angles using markers has been shown to have errors of less than 4◦ for the
knee and 3.5◦ for the ankle when compared to gold standard intracortical bone pins [38]. From the
continuous joint angles, discrete range of motion time series were calculated as the difference between
the maximum and minimum joint angle between heel strikes of the same foot using a custom MATLAB
code (Mathworks, Inc., Natick, MA, USA).
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Figure 1. A 30-second segment of biological data for continuous (a) and discrete (b) for ankle (top),
knee (middle), and hip (bottom) joint angles. Discrete signals were generated by subtracting peaks
from valleys from each continuous joint angle.

2.2. Generated Data

Biological signals may fluctuate in multiple ways. Signals recorded for human walking may
change due to altered step length (amplitude) or altered step time (period), or more commonly a
combination of both. To understand the ability of sample entropy to differentiate between signals of
varying regularity it is important to assess differences calculated from signals with known relative
levels of regularity. For this purpose signals with periodic, chaotic, and random manipulations were
generated. In total, nine different types of signals were generated.

First, a sine wave was generated using MATLAB ®codes according to a 3 × 3 matrix
(Supplementary materials). Manipulations consisted of (1) periodic, (2) chaotic, and (3) random
manipulations to the sinusoids’ (1) cycle amplitude, (2) cycle period, or (3) both cycle amplitude
and period. Thus, each sine wave had periodic, chaotic, or random manipulations to the magnitude,
timing, or both magnitude and timing of the cycles within the wave (Figure 2). Periodic manipulations
were made using sine function in MATLAB ®. Chaotic manipulations were generated using a pink
noise generator. Random manipulations were generated using the ‘randi’ function in MATLAB ®.
Individual continuous time series were generated to mimic the number of cycles of each subject as
well as the time series’ data length. Meaning, a specific generated time series was generated to reflect
each subject (e.g., if one subject had 500 cycles and another had 550, one set of generated files would
have 500 cycles and the other would have 550).
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Figure 2. A 120-second segment of generated continuous data for periodic (left), chaotic (middle), and
random (right) for amplitude (top), period (middle), and period + amplitude (bottom) manipulations.
Discrete signals (Figure 3) were generated by subtracting peaks from valleys as denoted by x’s on
each graph.

Figure 3. A 120-second segment of generated discrete data for periodic (left), chaotic (middle), and
random (right) for amplitude (top), period (middle), and period + amplitude (bottom) manipulations.

Periodic manipulations to the sinusoids’ cycle amplitude had amplitudes that fluctuated
sinusoidally between ±0.5 and 1. The cycle period was not altered. Chaotic manipulations to cycle
amplitude generated sinusoidal cycles with amplitudes that fluctuated chaotically between ±0.5 and 1.
Chaotic manipulations to cycle period also used the pink noise generator to alter the period of each
cycle of the sine wave. Random manipulations to cycle amplitude generated sinusoidal cycles with
pseudo random amplitude fluctuations between ±0.5 and 1. Random manipulations to cycle period
altered the period between each cycle of the sine wave. A 10-point moving average filter was used
on the signals with a random or chaotic cycle period to filter a ‘kink’ caused by the changing period
between cycles. From the continuous sine waves, discrete time series were calculated as the between
the peak and valley of each cycle using MATLAB ®.
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2.3. Data Processing

All data were inspected visually to ensure proper tracking and confirm that no outliers were
present. Data length, N, of continuous data was 288,000 at 480 Hz data for 10 min of walking.
All continuous time series were downsampled by factors of 2, 4, and 8 to represent sampling frequencies
of 240, 120, and 60 Hz. Discrete time series were generated from the continuous time series at each of
the sampling frequencies (480, 240, 120, and 60 Hz) per the methods above (Figure 4). Data lengths for
each of the discrete time series were 566 ± 204 data points.   
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From which sample entropy was expressed as:

SE(m, r, N) = −ln
Am(r)
Bm(r)

Sample entropy will equal zero when Am(r) = Bm(r). Sample entropy is not defined when
conditional probability Am(r) or Bm(r) = 0. The smallest value of conditional probability that can be
calculated is 1/2[(N − m)(N – m − 1)] which leads to a maximum value for sample entropy equal to
ln(N − m) + ln(N – m − 1) − ln(2). Using the two different data types, sample entropy was calculated,
using the methods described by Richman and Moorman [21] and Govindan et al. [30], for all signals
using m = 2 and 3, and r = 0.10, 0.15, 0.20, 0.25, and 0.30 times the standard deviation of the signal, for a
total of 40 different parameter combinations (two m-values, five r-values, and four sampling rates).
Sample entropy was calculated on the continuous, 10-minute joint angles and generated counterparts
using lags as defined by Govindan et al. [30]. This method discards correlations not related to the
underlying dynamics of the system by introducing a lag, δ, between the vectors values. The value of δ
is chosen as the point when the autocorrelation function falls below 1/e. The lags used for calculation
of sample entropy for the continuous data are reported in Table 1.
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Table 1. Mean (range) lag values used to calculate sample entropy on continuous time series.

60 Hz 120 Hz 240 Hz 480 Hz

Biological Data

Ankle Angle 8 (5–10) 16 (10–20) 31(20–39) 62 (40–78)
Knee Angle 10 (8–12) 18 (15–23) 36 (30–46) 72 (59–92)
Hip Angle 13 (11–17) 26 (22–33) 51(44–65) 102 (87–130)

Generated Data

Periodic
Manipulations 13 (6–17) 26 (12–34) 52 (24–68) 104 (48–136)

Chaotic
Manipulations 13 (6–17) 26 (12–34) 52 (24–68) 104 (48–136)

Random
Manipulations 13 (6–17) 26 (12–34) 52 (24–68) 104 (48–136)

Note: Values rounded to the nearest whole number.

In addition, sample entropy was calculated on the biological and generated discrete time series.
However, in some cases, typically when r = 0.10, the sample entropy value that was returned converged
toward infinity (indicated in MATLAB ®files as a value of Inf), indicating that no matches were found
for vectors of length m + 1. As these were strong outliers, they were removed from the data sets.
For the range of motion data, nine were removed at the ankle, 13 at the knee, and 14 at the hip.
For the discrete, generated data, between 3 to 20 values were removed from the following four
combinations: (1) periodic manipulations to cycle period; (2) chaotic manipulations to cycle period;
(3) periodic manipulations to cycle period plus amplitude; and (4) chaotic manipulations to cycle
period plus amplitude.

2.4. Statistical Analysis

All data were checked for normality using a Shapiro–Wilk test. Ninety-nine percent of all
biological data were normally distributed. All continuous, generated data were found to be not
normally distributed. Discrete, generated data were normally distributed with the exception of
two manipulations. Non-normally distributed data were transformed using a reciprocal approach.
After transformation, all residuals demonstrated normal distribution. Three-way, repeated measure
ANOVAs were used to compare the effect of sampling rate (Hz) and parameter settings (m and r) on
the calculated sample entropy. Sample entropy values for continuous data were analyzed separately to
sample entropy values for discrete data. Uncorrected Fischer’s least significant difference post-hoc
tests were used. Significance was set at α = 0.05. Statistical analysis was conducted in SPSS (IBM,
Armonk, NY, USA) and Prism7 (GraphPad Software, La Jolla, CA, USA).

3. Results

3.1. Joint Angle Data

Significant differences in regularity were found between almost every combination of sample rate,
m, and r for the (1) ankle and knee; (2) ankle and hip; and (3) knee and hip. Regularity increased from
the ankle to the knee and from the knee to the hip. The only exception was between the ankle and
knee when m = 3 and r = 0.30 at all four sampling rates; no significant differences were found in these
cases. Furthermore, at each joint, joint angles demonstrated significant main effects and interactions
for sampling rate, m, and r (Table 2).
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Table 2. Statistical results for joint angle data (continuous data) and range of motion (discrete data)
from all three lower extremity joints. Significant values are shown in bold type (p < 0.05). Joint angles
(continuous) data were compared separately to range of motion data (discrete) data.

Joint Angle Range of Motion

Model F-Value p-Value F-Value p-Value

Ankle

Hz 294.7 < 0.0001 0.68 0.58
m 255.5 < 0.0001 0.57 0.49
r 105.9 < 0.0001 136.9 < 0.0001

Hz*m 249.6 < 0.0001 1.1 0.37
Hz*r 114.3 < 0.0001 1.1 0.39
m*r 7.2 < 0.0001 0.46 0.77

Hz*m*r 6.9 < 0.0001 1.0 0.43

Knee

Hz 481.8 < 0.0001 8.3 0.02
m 84.0 < 0.0001 0.01 0.92
r 35.1 < 0.0001 42.5 < 0.0001

Hz*m 86.7 < 0.0001 1.1 0.40
Hz*r 38.4 < 0.0001 2.3 0.04
m*r 7.9 < 0.0001 1.4 0.33

Hz*m*r 8.9 < 0.0001 0.40 0.95

Hip

Hz 204.9 < 0.0001 0.10 0.96
m 188.9 < 0.0001 0.41 0.57
r 40.0 < 0.0001 37.9 < 0.0001

Hz*m 193.0 < 0.0001 1.5 0.28
Hz*r 31.0 < 0.0001 1.9 0.07
m*r 1.6 0.20 0.22 0.92

Hz*m*r 1.7 0.09 4.7 < 0.0001

At the ankle, the interaction of Hz*r*m was significant (F(12,120) = 6.9, p < 0.001) (Figure 5, top row).
Greater irregularity was found when m = 2 as compared to when m = 3. In general, regularity increased
as the sampling rate increased. Further, regularity increased significantly as r values increased.

The knee joint angle revealed a significant 3-way interaction between Hz*r*m (F(12,120) = 8.9,
p < 0.001) (Figure 5, middle row). Irregularity was greater when m = 2 than when m = 3. Regularity
increased significantly as sampling rate decreased or as r values increased. It was found that 674 of the
possible 780 pairwise comparisons were significant.

At the hip, the joint angle had a significant interaction of Hz*m (F(3,30) = 31.0, p < 0.001) as well as
a significant main effect of r (F(4,40) = 188.9, p < 0.001). Irregularity was greater when m = 2 than when
m = 3. Regularity increased significantly as sampling frequency decreased or as r values increased.
However, as the sampling rate decreased from 480 to 60 Hz, the effect of increasing r did not change
the entropy value as drastically (Figure 5). Six-hundred-and-forty-two of the 780 possible pairwise
comparisons were significant.
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3.2. Biological Range of Motion Data 

Figure 5. Group mean sample entropy of ankle joint angle (top row), knee joint angle (middle row),
and hip joint angle (bottom row) for each Hz*r*m parameter combination. Sample entropy values are
displayed on the y-axis. All parameter combinations are plotted along the x-axis starting with m = 2,
r = 0.10, and 60 Hz at the left and moving to m = 3, r = 0.30, and 480 Hz at the right. For clarity, only the
combination with r = 0.10 is labeled for each combination of m and sampling rate, with the r value
increasing with each data point within each combination.

3.2. Biological Range of Motion Data

No significant difference in range of motion regularity was found between (1) ankle and knee;
(2) ankle and hip; and (3) knee and hip. This was true for every combination of sample rate, m, and r.
Moreover, at each joint, range of motion demonstrated a significant main effect of r (Table 2).

At the ankle, a main effect of r was found to be significant (F(4,16) = 136.9, p < 0.001) for the
range of motion time series (Figure 6, top row). As the r value increased from 0.10 to 0.30, irregularity
decreased (sample entropy became smaller in value). No other significant interactions or main effects
were found at the ankle (Figure 6).

The range of motion at the knee was found to have a significant interaction between Hz*r
(F(12,24) = 2.3, p = 0.037) (Figure 6, middle row). Irregularity decreased as the r value increased.
The sampling rate also influenced irregularity. The 60 Hz sample rate was the least consistent across r
values. Regularity appeared to be least influenced at the 480 Hz sample rate when r was set greater or
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equal to 0.15. For the majority of r combinations, 120 Hz provided the greatest irregularity in knee range
of motion.
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Figure 6. Group mean sample entropy of range of motion at the ankle (top row), knee (middle row),
and hip (bottom row) for each Hz*r*m parameter combination. Sample entropy values are displayed
on the y-axis. All parameter combinations are plotted along the x-axis starting with m = 2, r = 0.10, and
60 Hz at the left and moving to m = 3, r = 0.30, and 480 Hz at the right. For clarity, only the combination
with r = 0.10 is labeled for each combination of m and sampling rate except the final combination.

Hip range of motion was found to have a significant 3-way interaction between Hz*r*m
(F(12,36) = 4.7, p < 0.001) (Figure 6, bottom row). When m increased from 2 to 3, irregularity at
240 and 480 Hz increased; however, irregularity decreased at 60 Hz and 120 Hz with 60 Hz being the
most affected by the increase in m. Regularity increased as r values increased across all sampling rates.
Both m of 2 and 3 provided very similar regularity across four of the five r values. Only when r was
very small, r = 0.10, was irregularity greater at m = 2 as compared to m = 3.

3.3. Continuous, Generated Data

The F- and p-values for the main effects of sample rate, m, and r and all interactions for the
continuous, generated data are summarized in Table 3. Periodic manipulations had the greatest effect
on cycle amplitude; whereas, chaotic and random manipulations had the greatest effect on cycle period.
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3.3.1. Periodic Manipulations

When cycle amplitude was subjected to periodic manipulations, this led to a significant 3-way
interaction between Hz*r*m (F(12,120) = 196.9, p < 0.001) (Figure 7, top row, left column). Periodic
manipulations to cycle period led to a significant interaction between Hz*m (F(3,30) = 219.2, p < 0.001)
(Figure 7, middle row, left column). When m increased from 2 to 3, irregularity increased at a greater
rate as sampling rate increased from 60 Hz to 480 Hz. In addition, periodic manipulations to the
combination of both cycle period and amplitude led to a significant 3-way interaction between Hz*r*m
(F(12,120) = 196.9, p < 0.001) (Figure 7, bottom row, left column). Findings were similar for both cycle
amplitude and the combination of cycle period and amplitude manipulations. Irregularity was always
greater when m = 3 compared to m = 2 at all r values. Irregularity increased with the increase in
sampling rate from 60 Hz to 480 Hz. An increase in the r value made little difference in irregularity
when the sampling rate was lower but increased at a greater rate with increasing r at the greater
sampling rates (e.g., 480 Hz). It was found that 597 of the possible 780 pairwise comparisons were
significant for both manipulations.

Table 3. Statistical results for continuous, generated data subjected to periodic, chaotic, and random
manipulations to the sinusoids’ cycle amplitude, cycle period, and both cycle amplitude and period
combined. Significant values are shown in bold (p < 0.05).

Periodic Manipulation Chaotic Manipulation Random Manipulation

Model F-Value p-Value F-Value p-Value F-Value p-Value

Cycle
amplitude

Hz 40.5 < 0.0001 273.0 < 0.0001 220.3 < 0.0001
m 16921.0 < 0.0001 308.9 < 0.0001 207.7 < 0.0001
r 140.9 < 0.0001 249.1 < 0.0001 224.5 < 0.0001

Hz*m 40.2 < 0.0001 296.6 < 0.0001 217.9 < 0.0001
Hz*r 16.0 < 0.0001 252.9 < 0.0001 226.2 < 0.0001
m*r 140.7 < 0.0001 287.7 < 0.0001 206.7 < 0.0001

Hz*m*r 15.8 < 0.0001 272.6 < 0.0001 218.4 < 0.0001

Cycle period

Hz 225.7 < 0.0001 211.1 < 0.0001 219.7 < 0.0001
m 201.6 < 0.0001 19.2 0.001 157.1 < 0.0001
r 1.4 0.27 204.1 < 0.0001 217.1 < 0.0001

Hz*m 219.2 < 0.0001 30.6 < 0.0001 158.7 < 0.0001
Hz*r 0.88 0.57 204.0 < 0.0001 217.0 < 0.0001
m*r 1.1 0.38 226.4 < 0.0001 217.1 < 0.0001

Hz*m*r 0.90 0.55 227.1 < 0.0001 215.8 < 0.0001

Cycle period
and amplitude

Hz 225.4 < 0.0001 266.2 < 0.0001 225.7 < 0.0001
m 219.8 < 0.0001 124.9 < 0.0001 185.9 < 0.0001
r 224.9 < 0.0001 273.7 < 0.0001 245.5 < 0.0001

Hz*m 221.2 < 0.0001 123.9 < 0.0001 186.6 < 0.0001
Hz*r 223.1 < 0.0001 273.2 < 0.0001 245.8 < 0.0001
m*r 195.9 < 0.0001 67.3 < 0.0001 143.5 < 0.0001

Hz*m*r 196.9 < 0.0001 51.0 < 0.0001 143.7 < 0.0001

Note. Periodic, chaotic, and random refer to the type of manipulations applied to the signal. Cycle period,
cycle amplitude, and cycle period and amplitude refer to the features of the signal which were manipulated.

3.3.2. Chaotic Manipulations

Chaotic manipulations to cycle amplitude led to a significant 3-way interaction between Hz*m*r
(F(12,120) = 272.6, p < 0.001) (Figure 7, top row, middle column). Irregularity increased as r increased
across all Hz and m; the increase in irregularity was greater when m = 3 and as r increased. Irregularity
increased when m increased from 2 to 3; however, the increase was greater when Hz was larger.
Cycle period manipulations led to a significant 3-way interaction between Hz*r*m (F(12,120) = 227.1,
p < 0.001) (Figure 7, middle row, middle column). The interaction between m and r was of particular
interest. When r was set equal to 0.10 or 0.15, irregularity was greater with m = 3; however, there
was no difference in irregularity between m of 2 and 3 when r = 0.20. As r increased to 0.25 and
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0.30, irregularity was greater when m = 2 compared to m = 3. Irregularity was always greater as the
sampling rate increased across both m values. An increase in the r value made little difference in
irregularity when the sampling rate was lower but increased at a greater rate with increasing r at the
greater sampling rates (e.g., 480 Hz). It was found that 595 of the possible 780 pairwise comparisons
were significant. The combination of chaotic manipulations to both cycle period and amplitude led
to a significant 3-way interaction between Hz*r*m (F(12,120) = 51.0, p < 0.001) (Figure 7, bottom row,
middle column). Irregularity was greater when m = 3 compared to m = 2 at all r values. Irregularity
was greater as the sampling rate increased across both m values. An increase in the r value made
little difference in irregularity when the sampling rate was lower but increased at a greater rate with
increasing r at the greater sampling rates (e.g., 480 Hz). It was found that 602 of the possible 780
pairwise comparisons were significant.
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Figure 7. Mean sample entropy of continuous, generated time series with periodic (left column), chaotic
(middle column), and random (right column) manipulations for each Hz*r*m parameter combination.
Manipulations to cycle amplitude are shown in the top row, cycle period in the middle row, and both
cycle amplitude and period in the bottom row. Sample entropy values are displayed on the y-axis
whereas all parameter combinations are plotted along the x-axis starting with m = 2, r = 0.10, and 60 Hz
at the left and moving to m = 3, r = 0.30, and 480 Hz at the right. For clarity, only the combination with
r = 0.10 is labeled for each combination of m and sampling rate except the final combination.

3.3.3. Random Manipulations

Random manipulations to cycle amplitude resulted in a significant 3-way interaction between
Hz*m*r (F(12,120) = 218.4, p < 0.001) (Figure 7, top row, right column). Irregularity increased as
r increased across all Hz and m; the increase in irregularity was greater when m = 3 and as r
increased. Irregularity increased when m increased from 2 to 3; however, the increase was greater
when Hz was larger. Random manipulations to cycle period resulted in a significant 3-way interaction
between Hz*r*m (F(12,120) = 215.8, p < 0.001) (Figure 7, middle row, right column). In addition,
manipulations to cycle period plus amplitude resulted in a significant 3-way interaction between
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Hz*r*m (F(12,120) = 143.7, p < 0.001) (Figure 7, bottom row, right column). The findings were similar
for both types of manipulations. Irregularity was always greater when m = 3 compared to m = 2 at
all r values. When m increased from 2 to 3, the resulting irregularity increased at a greater rate as
sampling rate increased from 60 Hz to 480 Hz. An increase in the r value made little difference in
irregularity when the sampling rate was lower but increased at a greater rate with increasing r at the
greater sampling rates (e.g., 480 Hz).

3.4. Discrete, Generated Data

Periodic manipulations had the greatest effect on cycle amplitude (Table 4). Whereas, chaotic
and random manipulations lead to a main effect of m for cycle amplitude and a main effect of r for
cycle period.

3.4.1. Periodic Manipulations

Discrete data with periodic manipulations to cycle amplitude resulted in a significant 3-way
interaction between Hz*r*m (F(12,120) = 13.5, p < 0.001) (Figure 8, top row, left column). Irregularity
was always greater when m = 2 as compared to when m = 3 across all values and sampling rates.
Irregularity was dependent on the combination of sampling rate and the selected r value. Irregularity
increased from r = 0.10 to r = 0.15; however, decreased as r increased from 0.15 to 0.30. The change in
irregularity was dependent on the sampling rate at r values of 0.10 and 0.15 and did not have as much
of an effect when r values greater or equal to 0.20. When subjected to cycle period manipulations,
one main effect, the effect of m, was found (F(1,10) = 29.1, p < 0.001) (Figure 8, middle row, left column).
Irregularity was always greater when m = 2 as compared to when m = 3. When both cycle period and
amplitude manipulations were applied to the data, a significant 3-way interaction between Hz*r*m was
found (F(12,120) = 15.8, p < 0.001) (Figure 8, bottom row, left column). Opposite of the manipulations
independently, irregularity was always greater when m = 3 as compared to when m = 2 across all r
values. Similar to amplitude manipulations alone, irregularity was dependent on the combination
of sampling rate and the selected r value; however, in the opposite direction. Irregularity decreased
from r = 0.10 to r = 0.15 and proceeded to increase as r increased from 0.15 to 0.20. When r was greater
or equal to 0.25, irregularity was fairly consistent. The change in irregularity was dependent on the
sampling rate at r values of 0.10 and 0.15 and little effect when r values greater or equal to 0.20.
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Table 4. F- and p-values for periodic, chaotic, and random manipulations to the sinusoids’ cycle
amplitude, cycle period, and both cycle amplitude and period combined on discrete, generated data.
Significant values are shown in bold (p < 0.05).

Periodic Chaotic Random

Model F-Value p-Value F-Value p-Value F-Value p-Value

Cycle
amplitude

Hz 45.1 < 0.0001 0.16 0.92 0.58 0.64
m 5472795 < 0.0001 0.47 0.51 0.71 0.45
r 246.1 < 0.0001 236.3 < 0.0001 50.9 < 0.0001

Hz*m 25.8 < 0.0001 0.69 0.57 0.31 0.82
Hz*r 25.6 < 0.0001 0.17 1.0 0.41 0.96
m*r 883.2 < 0.0001 2.5 0.06 1.6 0.21

Hz*m*r 13.5 < 0.0001 0.57 0.86 1.0 0.43

Cycle period

Hz 0.38 0.77 0.83 0.53 0.56 0.65
m 29.1 < 0.0001 0.09 0.79 17.5 0.009
r 1.8 0.15 54.3 < 0.0001 81.2 < 0.0001

Hz*m 1.9 0.16 1.1 0.41 3.7 0.04
Hz*r 0.87 0.58 0.86 0.59 1.3 0.22
m*r 1.4 0.24 0.10 0.98 5.4 0.004

Hz*m*r 0.78 0.67 1.1 0.39 2.2 0.02

Cycle period
and amplitude

Hz 45.1 < 0.0001 1.5 0.23 0.70 0.56
m 5472795 < 0.0001 0.44 0.53 0.02 0.90
r 246.1 < 0.0001 88.8 < 0.0001 40.1 < 0.0001

Hz*m 25.8 < 0.0001 0.55 0.65 0.52 0.67
Hz*r 25.6 < 0.0001 1.1 0.40 0.94 0.51
m*r 883.2 < 0.0001 0.54 0.71 2.7 0.06

Hz*m*r 13.5 < 0.0001 1.5 0.13 0.88 0.57

Note. Periodic, chaotic, and random refer to the type of manipulations applied to the signal. Cycle period, cycle
amplitude, and cycle period and amplitude refer to the features of the signal which were manipulated.
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Figure 8. Mean sample entropy of discrete, generated time series with periodic (left column), chaotic
(middle column), and random (right column) manipulations for each Hz*r*m parameter combination.
Manipulations of the cycle amplitude are shown in the top row, cycle period in the middle row, and
both cycle amplitude and period in the bottom row. Sample entropy values are displayed on the y-axis.
All parameter combinations are plotted along the x-axis starting with m = 2, r = 0.10, and 60 Hz at the
left and moving to m = 3, r = 0.30, and 480 Hz at the right. For clarity only the combination with r =
0.10 is labeled for each combination of m and sampling rate except the final combination. NOTE: y-axis
scales were adjusted to best display data. They may not be the same across subfigures.

3.4.2. Chaotic Manipulations

Chaotic manipulations to cycle amplitude resulted in a main effect of r (F(4,16) =50.9, p < 0.001)
(Figure 8, top row, middle column). Irregularity increased as r increased. The manipulations to cycle
period resulted in a main effect of r (F(4,8) = 54.3, p < 0.001) (Figure 8, middle row, middle column).
Regularity increased as the r value increased across both sampling rates and m values. The combination
of cycle period and amplitude manipulations resulted in a main effect of r (F(4,36) = 88.8, p < 0.001)
(Figure 8, bottom row, middle column). Regularity increased as the r value increased across both
sampling rate and m values.

3.4.3. Random Manipulations

Random manipulations to cycle amplitude also resulted in a significant main effect of r
(F(1,4) = 173.5, p < 0.001) (Figure 8, top row, right column). Regularity significantly increased as
r increased. Random manipulations to cycle period resulted in a significant 3-way interaction between
Hz*r*m (F(12,60) = 2.2, p = 0.021) (Figure 8, middle row, right column). With increasing r values,
regularity increased. Compared to m = 3, irregularity was always greater when m = 2. Irregularity
was greater at m = 2 when the r value was smallest. Irregularity was dependent on the combination of
sampling rate and the selected m value. As sampling rate increased, regularity increased when m = 2;
however, when m = 3, 60 Hz and 480 Hz resulted in the same regularity with 120 Hz producing the
greatest irregularity and 240 Hz producing the least irregularity. Combining manipulations to cycle
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period and amplitude resulted in a main effect of r (F(4,24) = 40.1, p < 0.001) (Figure 8, bottom row,
right column). Regularity increased as the r value increased.

4. Discussion

As there has been a shift in the use of discrete data to continuous data types for use in sample
entropy calculation, there is a need to understand how the use of data type will affect conclusions
drawn. In particular, this paper aimed to examine the sample entropy between the three lower
extremity joints while walking. Using both continuous (joint angle) and discrete (range of motion)
data types, we aimed to understand if relative sample entropy between the joints would be similar for
both data types. The relationship across the joints was not similar for joint angle and range of motion
data. Using range of motion data, there was no difference in values across the three joints. However,
the use of joint angle data produced sample entropy values that significantly decreased, an increase in
regularity, from the ankle to the hip. In addition, sample entropy values calculated from joint angle
data were not similar to those from range of motion data (Figure 5, Figure 6, and Figure 9). Range of
motion data resulted in sample entropy values well above 1 yet, joint angle data resulted in values well
below 1. Furthermore, in general, sample entropy calculated from joint angle data was more affected
by changes in input parameters and sampling rate compared to sample entropy calculated from range
of motion data. We observed that across the three joints, only changes in the input parameter r had a
significant effect for range of motion data.
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Figure 9. Representative results of sample entropy calculated from range of motion (left axis) and joint
angle (right axis) at 120Hz, m = 2, r = 0.25. Note: Left and right axes have different scales.

Previous work has suggested that the stable calculation of sample entropy requires 2000 data
points [14]. It could be tempting to use continuous data series to achieve this number; however, it has
not been proven that this is an appropriate input for the calculation of sample entropy, or that calculation
of sample entropy from continuous data would lead to similar results as when calculated from discrete
data. It was found that relationships between the joints and sample entropy values themselves were
not similar between the two types of data sets, possibly due to the dynamics of the system that each
capture. Discrete data captures a general picture of walking regularity and cycle-to-cycle regularity.
However, continuous data may capture the dynamics of patterns occurring within each cycle. This may
explain the significant differences between joint angles with the ankle being the most irregular and
the hip angle as the most regular. During walking, changes in ankle angle are required during each
stride to maintain balance during stance and for toe clearance during swing. At the knee, changes in
joint angle are required to position the foot prior to stance. Whereas, changes in hip joint angle affect
stride length and occur in a similar cyclical pattern from stride to stride. These differences in joint
function may explain the relative changes in regularity using joint angle data. Further, lag values used
in the calculation of sample entropy were smallest for the ankle, suggesting that changes in dynamics
of the ankle joint occur more rapidly than the hip and knee. Data within the ankle joint angle is not as
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redundant as data within the knee and hip. It is possible that the ankle joint angle requires a higher
sampling rate to capture the all of the dynamics of the joint as compared to the hip and knee.

Another explanation for the difference is likely due to the nature of the calculation of sample
entropy itself. When sample entropy is calculated, the value r is multiplied by the standard deviation
of the data series to set the tolerance used to determine if vectors of data points are counted as similar.
When continuous data is used as the input, the difference between consecutive data points is much
smaller relative to the standard deviation, compared to discrete data. This results in many more vectors
of length m and m + 1 falling within the tolerance, counted as similar, and a much smaller sample
entropy value. This is true even more so at higher sampling rates. Because of the greater number of
vectors falling within the tolerance, changes in the value of r will have a greater effect on the actual
tolerance relative to the differences between consecutive data points, and hence, on the number of data
series falling within the tolerance. When m is increased, the number of data series of length m+1 that
are counted similar at m will reduce, with the rate of reduction becoming greater for larger values of m.
Future work should explore the effect on sample entropy when using values of m greater than 3 with
continuous data. This could be of particular interest if the purpose of the investigation is to determine
the regularity of longer patterns within a cycle.

Early biological entropy studies focused on the use of discrete data sets. This could be due
to the volatility of continuous data to changes in input parameters and sampling rate. In addition,
the motivation for development of an algorithm to calculate entropy was to produce a measure that
provided not only insight into the dynamics of the system, but also was not affected by noise in
the system. It was stated that approximate entropy provided “de facto noise filtering and artifact
insensitivity” [28], p.111, likely due to the nature of the data used in its calculation. In the current
study, sample entropy calculated from continuous data was more affected by changes in both input
parameters and sampling rates as compared to discrete data. Based on the results of this work, it is
recommended that discrete data be used for the calculation of sample entropy. The effect of sampling
rate on discrete data should not be completely discounted however, especially if the input parameter
to the sample entropy calculation is interval (time) data. If data are collected at 60Hz the minimum
interval between points is 0.0167 s. Should these data have a standard deviation of 0.1s, r values less
than 0.167 will give a tolerance less than the minimum interval between data points and larger r values
will give tolerances greater than the minimum interval. It is important, therefore, to consider the
resolution (minimum interval between points) of the data as determined by the sampling frequency in
conjunction with selection of r value for calculation of sample entropy.

If the entropy of the dynamics within a cycle are of interest, it is recommended that careful
consideration be given to sampling rate and input parameters, as results could be due to a parameter
artifact and not a true finding. In addition, it is recommended that a lag be used in the calculation
of entropy with continuous data. Furthermore, if continuous data are used, it is crucial that input
parameters and sampling frequency are carefully selected and consistent when comparisons are made
between studies. Whereas, comparisons based on discrete data are less sensitive to methodological
differences, except for the input parameter r. A very recent paper [39] investigated the use of filtered and
downsampled data for the calculation of sample entropy from center of pressure data measured during
treadmill walking. This work suggested that when data are subjected to filtering of the high frequency
components and resampling to have the same number of average data points per stride sample entropy
maintained the same directional differences across two walking conditions. The data in the current study
were not filtered. It has been suggested that filtering will remove some of the inherent variability within
the signal and that a consistent level of measurement noise will be present. Any differences can therefore
be attributed to the differences in the signals [40,41]. It has also been shown that the sample entropy
calculation is robust in the presence of noise [42]. Given the different data treatments it is difficult to
draw conclusions when comparing the results this recent paper with the current study.

To further understand the influence of input parameters, sampling rate, and investigated signal
type (continuous or discrete), the present study calculated sample entropy from generated continuous
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and discrete signals of a theoretically known type. These signals were based on a sine wave in which
temporal and spatial periodicity were periodically, chaotically, and randomly manipulated by altering
the cycle period, cycle amplitude, or both. In agreement with the biologically-derived data, sample
entropy values calculated from generated, continuous data were not similar to those from generated,
discrete data (see Figures 7 and 8). In addition, continuous data resulted in sample entropy values
well below 1 similar to the biological, joint angle data. However, this was not always true for the
discrete data. Periodic manipulations to cycle amplitude, cycle period, and cycle period and amplitude
resulted in values well below 1, similar to the continuous data. In addition, any manipulation of
cycle amplitude resulted in sample entropy values well below 1. In general, it was observed that
the generated, discrete-based signals were less sensitive to changes in input parameters or sampling
rate compared to the continuous signals. This was primarily true when the signals were subjected to
chaotic or random manipulations or only for the cycle period when subjected to periodic manipulations.
Values of sample entropy calculated from generated signals were most similar to the values calculated
from biological signals for data with chaotic and random fluctuations to cycle period and both cycle
period and amplitude. This suggests that these types of signals, or a combination thereof, are more
likely present in biological data than truly periodic fluctuations.

There are several limitations to this study. The generated data used in this study may not properly
reflect the types of biological signals from which sample entropy is calculated. While many biological
signals are cyclical, their underlying characteristics may not be truly reflected by a sine wave. Further,
the manipulations were applied individually and in combination with the cycle period and cycle
amplitude. Biological signals will most likely show fluctuations in both period and amplitude; however,
it is not known if the level of fluctuation is consistent with the manipulations applied to the generated
data. Data recorded from biological signals generally includes some level of noise. The generated
signals used in this study did not contain noise. Studies on the sample entropy values calculated from
discrete and continuous data with known levels of noise present may provide further useful evidence
concerning the information these data types provide. Signals containing multiple sine waves may
provide a more realistic signal of high regularity for comparison of sample entropy values calculated
from discrete and continuous data.

5. Conclusions

The calculation of sample entropy from continuous data provided results different to those
determined when discrete data was used. The data types differed in terms of the relationship between
joints and the sample entropy values themselves. Thus, results between the two data types cannot
be compared. It is possible that calculation of sample entropy from continuous data may provide
information about the regularity of fluctuations which occur within the cyclical movement, which
cannot be captured from discrete data taken from these cycles. However, sample entropy calculated
from continuous data was susceptible to the sampling rate of the data, as well as the parameters m and
r. While calculation of sample entropy from discrete data was more robust to changes in sampling rate
and m, it was affected by changes in r. It is recommended that discrete data be used for the calculation
of sample entropy. However, if continuous data must be used, it is recommended that a lag be used
and careful consideration be given to sampling rate and input parameters. The volatility of continuous
data to input parameters and sampling rate may result in findings reported that are not true findings
and are due to a parameter artifact.
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