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also in that it replaces tedious recursion relations in terms of simple sums which are easy

to perform. We evaluate the contributions of scalar and spin exchanges in the t-channel

exactly, in terms of higher order Hypergeometric functions. These relate to a particular

exchange of conformal spin β = ∆+J in the s-channel through the inversion formula. Our

results reproduce the special cases for large spin anomalous dimension and OPE coefficients

obtained previously in the literature.

Keywords: 1/N Expansion, AdS-CFT Correspondence, Conformal Field Theory, Scat-

tering Amplitudes

ArXiv ePrint: 1806.10919

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2018)052

mailto:carlosgiraldo@nbi.ku.dk
mailto:kallol.sen@ipmu.jp
https://arxiv.org/abs/1806.10919
https://doi.org/10.1007/JHEP11(2018)052


J
H
E
P
1
1
(
2
0
1
8
)
0
5
2

Contents

1 Introduction and results 1

2 Inversion formula 4

3 Spinning anomalous dimension at finite β from cross-ratios space 6

3.1 Scalar exchange 6

3.2 Spin exchange 9

3.3 Four dimensions 12

4 Spinning anomalous dimension at finite β from Mellin space 13

4.1 Scalar exchange 14

4.2 Spin exchange 16

4.3 Matching cross-ratios conformal blocks 19

5 Special cases 21

5.1 ε-expansion for identical scalars 21

5.2 Particular dimensions 22

5.2.1 d = 3, ∆ε = 1 22

5.2.2 d = 6, ∆ε = 4 23

6 Regular terms 23

6.1 From Mellin space 24

6.1.1 Special case: identical scalars 26

7 Conclusions and discussion 27

A Integral representation 28

A.1 Simplification of the Mack polynomials 32

B Recursion in spin 32

1 Introduction and results

Recent years have seen a resurgence of the bootstrap program boosted by the developments

of [2] on bounding operator dimensions by imposing crossing symmetry on correlation

functions. Subsequent applications of this techniques [3–6] lead to tremendous progress

that can be followed by looking into the recent updated reviews on the topic [7–9].

Despite the crossing equation is the suitable tool to analyze conformal observables

numerically, there are some regions in parameter space that still allow to be explored ana-

lytically. In particular, a great deal of progress has been made by looking at the spectrum
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of large spin operators [10, 11]. Based on this analysis a successful perturbation theory

in spin has been developed [12–16] which allows not only to compute anomalous dimen-

sion of large spin operators by also to understand universal properties of those operators

in generic conformal field theories. One of the striking achievements of this approach is

that, even when a perturbation expansion has been made in inverse powers of large spin,

the given expansion can resum to get results at finite smaller values of the spin. The

reason why this happens is due to the analyticity in spin of the conformal partial wave

expansion recently proved in [1] (see also [17]), where also a powerful inversion formula has

been derived which express the OPE coefficient of a given operator exchange in terms of a

convolution of the double discontinuities of the four-point correlation functions across the

light-cone branch cuts. This inversion formula is our main tool in this paper to compute

the anomalous dimension of the large spin double-twist operators at large but still finite

values of the spin, or in other words we show that the inversion formula indeed resums the

large spin expansion of the anomalous dimension. We do this by writing the four-point

function in a conformal partial wave expansion in both, position space and Mellin space. A

first consideration of the inversion formula in Mellin space have been made recently in [18]

which we developed and improve further here. A boostrap approach in Mellin space has

been developed and applied in the works [19–23], where unlike here, crossing symmetry

is guaranteed by construction and the bootstrap equations corresponds to conditions that

eliminate spurious exchanging operators.

Even though there are closed forms for the conformal blocks in two and four dimen-

sion [24–26], that’s not the case in general dimension, in particular there is not known closed

form in any odd dimension. One of the advantages of working in Mellin space is that it is

possible to write the conformal partial waves expansion in arbitrary dimension [27] and we

exploit this fact here. The most important result of the paper is demonstrated in section 3

and again in section 4. We consider a correlator of the form 〈O1(x1)O2(x2)O2(x3)O1(x4)〉
in the z → 0 limit so that in the s-channel, we consider the product of OPEs O1 ×O2. In

the t-channel, the decomposition is between the OPE of O1 ×O1 and O2 ×O2 (resembles

the decompostion of identical scalars). Specifically, in the s-channel, we can write, in the

z → 0 limit,

GJ,∆(z, z̄) ≡ 〈O1(x1)O2(x2)O2(x3)O1(x4)〉s−channel =
∑
τ,β

z
τ
2Cτ (β)GJ,∆(z, z̄) , (1.1)

where τ = ∆1 + ∆2 + γ12(β), β = ∆ + J is the conformal spin, with γ12(β) the anomalous

dimension. This decomposition, is related to the contribution in the t-channel through the

inversion formula of [1] and gives,

z
τ
2Cτ (β) =

∑
J,∆

f11(J,∆)f22(J,∆)κβ

∫ 1

z
dz̄

(1− z̄)2a

z̄2
kβ(z̄)dDisc [GJ,∆(z, z̄)] , (1.2)

where a = (∆2 −∆1)/2. We will review this formula in the next section. Expanding both

sides in the z → 0 limit, we obtain two sets of relations for the anomalous dimensions and

the corrections to the OPE coefficients corresponding to the coefficient of the log z terms

and the regular term.
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The contribution of the scalar exchange in the t-channel related to a particular operator

of a particular conformal spin β = ∆ + J in the s-channel is given by,1

γ0,∆
12 (β) =− 2f14Of23O

(
a− ∆+τ ′

2

)
∆
2

(
−a− ∆+τ ′

2

)
∆
2(

β−∆−τ ′
2 − 1

)
∆
2

(
β+τ ′

2 + 1
)

∆
2

Γ(∆)

Γ
(

∆
2

)2
× 4F3

[
1− h+ ∆

2 ,
∆
2 ,

∆+τ ′

2 + 1− a, ∆+τ ′

2 + 1 + a

1 + ∆− h, 2− β−∆−τ ′
2 , 1 + β+∆+τ ′

2

; 1

]
.

(1.3)

A generalization of the above expression is the contribution of a spin−J operator in the

t-channel in given in section 4.2 and to quote,

γJ,∆12 (β) =− 2f14Of23O

(
a− ∆−J+τ ′

2

)
∆−J

2

(
−a− ∆−J+τ ′

2

)
∆−J

2(
β−∆+J−τ ′

2 −1
)

∆−J
2

(
β+τ ′

2 +1
)

∆−J
2

Γ(∆+J)

(d−2)JΓ
(

∆+J
2

)4 πΓ
(

∆−J
2

)
sinπ

(
J−∆

2

)
×

J∑
m=0

(−1)J−mAm(J,∆)

Γ(1 +m− J)Γ
(
1 +m− ∆+J

2

) (
1− h+m+ ∆−J

2

)
J−m

× 5F4

[
1, ∆−J

2 , 1− h+m+ ∆−J
2 , ∆−J+τ ′

2 + 1 + a, ∆−J+τ ′

2 + 1− a
1 +m− J, 1 + ∆− h, 2− β−∆+J−τ ′

2 , 1 + β+∆−J+τ ′

2

; 1

]
. (1.4)

In the limit z → 0, these are exact expressions in β as long as the anomalous dimension is

keep it small (see below). The definiton of Am(J,∆) is given in (A.22). Notice that (1.4)

reduces to (1.3) for J = 0.

The rest of the paper is organized as follows. In section 2, we provide a brief review of

the inversion formula of [1]. In section 3, we computed the large spin anomalous dimension

from position space. In section 4, the inversion formula is analyzed from the Mellin (inte-

gral) representation point of view and the contributions to the large spin anomalous dimen-

sion from the scalar and spin exchanges are computed. In section 4.3 agreement between

the two approaches is shown. Section 5 discusses some special cases and recover previous

results in the literature. We also consider a perturbative expansion in d− ε dimensions for

identical scalars. Section 6 discusses vaguely how the regular terms can be obtained from

both the position space and the Mellin space. We end with some discussions in section 7.

The relevant details of the computations are provided in appendices. Appendix A discusses

the general integral representation for the conformal block and appendix A.1 discusses the

relevant simplifications of the Mack polynomials in the limit z → 0. Appendix B discusses

the recursion relations for the general spin−J conformal blocks in position space.

1Note that the expressions below agree with the large β limit, but has additional contributions for finite

β. We thank David Simmons-Duffin for pointing this out to us. In general, there are additional terms

in (1.3) and (1.4), which for four dimensions were considered in [28] and we comment below.
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2 Inversion formula

We would like to consider the correlator of four conformal primary scalar operators, which

by conformal invariance, is only a function of cross ratios,

〈O4(x4) · · · O1(x1)〉 =
1

(x2
12)

1
2

(∆1+∆2)(x2
34)

1
2

(∆3+∆4)

(
x2

14

x2
24

)a(
x2

14

x2
13

)b
G(z, z̄) (2.1)

where a = 1
2(∆2 −∆1), b = 1

2(∆3 −∆4), and z, z̄ are conformal cross-ratios given by,

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

23x
2
14

x2
13x

2
24

. (2.2)

The correlator above, can be expand in an operator product expansion when two operators

get close to each other. Expanding in terms of the small distance between, say 1 and 2, we

have the following s-channel expansion,

G(z, z̄) =
∑
J,∆

f12Of43OGJ,∆(z, z̄) (2.3)

where the sum runs over the exchanged primary operator with spin J and dimension ∆.

The function GJ,∆ are termed conformal blocks and are eigenfunctions of the quadratic

and quartic Casimir invariants of the conformal group.

In even spacetime dimensions, the conformal blocks can be expressed in a closed form

in terms of products of hypergeometric functions. They are very well known in two and

four dimensions and are given respectively by

GJ,∆(z, z̄) =
k∆−J(z)k∆+J(z̄) + k∆+J(z)k∆−J(z̄)

1 + δJ,0
, (2.4)

GJ,∆(z, z̄) =
zz̄

z̄ − z
[
k∆−J−2(z)k∆+J(z̄)− k∆+J(z)k∆−J−2(z̄)

]
. (2.5)

where,

kβ(z) = z̄β/2 2F1(β/2 + a, β/2 + b, β, z) . (2.6)

Our main tool in this work is the Lorentzian OPE inversion formula recently derivated by

Simon Caron-Huot [1],2 which we will review quickly in this section. The starting point is

the spectral representation of the OPE (2.3) expansion given by [29],

G(z, z̄) = 1 +
∞∑
J=0

∫ d/2+i∞

d/2−i∞

d∆

2πi
c(J,∆)FJ,∆(z, z̄) . (2.7)

The contour integral pick up the physical poles associated to the exchange of operators in

a OPE expansion and are contained in the function c(J,∆). The function FJ,∆ is given in

terms of a linear combination of conformal blocks plus its shadow respectively as,

FJ,∆(z, z̄) =
1

2

(
GJ,∆(z, z̄) +

KJ,d−∆

KJ,∆
GJ,d−∆(z, z̄)

)
, (2.8)

2See also [17].
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with coefficients given by,

KJ,∆ =
Γ(∆− 1)

Γ
(
∆− d

2

)κJ+∆, κβ =
Γ
(β

2 − a
)
Γ
(β

2 + a
)
Γ
(β

2 − b
)
Γ
(β

2 + b
)

2π2Γ(β − 1)Γ(β)
, (2.9)

and they form a set of orthogonal functions, such as the relation (2.7) can be automatically

inverted in order to solve for the partial wave coefficients,

c(J,∆) = N (J,∆)

∫
d2z µ(z, z̄)FJ,∆(z, z̄)G(z, z̄) , (2.10)

with the normalization factor,

N (J,∆) =
Γ
(
J + d−2

2

)
Γ
(
J + d

2

)
KJ,∆

2π Γ(J + 1)Γ(J + d− 2)KJ,d−∆
. (2.11)

and the conformal invariant measure given by

µ(z, z̄) =

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
(
(1− z)(1− z̄)

)a+b

(zz̄)2
. (2.12)

When going from the Euclidean to the Lorentzian region, the four-point function G(z, z̄)

develops branch cuts singularities along the lightcone distances between the scalar in the

correlator. The idea is then to explore the analytic structure of the partial wave coeffi-

cients (2.10) by deforming the contour of integration in such way that trapping the branch

cuts with the deformed contour extracts the associated discontinuities. In order to do

that, it is necessary to write the spectral function FJ,∆(z, z̄) in terms of solutions of the

conformal Casimir equations such as the function can be split up in two parts: a part

that vanishes with the proper power law at infinity and another that vanishes in the same

way around the origin. Remarkably, it turns out that the particular combination with

this property is actually a conformal block with the quantum numbers ∆ and J swapped

(and shifted by d−1), namely G∆+1−d,J+d−1. Once the proper spectral representation has

been found, one can freely deform the integration contour by trapping the branch-cuts and

hence extracting the discontinuities of the four-point function across them. Notice that for

a given cross ratio branch cut, there are associated two lightcone distances and therefore,

by crossing a given cross ratio branch cut, we are actually crossing two lightcone branch

cuts, and therefore a double discontinuity. Denoting by dDisc the operation of taken that

given double discontinuity and the s-channel OPE coefficients by,

C(J,∆) = Ct(J,∆) + (−1)JCu(J,∆) , (2.13)

the final result from Caron-Huot is,

Ct(J,∆) =
κJ+∆

4

∫ 1

0
dzdz̄ µ(z, z̄)G∆+1−d,J+d−1(z, z̄) dDisc

[
G(z, z̄)

]
. (2.14)

The u-channel contribution Cu is the same but with operators 1 and 2 interchanged. In

practice, the OPE coefficients can be extracted from the z̄ integration as a power expansion

– 5 –
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in small z, since at this limit, the effect of the z−integration is only to produce the poles

associated to the coefficient under consideration, in the following way: at leading order in

small z (2.14) is approximated by,

Ct(J,∆) =

∫ 1

0

dz

2z
z
τ
2 Ct(z, β) , (2.15)

where the following “generating function” has been defined,

Ct(z, β) ≡
∫ 1

z

dz̄ (1− z̄)a+b

z̄2
κβ kβ(z̄)dDisc[G(z, z̄)] , (2.16)

which at small−z will be given by a power expansion, such as schematically,

Ct(J,∆)

∣∣∣∣
poles

= F (J,∆)

∫ 1

0

dz

2z
z
τ−τ0

2 =
F (J,∆)

τ − τ0
. (2.17)

We have defined the usual conformal twist and spin respectively τ = J−∆ and β = ∆+J .

In the main body of the paper, we will be interested in study the contributions to (2.16)

coming from a single exchange, so by using the t-channel block decomposition of the four-

point point function G(z, z̄) we can compute that contribution from,

Ct(z, β)|J,∆ = f14(J,∆)f23(J,∆)κβ

∫ 1

z
dz̄

(1−z̄)a+b

z̄2
kβ(z̄)dDisc

[
(zz̄)

∆3+∆4
2 GJ,∆(1−z, 1− z̄)

[(1− z)(1− z̄)]
∆2+∆3

2

]
(2.18)

where fi j(J,∆) corresponds to the three-point function between the external scalars i and

j and the exchanging operator.

In the remaining of this paper we are mainly interested on an equal-dimensions scalar

four-point function. In such case several comments are in order: the operator exchanges

are limited to even spins J . The Cu and the Ct coefficients are the same and therefore it

is enough to consider only Ct. Additionally we would like to consider the z → 0 limit in

which the conformal blocks dependence on z splits into a singular contribution containing

a log(z) factor and a regular power contribution.

3 Spinning anomalous dimension at finite β from cross-ratios space

In this section we would like to use the formula (2.18) to compute the contribution to the

anomalous dimension of large spin operators from a scalar exchange. We are going to do

this in coordinate space and in latter sections also in Mellin space. In both cases, we are

able to give exact expressions at finite β.

3.1 Scalar exchange

The scalar conformal block can be written as a double power expansion [26, 30],

g0,∆(1− z, 1− z̄) =
∞∑

n,m=0

(
∆
2

)2
m

(
∆
2

)2
m+n

m!n! (∆ + 1− h)m (∆)2m+n
(1− z)m(1− z̄)m(1− zz̄)n , (3.1)

– 6 –
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where h = d/2 and should be noticed that we are expanding in the t-channel. From this

representation we can take the z → 0 limit to obtain,

g0,∆(1− z̄) = − Γ(∆)

Γ
(

∆
2

)2 (1− z̄)∆/2

(
log(z) 2F1

(
∆

2
,

∆

2
;−d

2
+ ∆ + 1; 1− z̄

)
+ log(z̄) 2F1

(
∆

2
,
∆

2
;−d

2
+ ∆ + 1; 1− z̄

)
+ 2

(
ψ(0)

(
∆

2

)
+ γ

))
. (3.2)

In this section we will focus only on the terms accompanying the log(z) term, which we

will refer to as “the log term”, and we will refer to the remaining terms as “the regular

terms” which we will consider later.

As we have mentioned in the section above, at small z the generating function (2.18)

is given by a power expansion in z, whose leading term can be written as,

Ct(z, β)|J,∆ ∼ C0(β)z
τ
2

+ 1
2
γ12(β) . (3.3)

If the anomalous dimension γ12(β) is small, which is the case we are going to consider in

this work, we can approximate it as,

Ct(z, β)|J,∆ ∼ z
τ
2 C0(β)

(
1 +

1

2
γ12(β) log(z)

)
, (3.4)

where C0(β) corresponds to the tree-level OPE square coefficient of the double twist oper-

ator corresponding to τ = (∆1 +∆2). By comparing the log(z) term at (3.4) with (3.2) and

using (2.18), the correction to the anomalous dimension γ12(β) from a scalar exchange is,

γ12(β) =− 2f14Of23O
Γ(∆)κβ

Γ(∆
2 )2C0(β)

∫ 1

0

dz̄(1− z̄)∆2−∆1

z̄2
kβ(z̄)

× 2F1

[
∆

2
+ a,

∆

2
+ b,∆− h+ 1, 1− z̄

]
× dDisc

[
(1− z̄)

∆
2
−∆2 z̄

∆1+∆2
2
]
.

(3.5)

Here we have taken the 2F1 function outside the dDisc because it is analytic in the argument

1 − z̄. Following [1] in order to perform this integral it is useful to define the following

object,

I
(a,b)
τ ′ (β) ≡

∫ 1

0

dz̄

z̄2
(1− z̄)a+bκβkβ(z̄) dDisc

(1− z̄
z̄

) τ ′
2
−b

(z̄)−b

 (3.6)

= 2 sinπ

(
τ ′

2
+a

)
sinπ

(
τ ′

2
−b
)

!κβ
Γ(β)Γ

(
τ ′

2 +1−b
)
Γ
(
τ ′

2 +1+a
)

Γ
(β

2 + a
)
Γ
(β

2 − b
) Γ

(β
2 −

τ ′

2 − 1
)

Γ
(β

2 + τ ′

2 + 1
) ,

where the sin(πx) factors comes from taking the double discontinuity on the term in brack-

ets. The square OPE coefficient C0(β) corresponds to taking the tree-level double twist

τ ′ = −τ0 = −(∆1 + ∆2), i.e, C0(β) = I
(0,0)
−(∆1+∆2)(β), τ0 meaning the tree-level twist of the

double twist operators. It is also convenient to use the following transformation of the 2F1,

2F1

[
∆

2
+ a,

∆

2
+ b,∆− h+ 1, 1− z̄

]
= z̄−

∆
2
−a

2F1

[
∆

2
+ a,

∆− 2h

2
+ 1− b,∆− h+ 1,−y

] (3.7)

– 7 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
2

with y = 1−z̄
z̄ . By using the power series expansion of the Gauss hypergeometric in (3.5)

and using (3.6) to perform the integral term by term, we arrive to,∫ 1

0

dz̄(1−z̄)a+b

z̄2
kβ(z̄)2F1

[
∆

2
+ a,

∆−2h

2
+ 1−b,∆− h+1,−y

]
×dDisc[(1− z̄)

∆+τ ′
2
−bz̄−

τ ′
2 ]

= 2 sinπ

(
∆+τ ′

2
+a

)
sinπ

(
∆+τ ′

2
− b
)Γ(β)Γ

(
∆+τ ′

2 + a+1
)

Γ
(

∆+τ ′

2 −b+1
)

Γ
(
β
2 − b

)
Γ
(
β
2 + a

) Γ
(
β−∆−τ ′

2 −1
)

Γ
(
β+∆+τ ′

2 +1
)

× 4F3

[∆
2 − h+ 1, ∆

2 ,
∆+τ ′

2 + a+ 1, ∆+τ ′

2 − b+ 1

∆− h+ 1, 2− β−∆−τ ′
2 , 1 + β+∆+τ ′

2

; 1

]
, (3.8)

where as before we are using the definition τ ′ = −(∆1 + ∆2). Hence we can write the

contribution to the anomalous dimension coming from the scalar block as,

γ0,∆
12 (β) =−2f14Of23O

sinπ
(

∆+τ ′

2 +a
)

sinπ
(

∆+τ ′

2 − b
)

sinπ
(
τ ′

2 +a
)

sinπ
(
τ ′

2 − b
)

(
τ ′

2 −b+1
)

∆
2

(
τ ′

2 +a+1
)

∆
2(

β−∆−τ ′
2 −1

)
∆
2

(
β+τ ′

2 +1
)

∆
2

Γ(∆)

Γ
(

∆
2

)2
× 4F3

[∆
2 − h+ 1, ∆

2 ,
∆+τ ′

2 + a+ 1, ∆+τ ′

2 − b+ 1

∆− h+ 1, 2− β−∆−τ ′
2 , 1 + β+∆+τ ′

2

; 1

]
. (3.9)

When all the scalars in the correlator are the same, i.e. ∆i ≡ ∆0, i = 1, · · · , 4, we should

supplement it with a = b = 0 and τ ′ = −2∆0 = −τ0. Putting these in (3.9), we can find

that the anomalous dimensions of double twist operators of the form O12 = O1∂∂ . . . ∂O2

in the s-channel are given by,

γ0,∆
12 (β) =−

sinπ

(
∆
2 −∆0

)2

sinπ(−∆0)2

2f11Of22O Γ(∆)(1−∆0)2
∆
2(

β−∆+2∆0

2 − 1
)

∆
2

(
β−2∆0

2 + 1
)

∆
2

Γ
(

∆
2

)2
4F3

[ ∆
2 − h+ 1, ∆

2 ,
∆−2∆0

2 + 1, ∆−2∆0
2 + 1

∆− h+ 1, 2− β−∆+2∆0

2 , 1 + β+∆−2∆0

2

; 1

]
. (3.10)

An important observation should be made at this point. In order to compute the inte-

gral (3.5), we have used the power series expansion of the hypergeometric function, which

is reliable for values of z̄ near to one but behave poorly around z̄ = 0. Therefore the

result (3.9) should be thought as an asymptotic large−β expansion determined by the re-

gion z̄ ∼ 1. In order to have a result valid for finite values of β, we need to perform the

integral (3.5) exactly. We don’t know yet how to perform such exact integration in general

dimension d, but fortunately this can be done in d = 4 and d = 2 which we will consider

independently in section 3.3 below.3

We have seen that the inversion formula resums the power expansion in β, as a reflection

of the analiticity in spin. As we have just mention, here we still need to consider that β is

3We want to thank David Simmons-Duffin, Junyu Liu, Eric Perlmutter and Vladimir Rosenhaus, for

important clarifications and comments on this issue and for provide us with the exact integration in d = 4,

which have been addressed in [28].
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large enough such that the anomalous dimension is small, unlike the four-dimensional case

to be considered below. For the operators we are considering, the anomalous dimension

for large enough β scales as [10],

γ0,∆
12 (β) ∼ f11Of22O

β2(d−2)
. (3.11)

3.2 Spin exchange

Let us now consider the contributions to the anomalous dimension γ12(β) coming from a

spin exchange. Here we are going to restrict again to the terms accompanying the singular

log(z) at the leading z → 0 region, namely,

z
∆3+∆4

2 GJ,∆(1− z, 1− z̄) =
1

2
z

∆3+∆4
2 log(z)gJ,∆(1− z̄) + reg . (3.12)

In terms of gJ,∆, the generating function (2.18) for a particular spin exchange can be

written as,

C(z, β)|J,∆ ≡
z

∆3+∆4
2

2
log(z)ĉJ,∆(β) , (3.13)

where we have defined,

ĉJ,∆(β) =
f14(J,∆)f23(J,∆)

2
κβ

∫ 1

0
dz̄

(1− z̄)a+b

z̄2
kβ(z̄)dDisc

[
z̄

∆3+∆4
2 gJ,∆(1− z̄)

(1− z̄)
∆2+∆3

2

]
(3.14)

In order to perform the integral we can expand g∆,J as a power series in 1−z̄
z̄ ≡ y,

gJ,∆(y) = y
∆−J

2

∑
k=0

gk(J,∆)yk . (3.15)

Higher k−powers of y in the above expansion correspond to contributions from the descen-

dant family of the given primary exchange. The generating coefficient ĉ∆,J(z, β) can be

rewritten as (with a = b = 0 and ∆i = ∆0),

ĉJ,∆(β) =
f14(J,∆)f23(J.∆)

2
κβ
∑
k=0

gk(J,∆)

∫ 1

0
dz̄

1

z̄2
kβ(z̄)dDisc

(
y

∆−J+2k−2∆0
2

)
, (3.16)

by using (3.6) and dividing by the identity contribution, we obtain

γJ,∆(β) =
f11(J,∆)f22(J,∆)

2 I
(0,0)
−2∆0

κβ
∑
k=0

ck(J,∆, β) , (3.17)

with

ck(J,∆, β) = gk(J,∆)I
(0,0)
−(∆−J+2k−2∆0)(β) . (3.18)

Here is worth noticing that the contribution to the discontinuity from (3.15) will come only

from the primary at k = 0, since k 6= 0 is an integer and therefore yk is a single valued

function. This will applies to the remaining cases considered later in this work.
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On the other hand gJ,∆(y) satisfy recurrence relations of the type considered in [5, 25],

however in the small−z limit those recursion are subtle due to the fact that the quartic

and the quadratic Casimir mix the leading and the first term in the Taylor expansion in

z and we would like to consider the leading log(z) term only as in (3.12). The adequate

recursion at small−z can be obtained from the following Casimir equation [1],

c4 gJ,∆(z) =

(
z

1− z

)d−2 (
2Dz − Ỹ − c2 + 2− d

)( z

1− z

)2−d (
2Dz + Ỹ − c2

)
gJ,∆(z) ,

(3.19)

obtained from the quadratic and quartic Casimirs given respectively by,

C2 = Dz +Dz̄ + (d− 2)
zz̄

z − z̄
[(1− z)∂z − (1− z̄)∂z̄] ,

C4 =

(
zz̄

z − z̄

)d−2

(Dz −Dz̄)

(
zz̄

z − z̄

)2−d
(Dz −Dz̄) .

(3.20)

whose eigenvalues are,

c2 = 1
2 [J(J + d− 2) + ∆(∆− d)] ,

c4 = J(J + d− 2)(∆− 1)(∆− d+ 1) .
(3.21)

By plugging the power series expansion (3.15) into (3.19), we get the following recursion

relation for the coefficients gk−1(J,∆),

pk−1(∆, J) gk−1(J,∆) + pk−2(J,∆) gk−2(J,∆) + pk(J,∆) gk(J,∆) = 0 , (3.22)

with

pk−1(J,∆) = −2
(
d− 2

(
k +

τ

2

))2
(
d
(
−∆ + J + 4

(
k +

τ

2
− 1
))

+ ∆2

+(J − 2)J − 4
(
k +

τ

2

)2
+ 4

)
pk−2(J,∆) = 4

(
k +

τ

2
− 2
)(
−d+ k +

τ

2
+ 1
)(

2
(
k +

τ

2
− 1
)
− d
)(

2
(
k +

τ

2

)
− d
)

pk(J,∆) =
(
−∆ + J + 2

(
k +

τ

2

))(
2d−∆ + J − 2

(
k +

τ

2
+ 1
))

×
(
−d+ ∆ + J + 2

(
k +

τ

2

))(
d+ ∆ + J − 2

(
k +

τ

2
+ 1
))

,

where τ = ∆ − J is the usual conformal twist for the exchanged operators. From the
above recurrence relation, we can compute all the coefficients expanding the conformal
block (3.15), however they become unmanageable large very quickly. Let us display the
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first few coefficients for arbitrary ∆, J and d, for example,

g1(∆, J) =
(d−∆ + J − 2)((d− 2)J −∆(d+ 2J − 4))

2(d− 2(∆ + 1))(d+ 2J − 4)

g2(∆, J) =
(d−∆ + J − 4)(d−∆ + J − 2)

8(d− 2(∆ + 1))(d− 2(∆ + 2))(d+ 2J − 6)(d+ 2J − 4)(d−∆ + J − 3)[
∆2(d+ 2J − 6)

(
d2 + d(5J − 9) + 2(J − 9)J + 20

)
+∆

(
−4(d−3)J3 + ((54−7d)d−100)J2−2(d−10)(d−4)(d−3)J + 2(d−6)(d−4)(d−3)

)
+∆3(−(d+ 2J − 6))(d+ 2J − 4) + (d− 4)(d− 2)(J − 2)J(d+ J − 3)

]
g3(∆, J) = − (d−∆ + J − 6)(d−∆ + J − 2)

48(d− 2(∆ + 1))(d− 2(∆ + 3))(d+ 2J − 8)(d+ 2J − 4)
×[

(d−∆ + J − 6)(d(∆− J + 8)− 4(3∆ + 8) + 2(∆ + 5)J)

(d− 2(∆ + 2))(d+ 2J − 6)(d−∆ + J − 3)(
∆2(d+ 2J − 6)

(
d2 + d(5J − 9) + 2(J − 9)J + 20

)
+∆

(
−4(d−3)J3 + ((54−7d)d−100)J2−2(d−10)(d−4)(d−3)J + 2(d−6)(d−4)(d−3)

)
+∆3(−(d+ 2J − 6))(d+ 2J − 4) + (d− 4)(d− 2)(J − 2)J(d+ J − 3)

)
+2(−∆ + J − 2)(2d−∆ + J − 8)((d− 4)∆ + J(−d+ 2∆ + 2))

]
. (3.23)

By using gk(∆, J) we can then compute all the coefficients in the expansion (3.17). For

example, at leading order in y we have,

c1(∆, J, β)

c0(∆, J, β)
=

(
J2 (−d+ 2 (J + τε) + 2) + 2J

(
d− (J + τε)

2 − J − τε − 2
)

+ (4− d) (J + τε)
2
)

2(d+ 2J − 4) (d− 2 (J + τε + 1))

×
Γ
(
1
2 (J −∆ + 2∆0)

)
2Γ
(

β
2 + 1

2 (−J + ∆− 2∆0) + 1
)

Γ
(

β
2 + 1

2 (J −∆ + 2∆0 − 2)− 1
)

Γ
(
1
2 (J −∆ + 2∆0 − 2)

)
2Γ
(

β
2 + 1

2 (−J + ∆− 2∆0 + 2) + 1
)

Γ
(

β
2 + 1

2 (J −∆ + 2∆0)− 1
)

(3.24)

which should be a good approximation as long as the ratio (3.11) is small. At the large β

limit it simplifies to,

c1(∆, J, β)

c0(∆, J, β)
= −

(∆−2∆0−J+2) 2
(
(d+ 2J − 4)τ2 + 2J(d+ J− 3)τ + 2(d− 2)(J−1)J

)
2β2(d+ 2J − 4) (d− 2(J + 1)− 2τ)

,

(3.25)

This expression matches previous results in the literature [13–15].4 Notice that at leading

order in large−β, each coefficient (3.18) (divided by the leading c0) start at β−k, more

precisely,

ck(∆, J, β)

c0(∆, J, β)
∼ gk(∆, J)

[(
1− J −∆ + 2∆0

2

)
k

]2( 2

β

)2k

. (3.26)

therefore at a given order in a (β−1)2 expansion, we only need a finite number of coefficients.

4Our gk coefficients are slightly different to the ones from [14] ghere1 = Athere1 + (∆−J)
2

, because we are

expanding the blocks here in (3.15) is in y, whereas [14] expand it in z.
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The conformal blocks satisfy a recursion relation in spin for fixed ∆ [25, 26], hence

we can solve a block for spin J from the conformal blocks at spin J − 1 and J − 2, or

equivalently, we can write a spin J conformal block in terms of linear combinations of

scalar blocks (3.1), and subsequently the contribution to the anomalous dimension can be

similarly be written in terms of linear combinations of the 4F3 in (3.9). Even thought this

approach will give us closed expression at finite β, it become very large and tedious even

for the lowest values of J . We show the simplest J = 1 block from this procedure in the

appendix. We can still however write a closed expression for any spin in four dimension

(as well as in two), which we will consider next.

3.3 Four dimensions

In four dimension the recursion discussed above can be resummed into hypergeometric

functions, as we already pointed out at equation (2.4),

GJ,∆(1− z, 1− z̄) =
(1−z)(1−z̄)

z − z̄
[
k∆−J−2(1− z)k∆+J(1− z̄)−k∆+J(1− z)k∆−J−2(1− z̄)

]
.

(3.27)

whose leading log-term around z � 1 is given by,5

G∆,J(1− z, 1− z̄) =
1− z̄
z̄

log(z)

(
Γ(∆− J − 2)

Γ
(

∆−J−2
2

)2 k∆+J(1− z̄)− Γ(∆− J)

Γ
(

∆−J
2

)2 k∆−J−2(1−z̄)

)
+O(z log z) . (3.28)

Putting this leading log into the generating function (2.18), we have to perform the following

integral,

κβ

∫ 1

z
dz̄

1

z̄2
kβ(z̄)

(
z̄

1− z̄

)∆0−1
(

Γ(∆− J − 2)

Γ
(

∆−J−2
2

)2 k∆+J(1− z̄)− Γ(∆− J)

Γ
(

∆−J
2

)2 k∆−J−2(1− z̄)

)
.

(3.29)

This integral has been performed very recently in [28],6

Ωh,h′,p ≡
∫ 1

0

dz̄

z̄2

(
z̄

1− z̄

)p
k2h(z̄)k2h′(1− z̄)

=
Γ(2h)Γ(h′− p+1)2Γ(−h′+ h+p−1)

Γ(h)2Γ(h′ + h− p+ 1)
4F3

[
h′, h′, h′ − p+ 1, h′ − p+ 1

2h′, h′ + h− p+ 1, h′ − h− p+ 2
; 1

]
+

Γ(2h′)Γ(h+ p− 1)2Γ(h′ − h− p+ 1)

Γ(h′)2Γ(h′ + h− p− 1)
4F3

[
h, h, h+ p− 1, h+ p− 1

2h, h′ + h+ p− 1,−h′ + h+ p
; 1

]
,

(3.30)

5In the case of the scalar J = 0, is straightforward to see that the linear combination of hypergeometric

functions here, simplifies to the one at the log term in (3.2).
6Here we are considering an equal scalars correlator and hence we have specialized the formula from [28]

accordingly.
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which lead us to,

γJ,∆12 (β) = −
kβ(z̄)

I
(0,0)
−2∆0

(β)
sinπ

(
∆0 −

∆− J
2

)2

×

(
Γ(∆− J − 2)

Γ
(

∆−J−2
2

)2 Ωβ,∆+J,∆0−1 −
Γ(β)

Γ
(
β
2

)2 Ωβ,∆−J−2,∆0−1

)
(3.31)

or more explicitly,

γJ,∆12 (β) =
Γ
(
β
2

)2
Γ (∆0) 2Γ

(
β
2 −∆0 + 1

)
Γ(β)Γ

(
β
2 + ∆0 − 1

)
Γ
(

∆−J
2 −∆0 + 1

)
2Γ
(
∆0 − ∆−J

2

)
2

×

(
Γ(∆− J − 2)

Γ
(

∆−J−2
2

)2 Ωβ,∆+J,∆0−1 −
Γ(∆ + J)

Γ
(

∆+J
2

)2 Ωβ,∆−J−2,∆0−1

)
. (3.32)

In the Mellin space consideration below, the exact matching with (3.32) or more generally

in generic dimensions, requires us to consider the contribution of additional poles in the

s-integral. In the sections below, we have considered the contribution of the s = n pole

which dominates in the large β limit. When doing the s-integral, we should be considering

all the contributions (choosing the contour either on r.h.s. or otherwise) that fall within the

contour. The additional poles contributing at finite β come from s = (β−∆+J−τ)/2−1+n,

which we have neglected in the later calculations.

4 Spinning anomalous dimension at finite β from Mellin space

In the previous sections we have discussed the inversion formula of [1] from position space

conformal blocks. This section onwards, we will discuss it by alternative using the integral

representation of the conformal blocks i.e. the Mellin space. As we will see, working in

Mellin space representation have some nice advantages. On one hand, it allow us to write

expressions, which are democratic with respect to the space-time dimensions. Even more

appealing is that, unlike the cross-ratios conformal blocks in general dimension, we can

write a compact representation for the blocks in terms of a contour integral that lately allow

us to write them in a power series expansion without the need of solving the cumbersome

recursion relations discussed in previous sections.

Let us start with the definition for the physical block in (A.11) of appendix A,

GJ,∆(z, z̄) =
Γ(∆+J)Γ(1+∆− h)

(d−∆− 1)Jγλ1,aγλ1,b

∫
C
dsdt

Γ(λ2−s)eπi(λ2−s)

Γ(1 + s− λ̄2)
Γ(−t)Γ(−t−a−b)Γ(s+t+a)

× Γ(s+ t+ b)PJ,∆(s, t, a, b)(zz̄)s((1− z)(1− z̄))t . (4.1)

in complex (z, z̄) coordinates in the t-channel. We are considering a subclass of the most

general form of correlators: 〈O1O2O2O1〉, for which the t-channel block has a = b = 0. See
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appendix A for more details. Furthermore, since we are considering z → 0, our starting

point for the t-channel block is (A.20),

lim
z→0
GtJ,∆(z, z̄)

= z
∆1+∆2

2

(
1− z̄
z̄

)λ2+ τ ′
2
−b
z̄−b

Γ(∆ + J)Γ(1 + ∆− h)

(d−∆− 1)Jγ4
λ1

×
[

log z
∞∑
k=0

∫
C
ds(−1)s

Γ(k − s)Γ(s− k + λ2)Γ(s+ λ2)

k!Γ(1 + s− k + λ2 − λ̄2)

(
1−z̄
z̄

)s
PJ,∆(s−k+λ2, 0, 0, 0)

+

∞∑
k=0

∫
C
ds (−1)s

Γ(k − s)Γ(s− k + λ2)Γ(s+ λ2)

k!Γ(1 + s− k + λ2 − λ̄2)

(
1− z̄
z̄

)s
×
(

(H(λ2+s−1) +H(λ2+s−k−1))PJ,∆(s−k+λ2, 0, 0, 0) + P ′J,∆(s−k+λ2, 0, 0, 0)
)]
.

(4.2)

where τ ′ = −∆1 −∆2 and b = (∆2 −∆1)/2.

4.1 Scalar exchange

Consider for simplicity the exchange of scalars in the t-channel. For this, the Mack polyno-

mial in (A.8) is P0,∆ = 1 and the above expression undergoes considerable simplification.

Furthermore λ2 = ∆/2, and,

lim
z→0
Gt0,∆(z, z̄)

= z
∆1+∆2

2

(
1− z̄
z̄

)∆+τ ′
2
−b
z̄−b

Γ(∆)Γ(1 + ∆− h)

Γ(∆
2 )4

×
[

log z
∞∑
k=0

∫
C
ds (−1)s

Γ(k − s)Γ(s− k + ∆
2 )Γ(s+ ∆

2 )

k!Γ(1 + s− k + ∆− h)

(
1− z̄
z̄

)s
+
∞∑
k=0

∫
C
ds (−1)s

Γ(k − s)Γ
(
s− k + ∆

2

)
Γ
(
s+ ∆

2

)
k!Γ(1 + s− k + ∆− h)

(
1− z̄
z̄

)s
× (H(∆/2 + s− 1) +H(∆/2 + s− k − 1))

]
.

(4.3)

We will come back to the discussion of the regular terms later, but for now, focus on the

coefficient of the log term which contributes to the anomalous dimension of double field

operators O1∂µ1 . . . ∂µJO2 of dimension ∆ = ∆1 + ∆2 + J + γ12(β) (where β = ∆ + J is

the conformal spin) in the s-channel. The summation over k gives,

∞∑
k=0

Γ(k − s)Γ
(
s− k + ∆

2

)
Γ
(
s+ ∆

2

)
k!Γ(1 + s− k + ∆− h)

=
Γ(−s)Γ

(
s+ ∆

2

)2
Γ(1 + s+ ∆− h)

2F1

[
−s, h− s−∆

1− s− ∆
2

; 1

]
. (4.4)

Provided we choose to close the contour on the r.h.s., then ∆ ≥ 2h − 2 − 2s is always

satisfied due to the unitarity bound. Thus,

2F1

[
−s, h− s−∆

1− s− ∆
2

; 1

]
=

Γ
(
1− s− ∆

2

)
Γ
(
1− h+ s+ ∆

2

)
Γ
(
1− ∆

2

)
Γ
(
1− h+ ∆

2

) . (4.5)
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The coefficient of the log term becomes,

lim
z→0
Gt0,∆(z, z̄)

∣∣∣∣
log z

= z
∆1+∆2

2

(
1− z̄
z̄

)∆+τ ′
2
−b
z̄−b

Γ(∆)Γ(1 + ∆− h)

Γ
(
1− ∆

2

)
Γ
(
1− h+ ∆

2

)
Γ
(

∆
2

)4
×
∫
C
ds

Γ(−s)Γ
(
s+ ∆

2

)2
Γ
(
1− s− ∆

2

)
Γ
(
1− h+ s+ ∆

2

)
Γ(1 + s+ ∆− h)

(
− 1− z̄

z̄

)s
.

(4.6)

It is straightforward to see that choosing the poles s = n, we can recover the usual log

term scalar block in cross-ratios space,

lim
z→0
Gt0,∆(z, z̄)

∣∣∣∣
log z

= −z
∆1+∆2

2

(
1− z̄
z̄

)∆+τ ′
2
−b
z̄−b

Γ(∆)

Γ
(

∆
2

)2 2F1

[∆
2 , 1− h+ ∆

2

∆− h+ 1
;−1− z̄

z̄

]
,

(4.7)

We will however in this section use a Mellin space representation of the conformal blocks,

which as we will see, allow us to write them in a closed form, unlike the cross-ratio space

analysis of sections above, which requires to solve a complicated recursion relation. The idea

is to first perform the z̄ integral and leave the s-integral as the final step to the anomalous

dimensions. The resulting coefficient for the log term, following (2.18) and (3.6) is,∫
dz̄

(1− z̄)2a

z̄2
κβkβ(z̄) dDisc

[
lim
z→0
Gt0,∆(z, z̄)

∣∣∣∣
log z

]
= 2z

∆1+∆2
2

Γ(∆)Γ(1 + ∆− h)

Γ
(
1− ∆

2

)
Γ
(
1− h+ ∆

2

)
Γ
(

∆
2

)4
×
∫
C
ds (−1)s

Γ(−s)Γ
(
s+ ∆

2

)2
Γ
(
1− s− ∆

2

)
Γ
(
1− h+ s+ ∆

2

)
Γ (1 + s+ ∆− h)

I
(a,a)
∆+τ ′+2s(β) .

(4.8)

Note that I
(a,a)
∆+τ ′+2s(β) has factors sin π(∆+τ ′

2 + s+ a) sinπ(∆+τ ′

2 + s− a) coming from the

double discontinuity. Since we are choosing the poles of s = n from Γ(−s), these factors

can be pulled out of the integral in the form of sin π(∆+τ ′

2 + a) sinπ(∆+τ ′

2 − a). To obtain

the anomalous dimensions, one divides the above expression by the tree-level contribution

i.e. I
(a,a)
τ ′ (β) and we obtain,

γ0,∆
12 (β) =

(
a− ∆+τ ′

2

)
∆
2

(
−a− ∆+τ ′

2

)
∆
2(

β−∆−τ ′
2 − 1

)
∆
2

(
β+τ ′

2 + 1
)

∆
2

Γ(∆)

Γ
(

∆
2

)2 (4.9)

×
∫
C
ds Γ(−s)

(−1)s
(

∆
2

)2
s

(
1− h+ ∆

2

)
s

(
∆+τ ′

2 + 1 + a
)
s

(
∆+τ ′

2 + 1− a
)
s(

1− s− ∆
2

)
s

(1 + ∆− h)s

(
β+∆+τ ′

2 + 1
)
s

(
β−∆−τ ′

2 − s− 1
)
s

.
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The integration contour C allows a clean separation of the poles on the r.h.s. and l.h.s. of

the complex s-plane.7 Computing the poles of Γ(−s) at s = n we can see that,

∫
C
ds Γ(−s)

(−1)s
(

∆
2

)2
s

(
1− h+ ∆

2

)
s

(
∆+τ ′

2 + 1 + a
)
s

(
∆+τ ′

2 + 1− a
)
s(

1− s− ∆
2

)
s

(1 + ∆− h)s

(
β+∆+τ ′

2 + 1
)
s

(
β−∆−τ ′

2 − s− 1
)
s

= −4F3

[
1− h+ ∆

2 ,
∆
2 ,

∆+τ ′

2 + 1− a, ∆+τ ′

2 + 1 + a

1 + ∆− h, 2− β−∆−τ ′
2 , 1 + β+∆+τ ′

2

; 1

]
,

(4.10)

which matches with that obtained in (3.9) for a = b. For the sake of completion, we write

down the final expression,

γ0,∆
12 (β) =−

(
a− ∆+τ ′

2

)
∆
2

(
−a− ∆+τ ′

2

)
∆
2(

β−∆−τ ′
2 − 1

)
∆
2

(
β+τ ′

2 + 1
)

∆
2

Γ(∆)

Γ
(

∆
2

)2
4F3

[
1− h+ ∆

2 ,
∆
2 ,

∆+τ ′

2 + 1− a, ∆+τ ′

2 + 1 + a

1 + ∆− h, 2− β−∆−τ ′
2 , 1 + β+∆+τ ′

2

; 1

]
.

(4.11)

4.2 Spin exchange

A generalization of the scalar exchange is to extend the above formulation to the exchange

of spin−J operators in the t-channel. We will start with the coefficient of the log term

in (A.20),

lim
z→0
GtJ,∆(z, z̄)

∣∣∣∣
log z

(4.12)

= z
∆1+∆2

2

(
1− z̄
z̄

)λ2+ τ ′
2
−b
z̄−b

Γ(∆ + J)Γ(1 + ∆− h)

(d−∆− 1)Jγ4
λ1

∞∑
k=0

∫
C
ds (−1)s

Γ(k − s)Γ(s− k + λ2)Γ(s+ λ2)

k!Γ(1 + s− k + λ2 − λ̄2)

(
1− z̄
z̄

)s
PJ,∆(s− k + λ2, 0, 0, 0) .

As explained in appendix A.1, we can use (A.21) to obtain,

PJ,∆(s− k + λ2, 0, 0, 0) =
(d−∆− 1)J

(d− 2)J

J∑
m=0

Am(J,∆)(k − s)J−m , (4.13)

7For this separation β > 2 + ∆ + τ which is satisfied for general cases.
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with Am(J,∆) given in (A.22). The coefficient of the log term then becomes,

lim
z→0
GtJ,∆(z, z̄)

∣∣∣∣
log z

= z
∆1+∆2

2

(
1− z̄
z̄

)∆−J+τ ′
2

−b
z̄−b

Γ(∆ + J)Γ(1 + ∆− h)

(d− 2)JΓ
(

∆+J
2

)4
J∑

m=0

Am(J,∆)

∫
C
ds (−1)s

Γ(−s)Γ
(
s+ ∆−J

2

)2
Γ(1 + s+ ∆− h)

(
1− z̄
z̄

)s
(−s)J−m

× 2F1

[
J −m− s, h−∆− s

1− s− ∆−J
2

; 1

]

= z
∆1+∆2

2

(
1− z̄
z̄

)∆−J+τ ′
2

−b
z̄−b

Γ(∆ + J)Γ(1 + ∆− h)

(d− 2)JΓ
(

∆+J
2

)4
Γ
(
1− h+ ∆+J

2

)
J∑

m=0

(−1)J−m

Γ(1 +m− ∆+J
2 )

Am(J,∆)

∫
C
ds (−1)s

Γ(−s)Γ
(
s+ ∆−J

2

)2
Γ(1 + s+ ∆− h)

(
1− z̄
z̄

)s

×
Γ(1 + s)Γ

(
1− s− ∆−J

2

)
Γ
(
1− h+m+ s+ ∆−J

2

)
Γ(1 + s+m− J)

. (4.14)

The third line follows from the second line provided we close the contour on the r.h.s., so

that the only pole contributions can come from Γ(−s) satisfying 1−h+m+s+(∆−J)/2 > 0

due to the unitarity bound. Following the discussion in section 4.1,

γJ,∆12 (β) =

∫ 1

0
dz̄

(1− z̄)2a

z̄2
κβkβ(z̄) dDisc

[
lim
z̄→0
GtJ,∆(z, z̄)

∣∣∣∣
log z

]

=
Γ(∆ + J)Γ(1 + ∆− h)

(d− 2)JΓ
(

∆+J
2

)4
Γ
(
1− h+ ∆+J

2

) J∑
m=0

(−1)J−m

Γ
(
1 +m− ∆+J

2

)Am(J,∆)

×
∫
C
ds(−1)s

Γ(−s)Γ
(
s+ ∆−J

2

)2
Γ(1+s)Γ

(
1−s− ∆−J

2

)
Γ
(
1−h+m+s+ ∆−J

2

)
Γ(1 + s+ ∆− h)Γ(1 + s+m− J)

× I(a,a)
∆−J+τ ′+2s(β) , (4.15)

is the generalization of (4.9), in the case of a spin−J operator exchange in the t-channel.

We will choose to close the contour on the r.h.s. in the complex s-plane so that it suffices

to consider the poles coming from Γ(−s). The poles are at integers s = n ∈ I≥0. Thus

the sin factors associated with the dDisc can be pulled out of the integral. After some

simplifications (and dividing by the tree-level contribution), the above integral can be put
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in a more convenient form,

γJ,∆12 (β) =

(
a− ∆−J+τ ′

2

)
∆−J

2

(
−a− ∆−J+τ ′

2

)
∆−J

2(
β−∆+J−τ ′

2 − 1
)

∆−J
2

(
β+τ ′

2 + 1
)

∆−J
2

Γ(∆ + J)

(d− 2)JΓ
(

∆+J
2

)2
×

J∑
m=0

(−1)J−m

Γ(1 +m− J)
Am(J,∆)

∫
C
ds(−1)s

Γ(−s)
(

∆+J
2

)2
s−J (1)s

(
1 +m− ∆+J

2

)
J−m−s

(
1− h+ ∆+J

2

)
s+m−J

(1 + ∆− h)s(1 +m− J)s

(
β+∆−J+τ ′

2 + 1
)
s

(
β−∆+J−τ ′

2 − s− 1
)
s

×
(

∆− J + τ ′

2
+ 1 + a

)
s

(
∆− J + τ ′

2
+ 1− a

)
s

, (4.16)

where the s-integral evaluates to,∫
C
ds (−1)s

Γ(−s)
(

∆+J
2

)2
s−J (1)s

(
1 +m− ∆+J

2

)
J−m−s

(
1− h+ ∆+J

2

)
s+m−J

(1 + ∆− h)s(1 +m− J)s

(
β+∆−J+τ ′

2 + 1
)
s

(
β−∆+J−τ ′

2 − s− 1
)
s

×
(

∆− J + τ ′

2
+ 1 + a

)
s

(
∆− J + τ ′

2
+ 1− a

)
s

=
πΓ
(

∆−J
2

)
sinπ

(
J−∆

2

) 1

Γ
(

∆+J
2

)2 1

Γ
(
1 +m− ∆+J

2

) (
1− h+m+ ∆−J

2

)
J−m

× 5F4

[
1, ∆−J

2 , 1− h+m+ ∆−J
2 , ∆−J+τ ′

2 + 1 + a, ∆−J+τ ′

2 + 1− a
1 +m− J, 1 + ∆− h, 2− β−∆+J−τ ′

2 , 1 + β+∆−J+τ ′

2

; 1

]
,

(4.17)

where a = b = (∆2 −∆1)/2. Just for the sake of completion we will write down the final

expression as a result of the above simplification,

γJ,∆12 (β) =

(
a− ∆−J+τ ′

2

)
∆−J

2

(
−a− ∆−J+τ ′

2

)
∆−J

2(
β−∆+J−τ ′

2 − 1
)

∆−J
2

(
β+τ ′

2 + 1
)

∆−J
2

Γ(∆ + J)

(d− 2)JΓ
(

∆+J
2

)4 πΓ
(

∆−J
2

)
sinπ

(
J−∆

2

)
×

J∑
m=0

(−1)J−mAm(J,∆)

Γ(1 +m− J)Γ
(
1 +m− ∆+J

2

) (
1− h+m+ ∆−J

2

)
J−m

× 5F4

[
1, ∆−J

2 , 1− h+m+ ∆−J
2 , ∆−J+τ ′

2 + 1 + a, ∆−J+τ ′

2 + 1− a
1 +m− J, 1 + ∆− h, 2− β−∆+J−τ ′

2 , 1 + β+∆−J+τ ′

2

; 1

]
.

(4.18)

For J = 0 (and consequently m = 0), the above formula reduces to (4.11). At leading

order, we can write the entire contribution from the t-channel as,

γ12(β) =
∑
∆,J

f11(J,∆)f22(J,∆)γ
J,∆
12 (β) . (4.19)

Some comments on (4.19) are in order. As we have mention before, the current analysis is

valid for finite β but large enough such as the anomalous dimension of twist-two operators
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remain small. The sum in (4.19) is therefore to be understood in a large β expansion. Even

more, at the lightcone limit that we are considering, the sum does not converge at small

values of β, but produces the correct asymptotic series in 1/β for large β. The expression

for the anomalous dimension in (4.18) or (4.11) is the result of the resummation of the

large β expansion. Finite β versions can be obtained by take into account the residues

contributing at finite β which are not visible in our analysis.

Equation (4.19) is the leading order in the sense that we have considered only the

coefficient of the log z term. More generally, we should consider γ ∼ γ0 + γ1 log β + . . . ,

zγ ∼ γ0 log z + γ2
0 log2 z + γ1 log β log z + . . . . (4.20)

The second and the third term contribute to the subleading order.

4.3 Matching cross-ratios conformal blocks

We want to show here that from the previous expressions computed in Mellin space we

can recover the coefficients obtained from the conformal blocks in position space. The

coefficients of the log terms are,

Γ(∆ + J)Γ(1 + ∆− h)

(d−∆− 1)JΓ
(

∆+J
2

)4
×
∞∑
k=0

∫
C
ds

Γ(k − s)Γ(s− k + λ2)Γ(s+ λ2)

k!Γ(1 + s− k + λ2 − λ̄2)

(
− 1− z̄

z̄

)s
PJ,∆(s− k + λ2, 0, 0, 0) . (4.21)

Using (A.21), we can write,

Γ(∆ + J)Γ(1 + ∆− h)

(d− 2)JΓ
(

∆+J
2

)4
×

J∑
m=0

Am(J,∆)

∞∑
k=0

∫
C
ds

Γ(k − s)Γ(s− k + λ2)Γ(s+ λ2)

k!Γ(1 + s− k + λ2 − λ̄2)

(
− 1− z̄

z̄

)s
(k − s)J−m

=
Γ(∆ + J)Γ(1 + ∆− h)

(d− 2)JΓ
(

∆+J
2

)4 J∑
m=0

Am(J,∆)

∫
C
ds

Γ(−s)Γ(s+ λ2)2

Γ(1 + s+ λ2 − λ̄2)

(
− 1− z̄

z̄

)s
× (−s)J−m 2F1

[
J −m− s, λ̄2 − λ2 − s

1− s− λ2
; 1

]
.

(4.22)

Closing the contour on the r.h.s., one can see that (∆ + 2(1 + s+m)− d− J)/2 > 0 for all

s poles and hence,

2F1

[
J −m− s, λ̄2 − λ2 − s

1− s− λ2
; 1

]
=

Γ(1− s− λ2)Γ(1 +m+ s− J − λ̄2)

Γ(1− J +m− λ2)Γ(1− λ̄2)
. (4.23)
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The coefficient of the log term becomes,

Γ(∆ + J)Γ(1 + ∆− h)

(d− 2)JΓ
(

∆+J
2

)4
×

J∑
m=0

Am(J,∆)
∞∑
k=0

∫
C
ds

Γ(k − s)Γ(s− k + λ2)Γ(s+ λ2)

k!Γ(1 + s− k + λ2 − λ̄2)

(
− 1− z̄

z̄

)s
(k − s)J−m

=
Γ(∆ + J)Γ(1 + ∆− h)

(d− 2)JΓ
(

∆+J
2

)4
Γ
(
1−h+ ∆+J

2

) ∫
C
ds

Γ(−s)Γ
(
s+ ∆−J

2

)2
Γ
(
1−s− ∆−J

2

)
Γ(1 + s+ ∆− h)

(
− 1− z̄

z̄

)s

×
J∑

m=0

(−1)J−mΓ(s+ 1)Γ
(
1− h+m+ s+ ∆−J

2

)
Γ
(
1 +m− ∆+J

2

)
Γ(1 + s+m− J)

Am(J,∆)

= B0(J,∆)

[
1 +

∞∑
n=0

gn(J,∆)

(
− 1− z̄

z̄

)n]
. (4.24)

Notice that for a particular n residue, the sum over m, can extend from J upto J − n as

the terms m < J − n are zero. To fix the normalization, it suffices to evaluate the n = 0

residue, which gives,

B0(J,∆) = − Γ(∆ + J)(h− 1)J

(2h− 2)JΓ
(

∆+J
2

)2 . (4.25)

The coefficients computed previously from position space (3.23) are then given by gi =

Bi/B0, i.e, with this normalization g0 = 1 and,

g1(J,∆)=
(d−∆ + J − 2)(J(d− 2)−∆(d+ 2J − 4))

2(d+ 2J − 4)(2(∆ + 1)− d)
,

g2(J,∆)=
(d−∆ + J − 2)(d−∆ + J − 4)

8(d+ 2J − 4)(d+ 2J − 6)(d− 2(1 + ∆))(d− 2(2 + ∆))(d−∆ + J − 3)

×((d−4)(d−2)(J−2)J(d−3+J)+(2(d−3)(d−4)(d−6)−2(d−3)(d−4)(d−10)J

+ ((54− 7d)d−100)J2− 4(d− 3)J3)∆

+ (d+ 2J − 6)(d2 + d(5J − 9) + 2(10 + (J − 9)J))∆2

− (d+ 2J − 6)(d+ 2J − 4)∆3) ,

g3(J,∆)=
(d−∆ + J − 2)(d−∆ + J − 4)(d−∆ + J − 6)Γ(d2 + J − 4)Γ(∆− d

2 + 1)

3072(d−∆ + J − 3)Γ(d2 + J − 1)Γ(∆− d
2 + 4)

× ((−6 + d)(−4 + d)(−2 + d)(−4 + J)(−2 + J)J(−3 + d+ J)

−(8(−8 + d)(−6 + d)(−4 + d)(−3 + d)−4(−3 + d)(−16 + 3d)(46 + (−15 + d)d)J

+(5024+3d(−1296+d(342+(−35+d)d)))J2+2(−564+d(378+d(−78 + 5d)))J3

+ 2(44 + 3(−8 + d)d)J4)∆ + (−8 + d+ 2J)(−2(−6 + d)(−4 + d)(−13 + 3d)

+ (−844 + d(464 + 3(−25+d)d))J + 4(71+3(−10+d)d)J2 + 6(−4 + d)J3)∆2

− (−8 + d+ 2J)(−6 + d+ 2J)(36 + (−13 + d)d− 28J + 6dJ + 2J2)∆3

+ (−8 + d+ 2J)(−6 + d+ 2J)(−4 + d+ 2J)∆4) ,

(4.26)
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and so on, which of course match the results obtained from the recursion relations, but

this time they come from the contour integrals in Mellin space. This is a very non-trivial

cross check of our formulas, in particular, even though the compact form for the anomalous

dimension (4.18) looks still complicated, it will be even harder to get to such a formula from

the recursion relations in position space, while in Mellin space it boils down simply to the

computation of a sum over some residues, which present a clear advantage in comparison

with solving algebraic equations.

5 Special cases

As some special cases of (3.10) or equivalently (4.11), we will consider the case of identical

scalars in the context of the perturbative ε−expansion in four dimensions.8 Furthermore,

we also reproduce previous results obtained in [13–15].

5.1 ε-expansion for identical scalars

A special case of (3.10) is obtained for identical scalars where τ = −2∆φ. In that case, we

are looking at the anomalous dimensions of operators φ∂ . . . ∂φ with ∆ = 2∆φ+J +γJ(β).

For the exchange of the scalar φ2, ∆′ = 2∆φ+gγφ2 and ∆φ = h−1+g2γφ in a perturbative

expansion in g,

∆ + τ = gγφ2 . (5.1)

We can then write the large spin expansion in the s-channel in terms of the low twist scalar

exchange in the t-channel, given by,

γJ(β) =
Γ
(
1− ε

2

)2
Γ
(
−gγ

2

)2 Γ(1 + gγ − ε)

Γ
(

2+gγ−ε
2

)2

Γ
(
β+ε

2

)
Γ
(
β−gγ

2 − 1
)

Γ
(
β−ε

2

)
Γ
(
β+gγ

2 + 1
)

×4F3

[ gγ
2 , 1 + gγ

2 , 1 + gγ
2 , 1 + gγ

2

2− β−gγ
2 , 1 + β+gγ

2 , 1 + gγ − ε
2

; 1

]
. (5.2)

Notice that the expansion begins at O(g2) because of the sin factors and the leading order

result is,

lim
β→∞

γJ(β) = lim
β→∞

g2

4
γ2

Γ
(
β
2 − 1

)
Γ
(
β
2 + 1

) =
g2

β2
γ2 . (5.3)

Let’s go to the next order. The overall factors, have the expansion,

Γ
(
1− ε

2

)2
Γ
(
−gγ

2

)2 Γ(1 + gγ − ε)

Γ
(

2+gγ−ε
2

)2

Γ
(
β+ε

2

)
Γ
(
β−gγ

2 − 1
)

Γ
(
β−ε

2

)
Γ
(
β+gγ

2 + 1
)

=
g2γ2

β(β − 2)

[
1 +

2gγ

β(β − 2)
− (gγ − ε)(1−H(β/2− 1)) +O(g2, ε2)

]
.

(5.4)

8See a more detailed account as well higher order corrections to this case in [30].
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and the Hypergeometric function can be expanded as,

4F3

[ gγ
2 , 1 + gγ

2 , 1 + gγ
2 , h− 1 + gγ

2

2− β−gγ
2 , 1 + β+gγ

2 , h− 1 + gγ
; 1

]
= 1− gγ

2

(
4

β(β − 2)
+ π cscπβ/2

)
. (5.5)

Combining these two, we can write up to O(g3, ε3),

− g2γ2

β(β − 2)

(
(gγ − ε)(1−H(β/2− 1)) +

gγ

2
π cscπβ/2

)
. (5.6)

5.2 Particular dimensions

In some specific cases the scalar contribution to the anomalous dimension simplifies con-

siderably. Let us consider some of the cases computed previously in the literature [13–15].

In order to make the comparison more transparent we set τ = −2∆, ∆ = ∆ε and

f11Of22O = f2
0 in (3.10), we can write,

γ12(β,∆,∆′) = −2f2
0

Γ(∆)2Γ
(

1
2(β − 2∆ + 2)

)
Γ (∆ε) Γ

(
1
2 (β + 2∆−∆ε − 2)

)
Γ
(

1
2(β + 2∆− 2)

)
Γ
(

1
2 (2∆−∆ε)

)
2Γ
(

∆ε
2

)
2Γ
(

1
2 (β−2∆+∆ε+2)

)
4F3

[
−d

2 + ∆ε
2 + 1, −∆ + ∆ε

2 + 1, −∆ + ∆ε
2 + 1, ∆ε

2

−β
2 −∆ + ∆ε

2 + 2, β2 −∆ + ∆ε
2 + 1, −d

2 + ∆ε + 1
; 1

]
, (5.7)

5.2.1 d = 3, ∆ε = 1

The simplest case corresponds to taking d = 3, ∆ε = 1. Plugging it back into (5.7), the

expression simplifies to

γ12(β) = −2f2
0

Γ(∆)2Γ
(
β
2 −∆ + 1

)
Γ
(
β−3

2 + ∆
)

2π2Γ
(
∆− 1

2

)2
Γ
(

1
2(β − 2∆ + 3)

)
Γ
(
β
2 + ∆− 1

) (5.8)

By further set ∆ = 1 and replacing β → 1−
√

4j2 + 1 we got,

γ12(β) =
2√

1 + 4j2 π3
, (5.9)

By Taylor expand around large j, we can write the above function as,

γ12 = −c0

j

(
1 +

∞∑
k=1

ck
j2k

)
, (5.10)

where the coefficients of the expansion are given by,

ck = −
(

1

4

)k Γ
(
k + 1

2

)
Γ(k + 1)

, (5.11)

which is exactly the result quoted in eq. (35) [14].
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5.2.2 d = 6, ∆ε = 4

Now putting the particular values d = 6, ∆ε = 4 in (5.7) we got,

γ12 = −2f2
0

96Γ(∆)2

Γ(3−∆)2

1

(β − 2∆ + 2)(β − 2∆ + 4)(β + 2∆− 6)(β + 2∆− 4)
. (5.12)

Replacing β → 1−
√

4j2 + 1 in the equation above, we recover the result from eq. (65) [14].

γ12 = −2f2
0

6Γ(∆)2

j4Γ(3−∆)2

(
1 +

j4

(j2 − (∆− 3)(∆− 2)) (j2 − (∆− 2)(∆− 1))

)
(5.13)

6 Regular terms

The computations considered in sections above only determines the anomalous dimension

from the coefficient of the log terms. As one can see from (3.4), for the OPE coefficients

one needs to analyse the regular (non-log) terms as well.

For the scalar block (3.2) the leading regular non-log term is given by,

g0,∆′(1− z̄) = − Γ(∆′)

Γ
(

∆′

2

)2 (1− z̄)
∆′
2

×
(

2F1

[
∆′

2
,

∆′

2
,∆′ − h+ 1, 1− z̄

]
log(z̄) + 2

(
γ + ψ(∆′/2)

))
. (6.1)

After plugging it at (2.18) and expanding the 2F1 function in power series, we need to

consider the following complicated integral,

Îτ ′(β) =

∫ 1

0

dz̄

z̄2
κβkβ(z̄) dDisc

(1− z̄
z̄

) τ ′
2

log(z̄)

 . (6.2)

By further expanding the log we can perform the integral,

Îτ ′(β) =
Γ
(
β
2

)4
Γ
(

1
2(β − τ ′ − 2)

)
2π2Γ(β − 1)Γ(β)

∞∑
p=1

(−1)p

p

Γ
(
p+ τ ′

2 + 1
)

Γ
(
p+ β

2

) 3F2

(
β

2
,
β

2
,
β

2
− τ ′

2
− 1; p+

β

2
, β; 1

)
. (6.3)

Dividing by the identity, we can write the regular part contribution from the scalar to the

coefficient C0(β) as,

C0,∆′

12 (β) =− Γ(∆′)

Γ
(

∆′

2

)2
I0,0
−2∆0

(
2(γ + ψ(∆′/2))I

(0,0)
∆′−2∆0

+

∞∑
k=0

(
∆′

2

)2

k

(∆′ − h+ 1)k
Î∆′−2∆0+2k(β)

)
(6.4)

We could not find a more compact way to write this expression. In the next section

we will consider this contribution from Mellin space.
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6.1 From Mellin space

We will again start with (A.20) of appendix A but this time focussing on the non-log terms.

To keep this simple, we will consider the regular terms in the case of scalar exchange.

The spin counterpart follows identical logic but with additional complications due to the

non-trivial Mack polynomials. The regular terms of (A.20) for scalar exchange in the

t-channel, are,

lim
z→0
Gt0,∆(z, z̄)

∣∣∣∣
reg

=z
∆1+∆2

2

(
1− z̄
z̄

)∆+τ ′
2
−b
z̄−b

Γ(∆)Γ(1 + ∆− h)

Γ
(

∆
2

)4∫
C
ds (−1)s

Γ(−s)Γ
(
s+ ∆

2

)2
Γ(1 + s+ ∆− h)

(
1− z̄
z̄

)s ∞∑
k=0

(−s)k(1 + s− k + ∆− h)k

k!
(
s− k + ∆

2

)
k

× [2γ + ψ(∆/2 + s) + ψ(∆/2 + s− k)] . (6.5)

The first step is to perform the k sum. This can be done by exploiting an identity,

∞∑
k=0

(−s)k(b− k)k
(c− k)kk!

= 2F1

[
−s, 1− b

1− c
; 1

]
=

(b− c)s
(1− c)s

, Re(b− c+ s) > 0 . (6.6)

Closing the contour on the r.h.s., we can see that the last condition is satisfied for b =

1+s+∆−h and c = s+∆/2, due to the unitarity bound and provided that the exchanged

scalar is not a fundamental scalar. Thus,

∞∑
k=0

(−s)k(1 + ∆− h+ s− k)k

(s− k + ∆
2 )kk!

=

(
∆
2 − h+ 1

)
s

(∆− h+ 1)s
(
1− s− ∆

2

)
s

. (6.7)

Next, the derivative of (6.6), w.r.t. the parameter c, gives,

∞∑
k=0

(a)k(b− k)k
k!(c− k)k

(ψ(c−k)−ψ(c)) =
(b−c)s
(1−c)s

[ψ(b−c)+ψ(1−c+s)−ψ(1−c)−ψ(b−c+s)] .

(6.8)

which gives,

∞∑
k=0

(a)k(b− k)k
k!(c− k)k

ψ(c−k) =
(b−c)s
(1−c)s

[ψ(c)+ψ(b−c)+ψ(1−c+s)−ψ(1−c)−ψ(b−c+s)] . (6.9)

For the specified values of b and c, we can write,

∞∑
k=0

(−s)k(1 + ∆− h+ s− k)k(
s− k + ∆

2

)
k
k!

[2γ + ψ(∆/2 + s) + ψ(∆/2 + s− k)]

=

(
∆
2 − h+ 1

)
s

(1− s− ∆
2 )s

[
2γ + 2ψ(s+ ∆/2) + ψ(∆/2− h+ 1) + ψ(1−∆/2)

− ψ(1− s−∆/2)− ψ(∆/2− h+ 1 + s)
]
.

(6.10)
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Plugging this back in (6.5), we find,

lim
z→0
Gt0,∆(z, z̄)

∣∣∣∣
reg

= z
∆1+∆2

2

(
1− z̄
z̄

)∆+τ ′
2
−b
z̄−b

Γ(∆)

Γ(∆
2 )2

∫
C
ds (−1)s

Γ(−s)(∆
2 )2

s

(1 + ∆− h)s

(
1− z̄
z̄

)s (∆
2 − h+ 1)s

(1− s− ∆
2 )s

×
[
2γ + 2ψ(s+ ∆/2) + ψ(∆/2− h+ 1) + ψ(1−∆/2)

− ψ(1− s−∆/2)− ψ(∆/2− h+ 1 + s)
]
. (6.11)

Finally, performing the z̄ integral using (3.6) and dividing by the tree-level contribution,

we find,

C0,∆
12 (β) =

(
a− ∆+τ ′

2

)
∆
2

(
−a− ∆+τ ′

2

)
∆
2(

β−∆−τ ′
2 − 1

)
∆
2

(
β+τ

2 + 1
)

∆
2

Γ(∆)

Γ
(

∆
2

)2
×
∫
C
dsΓ(−s)

(−1)s
(

∆
2

)2
s

(
1− h+ ∆

2

)
s

(
∆+τ ′

2 + 1 + a
)
s

(
∆+τ ′

2 + 1− a
)
s(

1− s− ∆
2

)
s

(1 + ∆− h)s

(
β+∆+τ ′

2 + 1
)
s

(
β−∆−τ ′

2 − s− 1
)
s

×
[
2γ + 2ψ(s+ ∆/2) + ψ(∆/2− h+ 1) + ψ(1−∆/2)

− ψ(1− s−∆/2)− ψ(∆/2− h+ 1 + s)
]
, (6.12)

with a = (∆2−∆1)/2. We can now consider the s-poles from Γ(−s) and close the contour

on the r.h.s., to obtain,

C0,∆
12 (β) =−

(
a− ∆+τ ′

2

)
∆
2

(
−a− ∆+τ ′

2

)
∆
2(

β−∆−τ ′
2 − 1

)
∆
2

(
β+τ ′

2 + 1
)

∆
2

Γ(∆)

Γ
(

∆
2

)2
×
∞∑
n=0

(
∆
2

)
n

(
1− h+ ∆

2

)
n

(
∆+τ ′

2 + 1 + a
)
n

(
∆+τ ′

2 + 1− a
)
n

n!(1 + ∆− h)n

(
β+∆+τ ′

2 + 1
)
n

(
2− β−∆−τ ′

2

)
n

×
[
2γ + 2ψ(n+ ∆/2) + ψ(∆/2− h+ 1) + ψ(1−∆/2)

− ψ(1− n−∆/2)− ψ(∆/2− h+ 1 + n)
]
.

(6.13)

Although an exact expression is difficult to obtain, one can see that in the large β limit,

the correction can be expanded in the form,

C0,∆
12 (β) = −

(
2

β

)∆ ∞∑
k=0

Ak(a, h,∆, τ
′)

(
2

β

)k
. (6.14)

– 25 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
2

The first few coefficients are of the form,

A0(a, h,∆, τ ′) =2a0H(∆/2− 1) ,

A1(a, h,∆, τ ′) =2a0∆H(∆/2− 1) ,

A2(a, h,∆, τ ′) =
a0

6(∆−h+1)

[
6(h−1)(2−2a+∆+τ ′)(2+2a+∆+τ ′) + ∆(12a2(2−2h+∆)

+ (2+∆)(2− (∆−4)∆ + h(4∆− 2)) + 6(1+h)∆τ ′ + 3∆τ ′2)H(∆/2−1)

]
,

(6.15)

and so on, where,

a0 =
Γ(∆)

Γ(∆
2 )2

(
a− ∆ + τ ′

2

)
∆
2

(
− a− ∆ + τ ′

2

)
∆
2

, (6.16)

with a = (∆2 −∆1)/2 and τ ′ = −∆1 −∆2.

6.1.1 Special case: identical scalars

We will consider the above non-log term in a special case of identical scalars from the

expression in the last subsection. For identical scalars in four dimensions, a = 0 and

τ ′ = −2∆φ. We will consider an ε−expansion around the free point, so that ∆ = 2∆φ + g,

and h = 2 − ε/2, and further ∆φ = 1 − ε/2 + O(g2). From (6.13), we then obtain, for

identical scalars,

C0,∆
φφ (β) =

Γ(2h− 2 + g)

Γ
(
h− 1 + g

2

)2 Γ
(
β−g

2 − 1
)

Γ
(
β+g

2 + 1
) 1

Γ
(
−g

2

)2
×
∞∑
n=0

(
h− 1 + g

2

)
n

(g
2

)
n

(
1 + g

2

)2
n

n!(h−1+g)n

(
β+g

2 + 1
)
n

(
2− β−g

2

)
n

[
2γ + 2ψ

(
n+ h−1+

g

2

)
+ ψ

(
g

2

)

+ ψ

(
2− h− g

2

)
− ψ

(
2− h− g

2
− n

)
− ψ

(
n+

g

2

)]
. (6.17)

The overall factor can be written as a series expansion in g, as follows,

Γ(2h− 2 + g)

Γ
(
h− 1 + g

2

)2 Γ
(
β−g

2 − 1
)

Γ
(
β+g

2 + 1
) 1

Γ
(
−g

2

)2 (6.18)

=
Γ(2h− 2)

Γ(h− 1)2

g2

β(β − 2)

[
1− g

2
(2H(h− 2)−H(2h− 3) +H(β/2− 2) +H(β/2))

]
+O(g3) .

Notice that the n = 0 term of the sum, starts contributing from O(g, ε). The n = 0 term

is simple and,

2H((g − ε)/2) =
π2

6
(g − ε)− 1

2
ζ(3)(g − ε)2 +

π4

360
(g − ε)3 +O(g4, ε4) , (6.19)
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while n > 0 terms do starting contributing from O(1) and we obtain,

∑
n>0

(
h− 1 + g

2

)
n

(g
2

)
n

(
1 + g

2

)2
n

n!(h− 1 + g)n

(
β+g

2 + 1
)
n

(
2− β−g

2

)
n

[
2γ + 2ψ

(
n+ h− 1 +

g

2

)
+ ψ

(
g

2

)

+ ψ

(
2− h− g

2

)
− ψ

(
2− h− g

2
− n

)
− ψ

(
n+

g

2

)]
=

4

β(β − 2)
+ π cscπβ/2 +O(g) ,

(6.20)

The leading correction to C0,∆
φφ (β) is then,

C0,∆
φφ (β) =

Γ(2h− 2)

Γ(h− 1)2

g2

β(β − 2)

[
4

β(β − 2)
+ π cscπβ/2

]
+O(g3) . (6.21)

7 Conclusions and discussion

In this paper we have computed the anomalous dimension of higher spin operators in

conformal field theory by means of the Inversion Formula [1] both from position space

conformal blocks as well as from its Mellin space representation. In the former case, it is

necessary to solve a recursion relation that computes the coefficients of a power expansion

of the conformal blocks in generic dimensions, or equivalent, the coefficients on a expansion

in descendant contributions to the anomalous dimension of the spinning operators. In the

latter approach, we are left with an infinite sum which is the same as the left-over one

variable integral in the Mellin space. Important distinctions between the two approaches

can be observed in the case of a spin−J operator exchange in the t-channel. Consider

the position space approach first. In this case, we are looking for an expansion of the

following sort,

GtJ,∆(z, z̄) = B0(J,∆)y
∆−J

2

∞∑
k=0

gk(J,∆) yk , y =
1− z̄
z̄

, (7.1)

and the coefficients gk(J,∆) can be obtained through the recursion relations (3.22). In the

case of the (integral) Mellin representation, the recursion relation is replaced by a simple

sum over residues. Economically speaking, the sum over terms is much easier to handle

than the recursion relation itself. Secondly, the contributions of the scalar/spin exchanges

in the t-channel can be resummed for any operator in the s-channel with finite conformal

spin β = ∆ +J in terms of general pFq functions. Thirdly, we have also demonstrated that

the formula we obtained in (4.18) reduces to (4.11) for J = 0, and further (4.11) produces

the special cases obtained in [14]. Another advantage of the integral representation is

taking the z → 0 limit. In terms of the position space representation, taking the z → 0

limit becomes a little cumbersome specially when spin-exchanges are involved. However

starting from the (integral) Mellin representation, both the log z and the regular term can
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be obtained from the integral representation from the lowest pole in the integral variable.

For example we have a following form,∫
dt Γ(−t)2ztf(t) = f(0) log z + 2γf(0) + f ′(0) , (7.2)

which is obtained from just the t = 0 pole of Γ(−t)2. By taking the t = 0 pole, we recover

both the log and the regular term at the same time. The higher orders (away from the

z → 0 limit) can be obtained from the t = n poles of Γ(−t)2.

As future perspectives it would be interesting to see how this results relate to previous

studies in Mellin space, such as the Mellin bootstrap program [19, 20, 22]. Even more

interesting, by considering the Mellin integrand as a scattering process in AdS, it would

be nice to explore what the results discussed in this paper have to teach us about higher

loops corrections to scattering in AdS where some recent considerations have been done

in [31–35] and more generally for the Witten diagrams containing spinning exchanges as

the ones considered in [36]. Another very attractive follow up is to implement the large

spin analysis to correlation functions containing tensorial operators. Such correlations have

been study very recently in Mellin space by [37] and it would be very interesting to use

those results on a analysis similar to the one performed in this paper. Another perspective

might be to explore the inversion formula in the context of Conformal Perturbation Theory

recently discussed in [38] in general dimensions. One might consider the usefulness of the

inversion formula in tying [38] together with [37] in the context of perturbed d−dimensional

CFTs, and correlators of general operators.
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A Integral representation

We will start with the integral representation of the conformal blocks following [25, 26]. The

integral representation for the four point function 〈O1O2O3O4〉 in the OPE decomposition

O1 ×O2 and O3 ×O4 due to the exchange of an operator OJ,∆, is given by,

fJ,∆(u, v) =
1

γλ1,aγλ̄1,b

∫
C
dsdt Γ(λ2 − s)Γ(λ̄2 − s)Γ(−t)Γ(−t− a− b)

× Γ(s+ t+ a)Γ(s+ t+ b)PJ,∆(s, t, a, b)usvt ,

(A.1)
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where we have stripped off the overall kinematical factors. The contour C extends from

γ − i∞ to γ + i∞ where following [25, 26],

Res < λ2, λ̄2 , Ret < 0,−a− b , Rec < a, b , (A.2)

and for the t integral, −a− s,−b− s < γ < 0,−a− b. In general,

fJ,∆(u, v) =
1

kJ,d−∆

γλ1,a

γλ̄1,b

GJ,∆(u, v) +
1

kJ,∆

γλ̄1,a

γλ1,a
GJ,d−∆(u, v) , (A.3)

is a linear combination of the physical block and the shadow respectively from the s = λ2+n

and s = λ̄2 + n poles. To explain, the symbols,

λ1 =
∆ + J

2
, λ̄1 =

d−∆ + J

2
, (A.4)

λ2 =
∆− J

2
, λ̄2 =

d−∆− J
2

. (A.5)

a = ∆21
2 and b = ∆34

2 where ∆ij = ∆i −∆j . (u, v) are the conformal cross-ratios, given by,

u =
x2

12x
2
34

x2
13x

2
24

= zz̄ , v =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z̄) . (A.6)

Moreover,

kJ,∆ =
1

(∆− 1)J

Γ(d−∆ + J)

Γ(∆− h)
, γx,y = Γ(x+ y)Γ(x− y) , and h = d/2 . (A.7)

d− is the spacetime dimension. PJ,∆(s, t, a, b) is the Mack polynomial given by,

PJ,∆(s, t, a, b)=
1

(d−2)J

∑
m+n+p+q=J

J !

m!n!p!q!
(−1)p+n(2λ̄2+J−1)J−q(2λ2+J−1)n(λ̄1+a−q)q

× (λ̄1 + b− q)q(λ1+ a−m)m(λ1+ b−m)m(d− 2 + J + n− q)q(h−1)J−q

× (h− 1 + n+ a+ b)p(λ2 − s)p+q(−t)n .
(A.8)

In order to eliminate the shadow contributions in (A.1) from the start, we will consider a

different definition of (A.1), that produces just the physical blocks. We will write,

GJ,∆(u, v) =
kJ,d−∆

γλ1,aγλ1,b

∫
C
dsdt F (s)Γ(λ2 − s)Γ(λ̄2 − s)Γ(−t)Γ(−t− a− b)

× Γ(s+ t+ a)Γ(s+ t+ b)PJ,∆(s, t, a, b)usvt ,

(A.9)

where F (s) may be thought of as the projection operator9 onto the physical poles. It is

not very difficult to see that,

F (s) =
sinπ(λ̄2 − s)
sinπ(h−∆)

eπi(λ2−s) . (A.10)

9This is similar to the monodromy operation on the blocks that projects them on to the physical poles.
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Combined with this, we can write,

GJ,∆(u, v) =
Γ(∆+J)Γ(1+ ∆−h)

(d−∆− 1)Jγλ1,aγλ1,b

∫
C
dsdt

Γ(λ2−s)eπi(λ2−s)

Γ(1 + s− λ̄2)
Γ(−t)Γ(−t−a−b)Γ(s+t+a)

× Γ(s+ t+ b)PJ,∆(s, t, a, b)(zz̄)s((1− z)(1− z̄))t .

(A.11)

in terms of the complex z, z̄ coordinates. In order to simplify matters from the start, we

will be dealing with correlators of the form 〈O1O2O2O1〉 and investigating the contribu-

tions of the t-channel exchanges through the inversion formula in [1]. For these kind of

correlation functions, the t-channel contribution essentially reduces to the representation

for the identical scalars. The cross-ratios in the t-channel, is merely the transformation

(z, z̄)→ (1− z̄, 1− z) and with a = b = 0, we can write,

GtJ,∆(z, z̄) =
Γ(∆ + J)Γ(1 + ∆− h)

(d−∆− 1)Jγ4
λ1

∫
C
dsdt

Γ(λ2 − s)eπi(λ2−s)

Γ(1 + s− λ̄2)
Γ(−t)2Γ(s+ t)2

× PJ,∆(s, t, 0, 0)(zz̄)t((1− z)(1− z̄))s .

(A.12)

The above formula will be the starting point of our calculations. We are furthermore

interested in the z → 0 limit, where there are simplifications. Before proceeding to the

core of the calculations, notice that (A.12) is still not in the form most useful for the

inversion formula since there are additional factors that we should take into account. The

correct quantity in the t-channel after taking into account the additional factors is,

GtJ,∆(z, z̄) =
(zz̄)

∆1+∆2
2

((1− z)(1− z̄))∆2
GtJ,∆(z, z̄) , (A.13)

which in the z → 0 limit is,

lim
z→0
GtJ,∆(z, z̄) =

(zz̄)
∆1+∆2

2

(1− z̄)∆2

Γ(∆+J)Γ(1+∆−h)

(d−∆− 1)Jγ4
λ1

∫
C
dsdt

Γ(λ2−s)eπi(λ2−s)

Γ(1 + s− λ̄2)
Γ(−t)2Γ(s+ t)2

× PJ,∆(s, t, 0, 0)ztz̄t+s
(

1− z̄
z̄

)s
.

(A.14)

Now we shift the variable, s→ s+ λ2, so that,

lim
z→0

z−
∆1+∆2

2 GtJ,∆(z, z̄) =

(
1− z̄
z̄

)λ2+ τ
2
−b
z̄−b

Γ(∆ + J)Γ(1 + ∆− h)

(d−∆− 1)Jγ4
λ1

×
∫
C
dsdt (−1)s

Γ(−s)Γ(−t)2Γ(s+ λ2 + t)2

Γ(1 + s+ λ2 − λ̄2)
PJ,∆(s+ λ2, t, 0, 0)ztz̄t+s+λ2

(
1− z̄
z̄

)s
.

(A.15)

where τ = −∆1 −∆2 and b = (∆2 −∆1)/2 and our contour pick up the poles of Γ(−s) at

s = n. Further, using,

y =
z̄

1− z̄
⇒ z̄ =

1

1 + 1
y

, we write z̄s+t+λ2 =

∞∑
k=0

(−1)k

k!
(s+ t+ λ2)ky

−k , (A.16)
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we can write, after further shifting s→ s− k,

lim
z→0

z−
∆1+∆2

2 GtJ,∆(z, z̄) =

(
1− z̄
z̄

)λ2+ τ
2
−b
z̄−b

Γ(∆ + J)Γ(1 + ∆− h)

(d−∆− 1)Jγ4
λ1

×
∞∑
k=0

∫
C
dsdt(−1)s

Γ(k − s)Γ(−t)2Γ(s−k +λ2 + t)Γ(s+λ2+ t)

k!Γ(1 + s− k + λ2 − λ̄2)

× PJ,∆(s− k + λ2, t, 0, 0)zt
(

1− z̄
z̄

)s
.

(A.17)

Since we are interested in the z → 0 limit, it only suffices to close the contour on the right

and consider the t = 0 pole. Explicitly,

Res

[
Γ(−t)2Γ(s− k + λ2 + t)Γ(s+ λ2 + t)PJ,∆(s− k + λ2, t, 0, 0)zt

]
t=0

= Γ(s+ λ2)Γ(s− k + λ2)[(log z +H(λ2 + s− 1)

+H(λ2 + s− k − 1))PJ,∆(s− k + λ2, 0, 0, 0) + P ′J,∆(s− k + λ2, 0, 0, 0)] .

(A.18)

where,

PJ,∆(s− k + λ2, 0, 0, 0) =
1

(d− 2)J

∑
m+p+q=J

J !

m!p!q!
(−1)p(2λ̄2 + J − 1)J−q(λ̄1 − q)2

q

× (λ1 −m)2
m(d− 2 + J − q)q(h− 1)J−q(h− 1)p(k − s)p+q ,

P ′J,∆(s− k + λ2, 0, 0, 0) =
(1− δn,0)

(d− 2)J

∑
m+n+p+q=J

J !(n− 1)!

m!n!p!q!
(−1)p+n(2λ̄2 + J − 1)J−q

× (2λ2 + J − 1)n(λ̄1 − q)2
q(λ1 −m)2

m

× (d− 2 + J + n− q)q(h− 1)J−q(h− 1 + n)p(λ2 − s)p+q .
(A.19)

The entire contribution from (A.17) can be decomposed into,

lim
z→0
GtJ,∆(z, z̄)

= z
∆1+∆2

2

(
1− z̄
z̄

)λ2+ τ
2
−b
z̄−b

Γ(∆ + J)Γ(1 + ∆− h)

(d−∆− 1)Jγ4
λ1

×
[

log z

∞∑
k=0

∫
ds(−1)s

Γ(k − s)Γ(s− k + λ2)Γ(s+ λ2)

k!Γ(1 + s− k + λ2 − λ̄2)

(
1−z̄
z̄

)s
PJ,∆(s− k + λ2, 0, 0, 0)

+
∞∑
k=0

∫
C
ds (−1)s

Γ(k − s)Γ(s− k + λ2)Γ(s+ λ2)

k!Γ(1 + s− k + λ2 − λ̄2)

(
1− z̄
z̄

)s
×
(

(H(λ2+s−1) +H(λ2+s−k−1))PJ,∆(s−k+λ2, 0, 0, 0) + P ′J,∆(s−k+λ2, 0, 0, 0)
)]
,

(A.20)

a log term, which contributes to the anomalous dimension and a finite piece, which con-

tributes to the correction of the OPE coefficient.
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A.1 Simplification of the Mack polynomials

Under certain circumstances, we can simplify the Mack polynomials appearing in (A.20)

furthermore. For example, in the coeffiicient of the log term, one can simply write,

PJ,∆(s− k + λ2, 0, 0, 0) =
1

(d− 2)J

∑
m+p+q=J

J !

m!p!q!
(−1)p(2λ̄2 + J − 1)J−q(λ̄1 − q)2

q

× (λ1 −m)2
m(d− 2 + J − q)q(h− 1)J−q(h− 1)p(k − s)p+q ,

=
(d−∆− 1)J

(d− 2)J

J∑
m=0

Am(J,∆)(k − s)J−m ,

(A.21)

where,

Am(J,∆) = 22−2h+∆−J√π
Γ(2h+J−∆

2 )Γ(2h− 1 +m−∆)(h− 1)m

Γ(m+ 1)Γ(2h−1+J−∆
2 )Γ(2h+2m−J−∆

2 )2

× (1 + J −m)m

(
∆ + J

2
−m

)2

m

× (2h− 2 +m)J−m 4F3

[
m− J, h− 1, h+m− 1, 2h− 1 +m−∆

2h− 2 +m, 2h+2m−J−∆
2 , 2h+2m−J−∆

2

; 1

]
.

(A.22)

B Recursion in spin

In general dimension, the conformal blocks satisfies a recursion relation in spin of the

form [25, 26],

(`+ d− 2)G∆, (`+1)(a, b;u, v) (B.1)

=

(
`+

d

2
− 1

)
u−

1
2

(
G∆ (`)

(
a− 1

2
, b+

1

2
;u, v

)
− vG∆, (`)

(
a+

1

2
, b+

1

2
;u, v

)
+G∆, (`)

(
a+

1

2
, b− 1

2
;u, v

)
−G∆, (`)

(
a− 1

2
, b− 1

2
;u, v

))
− `G∆, (`−1)(a, b;u, v) .

In the t-channel, one have at z → 0 that coordinates (u, v) go to u→ (1− z̄), v → 0,

therefore in the limit of interest, the recursion relation can be approximated by

(`+ d− 2)G∆, (`+1)(a, b; (1− z̄), v)

=

(
`+

d

2
− 1

)
u−

1
2

(
G∆ (`)

(
a− 1

2
, b+

1

2
; (1−z̄), v

)
+G∆, (`)

(
a+

1

2
, b− 1

2
; (1−z̄), v

)
−G∆, (`)

(
a− 1

2
, b− 1

2
; (1− z̄), v

))
− `G∆, (`−1)(a, b; (1− z̄), v) . (B.2)

In the small−z limit, the recursion is seeded by the scalar block,

G∆, (0)(a, b; (1− z̄), v) =
1

2
log(z) (1− z̄)

∆′
2 2F1

[
∆′

2
+ a,

∆′

2
+ b,∆′ − h+ 1, 1− z̄

]
. (B.3)
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For example ` = 1 will be given by

g∆, (1)(a, b; (1− z̄), v) =

1

2
(1− z̄)

∆′
2
− 1

2

(
2F1

[
∆′

2
+ a− 1

2
,

∆′

2
+ b+

1

2
,∆′ − h+ 1, 1− z̄

]
+2F1

[
∆′

2
+ a+

1

2
,

∆′

2
+ b− 1

2
,∆′ − h+ 1, 1− z̄

]
−2F1

[
∆′

2
+ a− 1

2
,

∆′

2
+ b− 1

2
,∆′ − h+ 1, 1− z̄

])
. (B.4)

Each to those terms will contribute an hypergeometric function (3.10) with ∆′ shifted

accordingly. Recalling the indentity,

2F1[a, b, c; z] = (1− z)−a2F1

[
a, c− b, c; z

1− z

]
, (B.5)

we can rewrite,

g∆, (1)(a, b; (1− z̄), v) =

1

2

(
(1− z̄)−a2F1

[
∆′

2
+ a− 1

2
,

∆′

2
− b+

1

2
− h,∆′ − h+ 1,

z̄

1− z̄

]
+(1− z̄)−a−1

2F1

[
∆′

2
+ a+

1

2
,
∆′

2
− b+

3

2
− h,∆′ − h+ 1,

z̄

1− z̄

]
−(1− z̄)−a2F1

[
∆′

2
+ a− 1

2
,

∆′

2
− b+

3

2
− h,∆′ − h+ 1,

z̄

1− z̄

])
. (B.6)

which by putting it back into (3.13) gives a combination of three 4F3 of a similar form

as in the scalar block and the spin block in four dimensions. However we will not display

the explicitly form because is large and we are not going to use it here. We just want to

emphasize that it is possible to write down a closed form for the spining blocks in general

dimension, even though as a large combination of Gauss hypergeometric functions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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