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We focus on a broad class of tetragonal itinerant systems sharing a tendency towards the spontaneous
formation of incommensurate magnetism with ordering wave vectors Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ or
Q1;2 ¼ ðπ; δÞ=ð−δ; πÞ. Employing a Landau approach, we obtain the generic magnetic phase diagram and
identify the leading instabilities near the paramagnetic-magnetic transition. Nine distinct magnetic phases
exist that either preserve or violate the assumed C4 symmetry of the paramagnetic phase. These are single-
and double-Q phases consisting of magnetic stripes, helices, and whirls, either in an individual or
coexisting manner. These nine phases can be experimentally distinguished by polarized neutron scattering,
or, e.g., by combining measurements of the induced charge order and magnetoelectric coupling. Within two
representative five-orbital models, suitable for BaFe2As2 and LaFeAsO, we find that the incommensurate
magnetic phases we discuss here are accessible in iron-based superconductors. Our investigation unveils a
set of potential candidates for the unidentified C2-symmetric magnetic phase that was recently observed in
Ba1−xNaxFe2As2. Among the phases stabilized we find a spin-whirl crystal, which is a textured magnetic
C4-symmetric phase. The possible experimental observation of textured magnetic orders in iron-based
superconductors opens new directions for realizing intrinsic topological superconductors.

DOI: 10.1103/PhysRevX.8.041022 Subject Areas: Condensed Matter Physics,
Magnetism,
Superconductivity

I. INTRODUCTION

Magnetism constitutes one of the most ubiquitous phases
in correlatedmatter, giving rise to awide range of remarkable
phenomena. Apart from the typical examples of (anti)
ferromagnetism, there exists an entire zoo of other magnetic
phases, ranging from collinear to noncoplanar orders. The
iron-based superconductors (FeSCs) are a prime example of
this diversity. The commensurate magnetic stripe (MS)
phase, with moments aligned antiferromagnetically along
one Fe-Fe direction and ferromagnetically along the other, is
prevalent in the undoped compounds. However, recent
experiments on a number of hole-doped compounds have
revealed the emergence of both collinear [1] and coplanar [2]
magnetic orders.
Commensurate magnetism in the FeSCs can be described

by twomagnetic order parametersM1 andM2, with ordering
vectors Q1 ¼ ðπ; 0Þ and Q2 ¼ ð0; πÞ (in the 1Fe/unit cell),

related by fourfold (C4) rotations [3–12]. In the event that the
two order parameters compete, the single-Q MS phase is
realized. On the other hand, if the two order parameters
coexist, the moments can align in either a parallel (M1kM2)
or perpendicular (M1⊥M2) fashion. In the case of collinear
moments, the resulting magnetic order is dubbed a charge-
spin density wave (CSDW) phase, while the case of non-
collinear moments is denoted a spin-vortex crystal (SVC)
phase. These so-called double-Q phases can be challenging
to distinguish experimentally, and this generally requires
the use of local probe techniques. Signatures of double-Q
magnetic structures were observed in Ba1−xNaxFe2As2
[13,14], Ba1−xKxFe2As2 [15–20], Sr1−xNaxFe2As2 [1],
and in hole-doped CaKFe4As4 [2]. In Sr1−xNaxFe2As2,
Mössbauer spectroscopy captured the existence of a
CSDW phase [1], while in CaKFe4As4 a SVC phase was
observed [2]. Their discovery has generated considerable
attention, and especially the observation of a CSDW
phase highlights the itinerant nature of magnetism in these
compounds.
Nevertheless, recent experiments suggest that magnetism

in FeSCs may not only be limited to the three phases
mentioned above. In fact, the commensurate aspect needs
to be revisited since direct evidence for incommensurate (IC)
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magnetism has been provided by neutron scattering [21–23]
on electron-doped FeSCs. In addition, recent thermal
expansion measurements [24] performed on hole-doped
Ba1−xNaxFe2As2 have revealed a rich mosaic of single-
and double-Q magnetic phases, including a new C2-
symmetric phase of a currently unidentified nature.
Importantly, the latter experiment found evidence for the
presence of an inflection point in the magnetic transition
temperature as a function of doping. This has been inter-
preted as the onset of IC magnetic order [25,26], although
the presence of IC magnetism in this compound has not yet
been confirmed by scattering experiments. We note that the
existence of IC magnetic order is entirely expected within
an itinerant scenario for magnetism in the FeSCs.
Similar to other high-Tc superconductors [27,28], super-

conductivity in the FeSCs emerges via charge doping of the
parent compounds. This leads to the possibility of micro-
scopic coexistence between superconductivity and magnet-
ism, which has indeed been observed in certain pnictogen
compounds [13,24,29–33]. In the context of textured non-
collinear and noncoplanar magnetic phases, such a coexist-
ence is of particular interest. These types of orders tie
together the orbital and spin degrees of freedom and induce
an effective spin-orbit coupling (SOC) [34]. When the
induced SOC breaks inversion symmetry, such magnetic
orders can give rise to magnetoelectric phenomena, akin to
those encountered in spin-Skyrmion crystals [35], multi-
ferroics [36], semiconductors with non-negligible SOC
[37,38], and topological insulators [39]. More importantly,
the simultaneous violation of time-reversal symmetry and the
generation of SOC renders the aforementioned magnetic
textures suitable building blocks for realizing topological
superconductors (TSCs) [40–57]. This can be achieved either
via proximity of these magnetic textures to a conventional
superconductor, or intrinsically, by virtue of their micro-
scopic coexistence with spin-singlet superconductivity. An
intrinsic TSC remains a long-sought-after but also elusive
phase of matter, and accomplishing it via the above

mechanism is challenging due to the antagonistic relation
of magnetic order and spin-singlet superconductivity.
Motivated by the recent experimental developments

and the possible applications for TSCs, we explore the
generic consequences of an IC magnetic ordering vector.
Interestingly, we find that this leads to a number of
magnetic phases distinct from the previously discussed
stripe, collinear, and noncollinear orders. For this purpose,
we first carry out a systematic exploration of the accessible
IC magnetic orders with wave vectors Q1;2 ¼ ðπ − δ; 0Þ=
ð0; π − δÞ or Q1;2 ¼ ðπ; δÞ=ð−δ; πÞ. Within a generic
Landau approach we identify nine possible IC magnetic
ground states, and subsequently extract the phase diagram.
The appearance of new phases demonstrates that the effect
of incommensurability is not limited to a simple generali-
zation of the three known commensurate phases. Among
the phases we find a single-Q magnetic helix (MH) phase
along with two double-Q phases where an IC stripe coexists
with a magnetic helix. Additionally, we find a double-Q
phase consisting of two parallel helices, and, finally, two
double-Q phases constituting, as coined here, the spin-
whirl crystals. The fundamental properties of all the nine
magnetic phases are summarized in Table I, while the
respective spatial profiles of the magnetization are depicted
in Figs. 1 and 2, and discussed in greater detail below.
While the IC scenario provides a number of candidates

for the unidentified magnetic phase appearing in Na-doped
BaFe2As2, an unambiguous identification requires addi-
tional experimental measurements. In order to identify and
distinguish these nine magnetic ground states and their
possible presence in FeSCs, one can employ a combination
of experimental techniques capable of resolving the mag-
netically induced charge order in the system and the
emergence of a nonzero magnetoelectric coupling. The
former can be detected in x-ray scattering and the emerging
Bragg peaks. For the latter, one can measure the magneti-
zation generated by applying an external electric field (E)
or via inducing a current (I) flow. We predict that a

TABLE I. Characteristics and experimental signatures of the nine distinct incommensurate magnetic phases, which are extrema of
Eq. (1). The wave vectors appearing in the column regarding the induced charge order have been separated into groups. For a given
group the Bragg peaks have the same intensity. Note that the wave vectors in light font in the column “Induced charge order,” depending
on the parameters, may not lead to a Bragg peak in the spectrum. B and E are Zeeman and electric fields, respectively, and C denotes the
Skyrmion charge.

Magnetic phase Rotational symmetry Induced charge order Magnetoelectricity B-induced C

IC MS (Q1) C2 f�2Q1g ⨯ ⨯
IC CSDW C4 f�2Q1;�2Q2;�Q1 � Q2g ⨯ ⨯
IC SVC C4 f�2Q1;�2Q2g ⨯ ⨯
MH (Q2) C2 ⨯ ✓ (M0 ∝ Q2 · E) ⨯
MS ðQ1ÞkMH (Q2) C2 f�2Q1g, f�2Q2g, f�Q1 � Q2g ✓ (M0 ∝ Q2 · E) ⨯
MS ðQ1Þ⊥MH (Q2) C2 f�2Q1g ✓ (M0 ∝ Q2 · E) ⨯
DPMH (n̂1 ¼ n̂2) C2 f�ðQ1 − Q2Þg ✓ ðM0 ∝ ðQ1 þ Q2Þ · EÞ ⨯
SWC4 C4 f�2Q1;�2Q2g, f�Q1 � Q2g ✓ ✓ ðC ¼ �1Þ
SWC2 [n̂1;2 of Eq. (14)] C2 f�2Q2g, f�Q1 � Q2g ✓ ✓ ðC ¼ �1Þ
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homogeneous magnetization can appear in the presence of
helices or whirls in the magnetic ground state, depending
on the orientation of E or I. Our results regarding the
experimental signatures of the nine magnetic phases are
summarized in Table I.
By adopting two five-orbital models [58,59] based on

density functional theory (DFT) calculations for BaFe2As2
and LaFeAsO, respectively, we demonstrate that IC mag-
netism is a realistic scenario for the family of FeSCs.
Remarkably, textured magnetic phases are accessible for
both band structure types considered here. In fact,
BaFe2As2 supports a variety of textured phases. On the
other hand, textured phases can be stabilized in LaFeAsO
by taking into account orbital selectivity [60–63], modeled
in the present case with orbital-dependent interactions.
For the explored parameter regime, we find that a

C4-symmetric spin-whirl crystal phase becomes favored
in both cases. Remarkably, this can acquire a topologically
nontrivial Skyrmion charge by the application of a weak
Zeeman field (B).
The possible emergence of new magnetic phases in

FeSCs does not only add to the established commensurate
picture regarding themagnetic phase diagram, it also opens
up perspectives for crafting novel topological phases. In
fact, the experimentally confirmed microscopic coexist-
ence of magnetism and superconductivity in FeSCs
[13,24,32,33] appears as a promising platform for realizing
intrinsic TSCs. While symmetry constraints [44] prohibit
crafting strongTSCs [39] by solely combining the standard
commensurate magnetic phases with spin-singlet super-
conductivity, the possible emergence of noncoplanar mag-
netic textures could provide a way around this obstacle,

(a)

(d) (e) (f)

(b) (c)

FIG. 2. Novel magnetic phases appearing with the rise of IC magnetism. The color scale signifies the magnitude of the magnetic
moment. Here we restrict to a single magnetic unit cell. Contrary to the commensurate case, the incommensurability allows for
noncoplanar magnetic textures. In panels (a)–(c) various magnetic helix (MH) order parameters are shown. In panels (b) and (c) the helix
coexists with an in-plane or out-of-plane IC stripe (MSkMH or MS⊥MH). In panel (d) we present the C2-symmetric double parallel
magnetic helix (DPMH) phase, and in panels (e) and (f) the noncoplanar spin-whirl crystal (SWC4 or SWC2) phase with C4 or C2

symmetry.

(a) (b) (c)

FIG. 1. Illustration of the IC generalization of the three well-known commensurate magnetic phases with ordering wave vectors ð0; πÞ
and ðπ; 0Þ. Here we restrict to a single magnetic unit cell and depict the spatial profile of the magnetization for (a) the C2-symmetric IC
magnetic stripe (IC-MS) phase, (b) theC4-symmetric IC charge-spin density wave (IC-CSDW) phase, and (c) theC4-symmetric IC spin-
vortex crystal (IC-SVC) phase.

UNRAVELLING INCOMMENSURATE MAGNETISM AND ITS … PHYS. REV. X 8, 041022 (2018)

041022-3



as previous proposals on artificial chiral topological SCs
[44,45,53–57] suggest. We note that the magnetically
engineered TSCs relevant here are distinct from standard
SOC-generated TSCs which may also be relevant in some
of the FeSCs, as revealed by recent angle-resolved photo-
emission spectroscopy and scanning tunnelingmicroscopy
experiments [64,65].
The content of this paper is organized as follows. In

Sec. II, we present the general Landau formalism and
discuss the emergence of nine IC magnetic phases, among
which one finds a number of potential candidates for
the recently discovered phase in Ba1−xNaxFe2As2 [24].
The detailed magnetic structures of these nine phases are
presented in Sec. III. In Sec. IV, we show the generic
magnetic phase diagram, illustrating the leading magnetic
instability as a function of the Landau parameters.
Section V discusses experimental signatures of the IC
phases, focusing on how to distinguish them from one
another without relying on, e.g., detailed polarized neutron
scattering measurements. In Sec. VI, we turn to FeSCs
and derive the Landau functional for the two microscopic
five-band models, and include interactions in a mean-field
manner using a standard multiorbital Hubbard-Hund
Hamiltonian. This allows for a microscopic determination
of the Landau coefficients, the thermodynamic magnetic
phase diagram, and, subsequently, an analysis of the
energetics of the IC magnetic phases. Moreover, we discuss
the effects of the inversion-symmetric atomic SOC on the
magnetic phase diagram and the appearance of noncoplanar
magnetic textures. Finally, Sec. VII summarizes our results
and discusses further directions.

II. LANDAU FORMALISM FOR
INCOMMENSURATE MAGNETISM

To identify the accessible IC magnetic phases for a
generic itinerant system with tetragonal symmetry and
ordering wave vectors Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ or
Q1;2 ¼ ðπ; δÞ=ð−δ; πÞ, we write down the Landau func-
tional up to quartic order with respect to the magnetic order
parametersMðQ1;2Þ≡M1;2. Contrary to the commensurate
case (δ ¼ 0), where M1;2 ¼ M�

1;2, in the present IC sit-
uation the magnetic order parameters are complex since
MðQ1;2Þ ≠ MðQ1;2Þ� ≡Mð−Q1;2Þ. This results in the fol-
lowing expression for the Landau free-energy functional:

F ¼ αðjM1j2 þ jM2j2Þ þ
β̃

2
ðjM1j2 þ jM2j2Þ2

þ β − β̃

2
ðjM2

1j2 þ jM2
2j2Þ þ ðg − β̃ÞjM1j2jM2j2

þ g̃
2
ðjM1 ·M2j2 þ jM1 ·M�

2j2Þ: ð1Þ

The above was previously studied by Schulz [66], restricted,
however, to the possible occurrence of IC magnetism in

high-Tc cuprates. We note that the free energy given in
Eq. (1) is obtainable from amicroscopic electronic model, as
we demonstrate in Sec. VI.
The Landau functional in Eq. (1) is invariant under

complex conjugation (K), time reversal (T ), D4h point
group operations, SO(3) spin rotations, and translations (ta,
with a the direct lattice shift vector). At quadratic level the
above symmetry becomes artificially enhanced, yielding a
degeneracy among the possible candidate phases for the
leading magnetic instability that sets in when α < 0. The
latter guides us to parametrize the order parameters by

M1 ¼ M cos ηn̂1 and M2 ¼ M sin ηn̂2; ð2Þ

with jn̂1;2j2 ¼ 1 and η ∈ ½0; π=2�. Note that the complex
spin vectors generally satisfy jn̂21;2j ≤ 1. Translational
invariance allows us to arbitrarily and independently
choose the overall phase of the vectors n̂1;2. On the other
hand, spin-rotational invariance allows for further simpli-
fications, for instance setting Re½n̂1� parallel to the z spin
axis. Note that this is not possible if SOC is present since
this introduces anisotropy in spin space. The effects of a
weak SOC are discussed in Sec. VI C.
Under these conditions, extremizing the Landau func-

tional with respect to η yields

sinð2ηÞ ¼ 0; cosð2ηÞ ¼ jn̂21j2 − jn̂22j2
2Gþ 2G̃P − ðjn̂21j2 þ jn̂22j2Þ

;

ð3Þ

where we have introduced

G≡ g− β̃

β − β̃
; G̃≡ g̃

β − β̃
; P≡ jn̂1 · n̂2j2 þ jn̂1 · n̂�2j2

2
:

ð4Þ

For sinð2ηÞ ¼ 0, we retrieve single-Q phases since η ¼ 0
(η ¼ π=2) implies that only the order parameter with wave
vector Q1 (Q2) appears.
The remaining extrema arise for values of η determined

by cosð2ηÞ, leading to double-Q phases. For jn̂21j ≠ jn̂22j, we
have η ≠ π=4. By observing that tan η ¼ jM2j=jM1j, we
obtain that in this case jM1j ≠ jM2j and, thus, all the arising
double-Q phases violate C4 symmetry, leaving only a C2

subgroup intact. If instead jn̂21j ¼ jn̂22j, not necessarily all
double-Q phases are C4-symmetry violating. After exclud-
ing special or singular values of the Landau coefficients, we
find nine extrema of the free energy. These are presented
in Table I and in Sec. III. Further details regarding the
corresponding free energy are presented in Appendix A.
Finally, note that the two possible values for the sign of
β − β̃ give rise to two generic phase diagrams that we
present in detail in Sec. IV.
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III. INCOMMENSURATE MAGNETIC PHASES

The order parameters of the accessible magnetic phases
are identified by the values of η and the spin vectors n̂1;2,
which are determined by minimizing the free energy of
Eq. (1). In addition to the IC extensions of the three well-
known commensurate single-Q stripe (MS) and double-Q,
collinear (CSDW) and noncollinear (SVC) phases, we
uncover a single-Q helix phase along with five further
double-Q phases. These double-Q phases include a number
of C4-symmetry breaking phases.

A. IC extensions of the known commensurate
magnetic phases

We commence by considering the IC generalizations
of the three well-studied commensurate phases, the
C2-symmetric MS phase along with the C4-symmetric
CSDW and SVC phases.
IC magnetic stripe (IC MS).—This constitutes the

generalization of the typical magnetic C2-symmetric phase,
prevalent in FeSCs. As a single-Q phase, it can appear for
eitherQ1 orQ2. Since the latter are equivalent, they can lead
to domains in actual materials. Throughout this work we
focus on single-domain realizations and choose the mag-
netic ordering vector of the IC MS to be Q1 ¼ ðπ − δ; 0Þ
throughout. Thus we obtain

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼ ð0; 0; 0Þ; ð5Þ

which yields the magnetic order depicted in Fig. 1(a).
IC charge-spin density wave (IC CSDW).—This is a

double-Q C4-symmetric phase which constitutes the IC
extension of the CSDW phase and can be seen as two
superimposed IC-MS phases with parallel magnetic-order-
parameter spin vectors. An example of this magnetic order
with Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ and

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼ ð0; 0; 1Þ ð6Þ

is shown in Fig. 1(b).
IC spin-vortex crystal (IC SVC).—This generalizes the

commensurate SVC phase. It is a double-Q C4-symmetric
phase, and similarly to the IC-CSDW phase above, it can be
viewed as two MS phases superimposed. The difference in
this case is that the spin vectors of the magnetic order
parameter are oriented in a perpendicular fashion. An
example of such a magnetic order with Q1;2 ¼ ðπ − δ; 0Þ=
ð0; π − δÞ is

n̂1 ¼ ð0; 1; 0Þ and n̂2 ¼ ð1; 0; 0Þ: ð7Þ

This phase is depicted in Fig. 1(c). It is worth commenting
on the nomenclature of the particular magnetic phase,
which reflects the presence of singular points in the spatial
profile of the magnetization. The singular points act as

sources of vorticity, cf. Refs. [67,68]. This becomes
apparent by rewriting the here two-dimensional magneti-
zation vector as follows: MðrÞ ¼ (MxðrÞ;MyðrÞ; 0)≡
jMðrÞj( cosφðrÞ; sinφðrÞ; 0). The vorticity sources are
located at points in space for which jMðrÞj ¼ 0 and for
which at the same time the phase field φðrÞ jumps by n
multiples of 2π as we move around a loop encircling the
singularity. Here n corresponds to the number of vorticity
units carried by the defect. For the choice of spin vectors in
Eq. (7), the coordinates for the vorticity sources are given
by rs ¼ ½π=ð2QÞ�ð�1;�1Þ. The vorticity points are also
depicted in Fig. 1(c), where we have chosen the unit cell
such that it contains one of the vortices located at the center.
One finds that each singular point contributes with a single
unit of vorticity, while within a single magnetic unit cell
the total vorticity is zero.

B. New magnetic phases arising by virtue
of incommensurability

Apart from the anticipated IC extensions of the three well-
known commensurate magnetic phases encountered in the
FeSCs, we find additional phases unique to the IC case.
These are portrayed in Figs. 2(a)–2(f). In Fig. 2(a) we present
a single-Q magnetic helix phase. In Figs. 2(b) and 2(c) the
magnetic helix phase coexists with an in-plane or out-of-
plane magnetic spiral. In Fig. 2(d) a C2-symmetric double
parallel MH (DPMH) phase is shown, while in Fig. 2(e) a
noncoplanarC4-symmetric spin-whirl crystal (SWC4) phase
is depicted. A C2 version (SWC2) of this phase is shown in
Fig. 2(f).
Magnetic helix (MH).—This is a single-Q C2-symmetric

phase. As we are in a position to arbitrarily choose the
ordering wave vector, below we present the spin-vector
structure for the Q1 ordering wave vector:

n̂1 ¼
1ffiffiffi
2

p ði; 0; 1Þ and n̂2 ¼ ð0; 0; 0Þ: ð8Þ

For Q1 ¼ ðπ − δ; 0Þ the magnetic texture is depicted in
Fig. 2(a). Note that this is the only IC magnetic phase for
which the modulus of the magnetization in coordinate
space jMðrÞj is spatially constant.
Magnetic stripe with parallel magnetic helix (MSkMH):

This double-Q C2-symmetric phase consists of a MH
with ordering wave vector Q1ð2Þ and an IC MS with wave
vector Q2ð1Þ. The magnetic moment arising from the MS is
oriented inside the winding plane of the MH. By choosing
one of the above allowed and equivalent wave vector
configurations, the spin vectors are given by

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼ ði sin λ; 0; cos λÞ; ð9Þ
and the magnetic order is shown in Fig. 2(b) for Q1;2 ¼
ðπ − δ; 0Þ=ð0; π − δÞ. Note that the parameter λ is provided
by minimizing the free energy and its expression is
presented in Appendix A.
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Magnetic stripe with perpendicular magnetic helix
(MS⊥MH).—This double-Q C2-symmetric phase is com-
posed by a MH and an IC MS with magnetic moment of
the stripe oriented out of the winding plane defined by the
MH. The respective magnetic vectors read

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼
1ffiffiffi
2

p ði; 1; 0Þ; ð10Þ

and for Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ the order is depicted in
Fig. 2(c). Note that this is an example of a noncoplanar
magnetic order.
Double parallel magnetic helix (DPMH).—This is a

double-Q coplanar C2-symmetric phase (in spite of
η ¼ π=4) consisting of two helices ordered at Q1;2, with
spin winding within the same spin plane. This phase is
described by identical spin vectors:

n̂1;2 ¼
1ffiffiffi
2

p ði; 0; 1Þ: ð11Þ

For Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ the order is shown in
Fig. 2(d).
C4-symmetric spin-whirl crystal (SWC4).—This is a

double-Q C4-symmetric textured phase with

n̂1 ¼ ði cos λ; 0; sin λÞ;
n̂2 ¼ ð0; i cos λ; sin λÞ: ð12Þ

For Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ we obtain the coordinate
space magnetization profile:

MðrÞ ¼
ffiffiffi
2

p
M

0
B@

cos λ sin ðQ1 · rÞ
cos λ sin ðQ2 · rÞ

sin λ½cos ðQ1 · rÞ þ cos ðQ2 · rÞ�

1
CA; ð13Þ

plotted in Fig. 2(e) for a specific choice of λ, whose
expression is given in Appendix A.
Similar to the IC-SVC phase, also the present spatial

profile of the magnetization contains singular points acting
as sources of topological charge located at r ¼ rs. The
difference is that, in contrast to the IC-SVC case, here the
magnetization is a three-dimensional vector in spin space.
Thus, instead of vorticity, which characterizes singularities
of a coplanar magnetic texture, we can employ the singular
Berry curvature [69] [Ωs

xyðrÞ ¼ πδðr − rsÞ] or π-Berry flux
[67,68,70,71] for assigning topological charge to the point
singularities for a noncoplanar magnetic texture [71]. This
explains the reasoning behind naming the particular mag-
netic textures as spin whirls. Note that if we focus on the
vicinity of the singular points, the vorticity and the π-Berry
flux coincide since the texture becomes effectively coplanar
[72]. Importantly, one should not confuse the spin whirls
discussed here with spin Skyrmions [67]. In the latter case

the magnetic profile contains no point singularities, the
Berry curvature [73] ΩxyðrÞ can be defined for all r, and
the Skyrmion charge is nonzero. For further details, see
Sec. V C.
For the profile of Eq. (13), the singular points are located

at ðπ=Q; 0Þ and ð0; π=QÞ, as given by the zeros of the
modulus jMðrÞj. Each one of the two nonequivalent so-
called nodal points contributes with a unit of topological
charge. These nodes can be gapped out by either violating
the C4 symmetry or the antiunitary symmetry Θ ¼
T tðπ=Q;π=QÞ, consisting of the successive operation of time
reversal T and a direct-lattice translation by ðπ=Q; π=QÞ
(see also Ref. [74]). We find Θ2 ¼ −1, which implies that
nodal points of unit topological charge come in pairs, or
that the Skyrmion charge is zero if the nodes are gapped out
by breaking C4 symmetry, cf. the next paragraph. Any type
of a bulk perturbation that does not respect the above Θ
symmetry lifts these nodes, thus resulting in a nonzero
Berry curvature in the entire magnetic unit cell. Depending
on the perturbation, the latter symmetry breaking can
endow the SWC with nonzero Skyrmion charge as dis-
cussed in Sec. V C.
C2-symmetric spin-whirl crystal (SWC2).—This phase

constitutes a twofold symmetric version of the one above.
It consists of an isotropic helix for Q1;ð2Þ coexisting with an
anisotropic helix for Q2;ð1Þ; i.e.,

n̂1 ¼
1ffiffiffi
2

p ði; 0; 1Þ and n̂2 ¼ ð0; i sin λ; cos λÞ; ð14Þ

which for a choice of λ is depicted in Fig. 2(f). For the same
type of IC magnetic ordering, as discussed for SWC4, we
find that the nodal points are gapped out due to the broken
C4 symmetry. Nevertheless, the Θ symmetry is still present
and leads to a zero Skyrmion charge.

IV. GENERIC MAGNETIC PHASE DIAGRAMS

Having presented the allowed leading magnetic insta-
bilities and related order parameters of the generic Landau
theory of Eq. (1), we now show the generic phase diagram
with respect to the rescaled parameters g − β̃ and g̃. We
consider two cases, depending on the sign of β − β̃. The
resulting phase diagrams are presented in Fig. 3. The β −
β̃ < 0 case is very reminiscent of the commensurate phase
diagram, while the case with β − β̃ > 0 exhibits four out of
the six new phases alongside the IC CSDW. In general, we
find that the MH, IC-MS, and IC-CSDW phases dominate
in a large part of the phase diagrams.
For β − β̃ < 0, only the three IC extensions of the

commensurate phases appear. This resembles the well-
known commensurate phase diagram of Refs. [3,8,11]. For
β − β̃ > 0, the MH appears for a wide range of values of the
Landau parameters. In the lower right corner of Fig. 3(b),
we find both the MS⊥MH phase and the SWC4 phase,
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while the DPMH phase is confined to a thin sliver for
negative g − β̃ and g̃. The remaining part of the phase
diagram is occupied by the IC-CSDW phase.
Comparing the two phase diagrams reveals that the IC

CSDW occupies almost the same region in both, while the
IC MS is replaced by the MH as β − β̃ changes sign. For
β − β̃ > 0, the DPMH and SWC4 phases share a common
boundary defined by the critical line g̃=jβ − β̃j ¼ 0, where a
degeneracy among phases with an arbitrary relative ori-
entation of the spin vectors n1;2 occurs. In the lower right
corner, the MS⊥MH phase replaces the IC SVC as β − β̃
becomes positive. One further observes a certain degree of
similarity between the two phase diagrams. Since the phase
diagram for β − β̃ < 0 resembles the commensurate one,
it is useful to consider the commensurate limit ðπ; 0Þ and
ð0; πÞ of the IC magnetic wave vectorsQ1;2, for the textured
phases. One obtains MH → MS, MS⊥MH → SVC,
DPMH → CSDW and SWC4 → SVC [75]. The latter
limits provide a clear hint regarding the expected position
of each textured phase in Fig. 3(b), by virtue of its
continuity to the respective commensurate order.
The SWC2 and MSkMH do not appear as free-energy

minima near the paramagnetic-magnetic transition in the
parameter regime studied here. Based on the structure of
the generic phase diagrams, we can conjecture that this
holds in the entire parameter space. However, this state-
ment is challenging to prove using the analytical expres-
sions discussed in Appendix A. Therefore, we will still
consider the appearance of these phases as a possible

scenario. A reason to leave such a possibility open is that,
since they constitute extrema of the free energy, they may
still appear as metastable phases. Even more, these two
phases may become thermodynamically stable under the
additional presence of external fields or other more
general conditions not taken into account in this study.
Finally, we remark that for the values of g, g̃, β, and β̃

considered here, the free energy is bounded from below and
we can truncate the free-energy expansion at quartic order.
Otherwise, one should include appropriate contributions
from higher-order terms.

V. SIGNATURES AND EXPERIMENTAL
DETECTION

From the previous section it is clear that several IC
magnetic phases may become accessible, and therefore it is
desirable to identify ways to differentiate them experimen-
tally. While directly probing the spatial profile of the
magnetization using spin-resolved means can certainly
uniquely identify them, it can be a formidable experimental
task. Thus, it is important to elaborate on alternative
detection methods that do not rely on the texture’s profile
alone, but can still provide an unambiguous identification
of the stabilized magnetic order. For this purpose we
consider the combination of charge and magnetoelectric
measurements. Below we provide more details regarding
these two, while we additionally discuss further interesting
features of the SWC4;2 phases, i.e., that they can be
converted into spin-Skyrmion crystal phases via the appli-
cation of an external magnetic field.

A. Induced charge order

A common characteristic of almost all the IC magnetic
phases is that the respective modulus of the magnetization
profile jMðrÞj is not constant, but rather spatially varying.
The only exception is the MH phase. As a consequence of
this spatial inhomogeneity, charge order is induced when
IC magnetism occurs. For a general magnetic profile with
Fourier decomposition MðrÞ ¼ P

q Mqeiq·r, the induced
charge order ρðrÞ ¼ P

q ρqe
iq·r has Fourier components

proportional to the scalar product of the magnetic order
parameters’ spin vectors (Mq ¼ jMqjn̂q):

ρqþp ∝ jMqjjMpjn̂q · n̂p: ð15Þ

Note that the above are the components generated at lowest
order with respect to the magnetic order parameters, while
contributions of higher order will lead to weaker effects
(see also Ref. [76]). Given that here the IC magnetic
ordering is considered to occur atQ1;2, Eq. (15) implies that
there exists a set of eight possible induced components at
lowest order, ρq, with q ¼ f�2Q1;�2Q2;�Q1 � Q2g. The
magnetic-charge order coupling, leading to Eq. (15), is
derived in Appendix B.

(a) (b)

FIG. 3. Phase diagrams for the generic Landau functional
in Eq. (1), where β − β̃ < 0 (a) and β − β̃ > 0 (b), with
C2-symmetric IC magnetic stripe (IC MS) (blue filled circle),
C4-symmetric IC charge-spin density wave (IC-CSDW) phase
(brown circle), C4-symmetric IC spin-vortex crystal (IC-SVC)
phase (pink circle), C2-symmetric magnetic helix (MH) (blue
filled circle), C2-symmetric IC magnetic stripe with a
perpendicular (⊥) magnetic helix (MS⊥MH) phase (white),
C2-symmetric double parallel magnetic helix (DPMH) (purple
filled circle), C4-symmetric spin-whirl crystal (SWC4) phase
(green filled circle). The IC extensions of the original three
phases (blue, brown, pink filled circle) are the only ones present
when β − β̃ < 0, however, for β − β̃ > 0, four of the new phases
occupy a substantial region of the phase diagram.
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Based on Sec. III we can directly infer the Fourier
components of the induced charge order for the different
cases. In Table I, we display the resulting induced
charge density components depending on themagnetic order.
First of all, one observes that the MH, IC-SVC, and DPMH
phases can be unambiguously identified via solely using the
electronic charge density’s Bragg peaks. The remaining six
phases are split into three subsets: fIC MS; MS⊥ MHg,
fIC CSDW; SWC4g, and fMSkMH; SWC2g. Themagnetic
phases belonging to the same subset are precisely or practi-
cally indistinguishable via this particular experimental
approach. However, the magnetic phases of each subset
can be discerned based on their different magnetoelectric
properties, which are discussed in the next section.
Before concluding this section, we point out that

detecting charge order is more suitable for identifying
IC, rather than commensurate, magnetic orders in FeSCs.
This is because both commensurate magnetic ordering
wave vectors ðπ; 0Þ and ð0; πÞ, defined in the 1Fe/unit
cell, translate to ðπ; πÞ in the 2Fe/unit cell. In the latter,
physical, unit cell, commensurate magnetism induces a
charge order Bragg peak at (0,0), which coincides with a
lattice Bragg peak. However, for IC magnetism, the charge
order is also IC and the peaks are shifted away from (0,0)
and should, in principle, be detectable.

B. Magnetoelectric effects

The textured nature of the magnetic phases accessible
through incommensurability opens up the possibility of
a finite magnetoelectric coupling. This is linked to magneti-
zation profiles in which the spin moment smoothly winds
while sweeping particular paths in coordinate space.
Notably, such exotic magnetoelectric manifestations are
incompatible with commensurate magnetic phases and their
related IC extensions.
To be more specific regarding the type of magneto-

electric phenomena to be explored in the present work, we
remind the reader that all the six new IC phases discovered
here consist of a single- or double-Q MH configurations.
However, it is well known from other studies that a MH is
equivalent to a SOC term in the presence of an orthogo-
nally oriented ferromagnetic field [34,41,42]. To make the
latter statement transparent, consider the MH Hamiltonian
term,

MðrÞ · σ ¼ M½sinðq · rÞn̂⊥ þ cosðq · rÞn̂� · σ
¼ Me−iq·rðn̂×n̂⊥Þ·σ=2n̂ · σeiq·rðn̂×n̂⊥Þ·σ=2; ð16Þ

note that the unit vectors n̂ and n̂⊥ comprise the complex
spin vector n̂q ¼ ðn̂ − in̂⊥Þ=

ffiffiffi
2

p
(up to an overall factor).

For illustration purposes, let us momentarily consider free
electrons under the influence of the above MH term.

Gauging away the spatially varying SU(2) phase above,
one obtains the single electron Hamiltonian,

½p − ℏqðn̂ × n̂⊥Þ · σ=2�2
2m

þMn̂ · σ

¼ ðq̂⊥ · pÞ2
2m

þ ðℏqÞ2
8m

þ ðq̂ · pÞ2
2m

−
1

2
αqq̂ · pðn̂ × n̂⊥Þ · σ þMn̂ · σ; ð17Þ

where αq ¼ ℏjqj=m defines the strength of the generated
SOC, while we introduced the unit vector q̂ ¼ q=jqj. The
presence of inversion-breaking SOC mediates a magneto-
electric coupling and can lead to a number of so-called
direct and inverse spin galvanic phenomena [37]. Here we
focus on the generation of a homogeneous magnetization
when an electric charge current (I) flows through the
system or an electric field (E) is applied. Both situations
can be described by coupling the electronic system to a
spatially homogeneous but generally time-dependent
vector potential AðtÞ, that in the Coulomb gauge yields
the electric field EðtÞ ¼ −∂tAðtÞ. Instead, if A is time
independent, it corresponds to a current flow bias,
i.e., I ∝ A.
It is straightforward to infer that a vector potential

minimally coupled to the momentum, i.e., p → pþ eAðtÞ,
will generate a time-dependent but spatially homogeneous
magnetization of the form

M0ðtÞ ∝ ðn̂ × n̂⊥Þq̂ · AðtÞ ∝ ðin̂q × n̂�qÞq̂ · AðtÞ: ð18Þ

The derivation of the required magnetoelectric coupling
leading to the above relation is presented in Appendix C.
Interestingly, via magnetization measurements in the

zero-external magnetic field limit, one can arrest the
magnetoelectrically generated ferromagnetic moment, as
long as the current or electric field is orientated along the
MH’s spatial modulation direction q̂. Moreover, the spin
orientation of the induced magnetization can provide
information regarding the MH’s winding plane, since the
former is given by in̂q × n̂�q. To further demystify the nature
of such vectors, one observes that they can be linked to the
magnetic order parameter’s winding in coordinate space
along the q direction, i.e.,

wq ∝
Z
UC

drMðrÞ ×
�
q̂ ·

∂MðrÞ
∂r

�
∝ in̂q × n̂�q; ð19Þ

with UC denoting the magnetic unit cell and wq corre-
sponding to a vector normal to the winding plane defined
by the helix.
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Based on the above analysis, we find that magnetoelec-
tric phenomena become possible in the IC magnetic phases
discussed here when either one of the quantities, in̂1 × n̂�1
or in̂2 × n̂�2, becomes nonzero. In the former (latter) case,
the induced SOC involves the electron’s momentum along
the Q1 (Q2) direction. For the IC magnetic phases and
respective order parameters under investigation, we
observe that only the six new phases lead to magnetoelec-
tric phenomena, as summarized in Table I.
In fact, the SWC4;2 phases consist of two noncoplanar

MHs and can give rise to such phenomena for an arbitrary
orientation of I or E, since both external products are
nonzero and nonparallel. In the present case, Eq. (18) and
Appendix C imply that the magnetization retains contri-
butions from both MHs, and one thus obtains

M0ðtÞ ∝ ðin̂1 × n̂�1ÞQ1 · AðtÞ þ ðin̂2 × n̂�2ÞQ2 · AðtÞ: ð20Þ

In contrast, the remaining magnetic phases induce SOC
only along one direction, and thus are not capable of
exhibiting magnetoelectric phenomena when the external
field is not properly aligned. The reason is that three of
those consist only of a single MH that essentially singles
out the direction for which such effects become accessible.
Interestingly, the same holds for the DPMH phase due to
the coplanarity of the underlying MHs. Therefore, we start
from Eq. (20) and set n̂1 ¼ n̂2 that dictates the DPMH
phase. The latter simply yields

M0ðtÞ ∝ ðin̂1 × n̂�1ÞðQ1 þ Q2Þ · AðtÞ; ð21Þ

revealing that magnetoelectric phenomena are not acces-
sible when EjjðQ1 − Q2Þ.
To this end, let us remark that while we focused here on

the generation of a ferromagnetic moment when an
electric field is applied or a current flow is induced,
reciprocal effects are also possible, by virtue of the
magnetoelectric coupling (see Appendix C). This can
be particularly useful for the case of the itinerant magnets
discussed here, which are expected to be good conductors
and, thus, screen the externally applied fields. Therefore,
depending on the case, it may appear experimentally more
feasible to observe a reciprocal magnetoelectric effect,
such as inducing a current by an externally imposed time-
dependent homogeneous magnetization or by virtue of
the Zeeman coupling to an applied magnetic field. Both
need to have an appropriate orientation for the magneto-
electric effects to take place. Based on Appendix C, a field
of frequency ω, M0ðωÞ, generates an electric current JðωÞ,
which reads

Qs · JðωÞ ∝ ðin̂s × n̂�sÞ ·M0ðωÞ: ð22Þ

In the above,we projected the current along the directions of
the magnetic wave vectors Qs (s ¼ 1, 2).

C. Zeeman-field-induced spin-Skyrmion crystals

As discussed earlier, the SWC phases are special as, in
contrast to the remaining set of magnetic profiles examined
here, they are characterized by isolated π-Berry flux
sources. This feature is essentially responsible for the
observed distinct behavior of these phases regarding the
occurrence of magnetoelectric phenomena independent of
the orientation of the electric field. When theΘ symmetry is
broken, one obtains jMðrÞj ≠ 0∀ r and the SWC phases
allow for the engineering of more exotic magnetic textures,
the so-called spin-Skyrmion crystal phases. The latter are
characterized by a magnetic Skyrmion charge retrieved via
the Chern number of the magnetic unit vector n̂ðrÞ ¼
MðrÞ=jMðrÞj [73]:

C ¼ 1

4π

Z
UC

drn̂ðrÞ ·
�∂n̂ðrÞ

∂x ×
∂n̂ðrÞ
∂y

�

≡ 1

2π

Z
UC

drΩxyðrÞ; ð23Þ

with UC denoting the magnetic unit cell, determined by
the ordering wave vectors Q1;2. In fact, the SWC4 phase
constitutes a critical magnetic phase, and lies on the border
separating two spin-Skyrmion crystal phases of different
Skyrmion charge.
To engineer a spin-Skyrmion crystal from the SWC

phases it is required to violate the Θ symmetry. While it
is expected that the incommensurability will violate it in
the actual material, the outcome is difficult to predict
and, thus, a control knob to induce a nonzero Skyrmion
charge is certainly desirable. One way to achieve the
latter is to externally apply a homogeneous Zeeman field,
that is even under translations and odd under T . Via the
application of the Zeeman field we are additionally in a
position to control the sign of C [55], which also specifies
the orientation of the out-of-plane orbital angular momen-
tum in the system [67]. Note that while an arbitrarily weak
Zeeman field violates the Θ symmetry, C is nonzero only
within a particular window of the Zeeman energy values,
EZeeman.
One finds that, given the expressions of Eqs. (12) and (14),

the SWC phases become Skyrmionic by applying a Zeeman
fieldB ¼ Bẑ. The straightforward calculation ofC yields that
jCj ¼ 1 for both phases. In the case of the SWC4 phase, the
Skyrmion charge is nonzero for jEZeemanj < 2

ffiffiffi
2

p
Mj sin λj,

i.e., even for an infinitesimal applied field. In contrast, we
find that a threshold field is required to induce a nonzero
Skyrmion charge for the SWC2 phase, which is proportional
to the degree of nematicity of the magnetic order para-
meter. Specifically, the magnetic profile is Skyrmionic forffiffiffi
2

p
MjA − Bj < jEZeemanj <

ffiffiffi
2

p
MðAþ BÞ, with A ¼ cos η

and B ¼ ffiffiffi
2

p
sin ηj cos λj. Finally, note that the presence of

SOC will pin the magnetic moment direction, assumed free

UNRAVELLING INCOMMENSURATE MAGNETISM AND ITS … PHYS. REV. X 8, 041022 (2018)

041022-9



inEqs. (12) and (14), and thus constrain the actual orientation
of the required Zeeman field. See also Sec. VI C.

VI. INCOMMENSURATE MAGNETIC PHASES
IN THE IRON-BASED SUPERCONDUCTORS

Having obtained the possible leading magnetic insta-
bilities and their distinctive characteristics for the general
class of tetragonal itinerant systems described phenomeno-
logically via the Landau free energy of Eq. (1), we may
now proceed by exploring the possibility of such phases
appearing in FeSCs. To accomplish this task we extract the
coefficients of the free-energy functional from two repre-
sentative multiorbital microscopic models. These are sup-
plemented with standard Hubbard-Hund interactions that
can drive the system to a magnetic instability. Below, we
present the details of this analysis.

A. Microscopic model

We adopt a microscopic Hamiltonian, H ¼ H0 þHint,
with

H0 ¼
X
k

X
ab
σ

½ϵabðkÞ − μδab�c†kaσckbσ; ð24Þ

provided by tight-binding fits to DFT calculations. Here we
consider two five-orbital band structures, adopted from
Refs. [58,59], appropriate for BaFe2As2 and LaFeAsO,
respectively. The orbital basis is ðxz; yz; xy; x2 − y2; z2Þ.
Although, the BaFe2As2 band structure is three dimen-
sional, here we restrict to the kz ¼ 0 plane. The band
structures are supplemented byHint consisting of Hubbard-
Hund interactions [77,78]:

Hint ¼
U
N

X
q

X
a

nqa↑n−qa↓ þ
U0

N

X
q

X
a<b
σσ0

nqaσn−qbσ0 þ
J
2N

X
kk0q

X
a≠b
σσ0

c†kþqaσckbσc
†
k0−qbσ0ck0aσ0

þ J0

2N

X
kk0q

X
a≠b
σ

c†kþqaσc
†
k0−qaσ̄ck0bσ̄ckbσ; ð25Þ

where, by imposing SO(3) spin-rotational invariance on the
sum of the interaction terms and further assuming orbital-
independent interactions, we obtain U0 ¼ U − 2J and
J ¼ J0. In the above expressions, c†kaσ (ckaσ) creates
(annihilates) an electron in orbital a with momentum k
and spin σ. N denotes the number of momentum states.

The above interaction terms are treated at the mean-field
level via a Hubbard-Stratonovich decoupling in the mag-
netic channel, yielding an effective action for the magnetic
order parameters. Expanding to quartic order yields an
extension of the magnetic free energy in Eq. (1) to include
the orbital content of the magnetic order parameters:

F ¼
X
q

X
abcd

½ðU−1Þabcd − χabcd0 ðqÞ�MabðqÞMcdð−qÞ þ
X
abcd
efgh

β̃abcdefgh1 ðMab
1 ·Mcd�

1 ÞðMef
1 ·Mgh�

1 Þ

þ
X
abcd
efgh

β̃abcdefgh2 ðMab
2 ·Mcd�

2 ÞðMef
2 ·Mgh�

2 Þ þ 1

2

X
abcd
efgh

ðβ1 − β̃1ÞabcdefghðMab
1 ·Mcd

1 ÞðMef�
1 ·Mgh�

1 Þ

þ 1

2

X
abcd
efgh

ðβ2 − β̃2ÞabcdefghðMab
2 ·Mcd

2 ÞðMef�
2 ·Mgh�

2 Þ þ
X
abcd
efgh

gabcdefghðMab
1 ·Mcd�

1 ÞðMef
2 ·Mgh�

2 Þ

þ 1

2

X
abcd
efgh

g̃abcdefgh1 ðMab
1 ·Mcd

2 ÞðMef�
1 ·Mgh�

2 Þ þ 1

2

X
abcd
efgh

g̃abcdefgh2 ðMab
1 ·Mcd�

2 ÞðMef�
1 ·Mgh

2 Þ: ð26Þ

We note that the coefficients of the free energy are tensors
in orbital space and are entirely determined by the micro-
scopic band structure. The expressions for these coeffi-
cients are given in Appendix D. Here we retained the q
dependence of the magnetic order at quadratic level to
identify the transition from commensurate to IC magnet-
ism. In contrast, the quartic order terms are calculated for
fixed q, i.e., Q1;2, which are set by the quadratic term.

To determine the magnetic transition temperature, we
follow the procedure described in Ref. [11] and consider
the generalized eigenvalue problem,

½D−1
magðqÞ�abcdvcdðqÞ ¼ λðqÞvabðqÞ; ð27Þ

where
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½D−1
magðqÞ�abcd ¼ ðU−1Þabcd − χabcd0 ðqÞ ð28Þ

denotes the (inverse) magnetic propagator, λðqÞ is the
smallest eigenvalue, and vabðqÞ is the associated eigenma-
trix. The vanishing of λðQÞ signals the onset of magnetic
order with ordering vectorQ. From the vanishing of λðQÞwe
find three types of ordering vectors appearing as a function
of electron filling (see insets in Fig. 5). The orbital weight of
the order parameter with ordering vectorQ is contained in the
matrix vabðQÞ and we write Mab

1;2 ¼ M1;2vabðQ1;2Þ. The
quadratic coefficient provides information on the transition
temperature, and the quartic coefficients are required for the
determination of the leading magnetic instability. The relation

between the quartic coefficients and the microscopic band
structure is provided by the above Hubbard-Stratonovich
decoupling, and due to the IC nature of the ordering vectors
it is necessary to truncate the expressions. We accomplish this
by assuming that only the lowest harmonics contribute, an
assumption justified by comparing the magnitude of the peak
at Q1;2 in the bare susceptibility with the peaks at higher
integer multiples of Q1;2, as shown in Figs. 4(d) and 4(j), for
the BaFe2As2 and LaFeAsO band structures. The eigenmatrix
vabðq ¼ Q1;2Þ encodes the orbital content of the magnetic
order parameter at the magnetic transition [11]. Note that this
object contains information solely about the magnetic order
parameter’s orbital structure, and not itsmagnitude. Below,we

(a) (b) (g) (h)

(c) (d) (i) (j)

(e) (f) (k) (l)

FIG. 4. Fermi surfaces, bare physical susceptibilities
P

ab χ
aabb
0 ðqÞ, and orbital content at the magnetic transitions for (a)–(f) BaFe2As2

and (g)–(l) LaFeAsO. The Fermi surface depicted in (a) for hni ¼ 5.90 results in a commensurate magnetic order while the Fermi
surface in (b) with hni ¼ 5.76 leads to incommensurate magnetic order. We note that both these refer to the kz ¼ 0 slice of the BaFe2As2
band structure of Ref. [58]. In the commensurate case, the susceptibility is depicted in (c), clearly exhibiting a peak at the X point ðπ; 0Þ.
In contrast, in the incommensurate case (d), the peak is displaced from ðπ; 0Þ to ðπ − δ; 0Þ. For the case shown in (d), hni ¼ 5.76 and
δ ¼ π=50. Incommensurability in the BaFe2As2 band structure onsets at hni ¼ 5.80, for which δ ¼ π=200. Furthermore, we note that
the path between Γ and X is dominated by a single peak, and while subleading peaks are present, these are clearly much less pronounced.
This allows us to neglect higher harmonics of Q ¼ ðQ; 0Þ=ð0; QÞ. The orbital content of the magnetic order parameter at the transition is
shown in (e) and (f) for the commensurate and incommensurate cases, respectively. In the commensurate case the contributions are
purely real. The additional terms appearing as magnetism becomes incommensurate are imaginary, and for purposes of the presentation
have been multiplied by a factor of 10. Hence, in the IC case, MðQ1;2Þ ≠ Mð−Q1;2Þ, as this would result in a change of sign of the
imaginary parts. In (g) we show the Fermi surface for the LaFeAsO band structure with hni ¼ 5.90. The commensurate-to-
incommensurate transition is brought on by a change in Fermi surface topology, as seen in (h). As in the case of BaFe2As2, the bare
susceptibility depicted in (j) shows a clear peak at ðπ − δ; 0Þ, although in this case δ ≈ π=10 even close to the transition to
incommensurate magnetism. The orbital content of the magnetic order parameter depicted in (k) and (l) is very similar to the BaFe2As2
band structure, although the xy orbital is more dominant in the case of LaFeAsO.
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employ the matrices vabðQ1;2Þ to project Eq. (26) onto the
leading instability. Thus, we obtain the free energy of Eq. (1)
with the coefficients obtained from the microscopic models;
see Eqs. (D2)–(D7) of Appendix D.
The incommensurability evident in Figs. 4(d) and 4(j) is

caused by a change in the Fermi surface nesting properties
induced by sufficient hole or electron doping. In Figs. 4(a)
and 4(g), we show the Fermi surfaces for both the
BaFe2As2 and LaFeAsO band structures in the para-
magnetic phase, at a doping leading to commensurate
magnetic order, i.e., hni ¼ 5.90. We also show the Fermi
surfaces for systems with substantial hole doping,

leading to IC magnetic orders; see Figs. 4(b) and
4(h). Note that the doping necessary to drive the IC
transition is substantial, i.e., the commensurate order is
preserved even under moderate doping, consistent with
experimental observations. In the case of BaFe2As2 the
Fermi surface is not drastically modified as the magnetic
transition becomes incommensurate; see Figs. 4(a)
and 4(b). For LaFeAsO, on the other hand, the IC
transition occurs as a result of the change in topology
of the electron pockets at X and Y; see Fig. 4(h). This is
reflected in the suppression of the magnetic transition
temperature in Fig. 5(c). In Fig. 4 we also present the

(b) (d)

(a) (c)

FIG. 5. Magnetic transition temperatures, leading instabilitites, and free energies as a function of the filling hni for two representative
five-orbital models corresponding to (a),(b) BaFe2As2 and (c),(d) LaFeAsO. The type of incommensurability, ðπ − δ; 0Þ=ð0; π − δÞ or
ðπ; δÞ=ð−δ; πÞ, is illustrated above (a) and (c). For BaFe2As2 we find the usual MS phase in the majority of the commensurate region of
the phase diagram; see (a). Prior to the transition to an incommensurate phase, a C4 SVC phase sets in. Incommensurate magnetism
occurs for hni > 5.95 and hni < 5.81. In both cases Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ, with δ evolving smoothly from zero. We find the MH,
DPMH, and IC-CSDW phases for hni > 5.95 and the SWC4, DPMH, and IC-CSDW phases for hni < 5.81. In (b) the free energies of
the various phases in the IC region are shown, indicating the relative proximity of all the IC phases. The full expressions are provided in
Appendix A. In (c), the leading instabilities for LaFeAsO are depicted. The electron-doped side with hni > 6 exhibits IC magnetic order
with ordering vector Q1;2 ¼ ðπ; δÞ=ð−δ; πÞ and IC-MS order. In the commensurate region, the usual MS phase is found. Magnetism
becomes incommensurate again on the hole-doped side for hni < 5.75, although in this case Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ. However, this
commensurate-to-incommensurate transition occurs due to the change in topology of the Fermi surface shown in Fig. 4(h) and δ jumps
from zero to a finite value, δ ≈ π=10. The magnetic phase in the IC region is the IC-SVC phase. (d) Magnitude of 4Fð4Þ=M4 for the
different IC magnetic phases for U ¼ 0.95 eV and J ¼ U=4. As the magnetic order becomes incommensurate, the IC-SVC phase is
favored. The inset shows an enlargement of the lower left-hand corner.
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orbital content obtained from vabðQ1;2Þ for both com-
mensurate [(Figs. 4(e) and 4(k)] and IC magnetism
[Figs. 4(f) and 4(l)] for the two band structures. We
observe that, as the ordering vector becomes IC, the
orbitally resolved magnetic order parameter acquires
imaginary components, an indication that indeed
MðQ1;2Þ ≠ Mð−Q1;2Þ, as expected.

B. Magnetic phase diagram

We determine the location of the magnetic transition and
the respective leading instability as a function of the
electron filling hni, for U ¼ 0.95 eV and J ¼ U=4, for
the two band structures described above. The results are
depicted in Fig. 5. In both cases we find a large region of
commensurate magnetism withQ ¼ ðπ; 0Þ=ð0; πÞ, around a
filling of hni ≈ 5.90 with IC phases appearing upon either
hole or electron doping, as the Fermi surface nesting
properties are sufficiently modified. As expected based
on the picture of itinerant magnetism, the magnetic order
becomes IC as the Fermi surface is substantially deformed
by the addition or removal of carriers. For the BaFe2As2
band structure, both electron and hole doping leads to IC
phases with Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ, with δ increasing
smoothly from zero. The transition temperature broadly
follows the expected behavior [25,26], exhibiting an
inflection point at the commensurate-to-incommensurate
transition; see Fig. 5(a). On the electron-doped side, we
find two C2-symmetric phases, in addition to the
C4-symmetric IC-CSDW phase. These are the MH and
DPMH phases. On the hole-doped side we find a tran-
sition to a C4 SVC phase prior to the commensurate-
to-incommensurate transition. As magnetism becomes
incommensurate, the SWC4 phase becomes favored,
followed by the DPMH and the IC-CSDW phases.
In contrast, for the LaFeAsO band structure, electron

doping yields a region with Q1;2 ¼ ðπ; δÞ=ð−δ; πÞ and IC
magnetic stripe order, as seen in Fig. 5(c). In this case, δ
also smoothly increases from zero. Substantial hole doping
(i.e., hni ≈ 5.75) yields the IC magnetic wave vectors
Q1;2 ¼ ðπ − δ; 0Þ=ð0; π − δÞ, similar to the case of the
BaFe2As2 band structure. However, in this case δ exhibits
a jump from zero to a finite value, associated with the
change in topology of the Fermi surface shown in Fig. 4(h).
This also leads to a suppression of the magnetic transition
temperature, as seen in Fig. 5(c). The commensurate
magnetic stripe phase occupying a large part of the phase
diagram is succeeded by the IC-SVC phase, which persists
until the end of the magnetic dome.
In Figs. 5(b) and 5(d) we show the free energy of the

various phases in the IC region. More specifically, we plot
the value of 4Fð4Þ=M4, where Fð4Þ is the quartic part of the
free energy in Eq. (1), as discussed in Appendix A. Note
that this number does not take into account the effect of the
increasing magnitude of the magnetic order parameter.
Thus, it is valid only in the vicinity of the transition. For the

BaFe2As2 band structure, many phases appear in close
proximity, leading to a number of different leading insta-
bilities, as seen in Fig. 5(a). In the case of LaFeAsO
[Fig. 5(d)], the IC-SVC phase is favored throughout the IC
region, although the remaining phases appear close in energy.
The small free-energy separations observed in Figs. 5(b)

and 5(d) suggest that the phases stabilized are sensitive to
specific details of the microscopic models. To highlight
this sensitivity, we consider the effect of small changes to
the interaction parameters, inspired by recent proposals of
orbital selectivity [62,63,79–81]. Hence, we allow the
interactions in Eq. (25) to exhibit orbital dependence.
Despite the fact that such an orbital dependence is typically
ignored, it is well known to be present in realistic models,
and recent experimental and theoretical works [62,63,79–
81] have reemphasized its important role. Nevertheless, the
consideration of such an orbital dependence introduces a
large parameter space, and an exhaustive treatment is
beyond the scope of the current work. Instead, we focus
on varying the interactions of the xy orbital. This is
expected to be the most relevant for the present analysis
since it is associated with the largest orbital weight, as seen
in Fig. 4. To assess the impact of such orbital dependence,
we vary the xy component of ðU−1Þabcd in Eq. (28) and
repeat the above analysis for the LaFeAsO band. We take

(a)

(b)

FIG. 6. (a) Phase diagram for the LaFeAsO band structure of
Ref. [59] with U ¼ 0.86 eV, J ¼ U=4, and Uxy ¼ 1.1U; i.e., the
xy orbital is subject to a stronger interaction. The slight change in
interaction parameters has changed the ground state in a region of
the phase diagram, from to IC SVC to SWC4. The degree of
incommensurability δ is the same as the one shown in Fig. 5(c).
(b) Value of 4Fð4Þ=M4 for the case with orbital-dependent
interactions. The SWC4 phase is favored close to hni ≈ 5.80.
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U ¼ 0.86 eV, Uxy ¼ 1.1U ≈ 0.95 eV, and J ¼ U=4.
Unsurprisingly, we find a magnetic dome with a slightly
reduced transition temperature compared to the one shown
in Fig. 5(c). A commensurate-to-IC transition occurs
around hni ≈ 5.805 and, interestingly, the lowest-energy
phase in the immediate vicinity of this transition is the
SWC4, as seen in Fig. 6(a).
Based on Figs. 5 and 6, we verify that the magnetic phase

diagram is sensitive to both the band structure and the
interaction parameters. The appearance of the SWC4 phase
implies that the FeSCs are indeed potential candidates for
textured magnetic phases and, given the reported coexist-
ence of magnetism and superconductivity [13,24,29–33],
opens perspectives for realizing intrinsic topological super-
conductivity [82].

C. Effects of spin-orbit coupling

So far we have investigated the accessible magnetic
phases via the free energy of Eq. (1), which neglects the
effects of SOC. Here we extend our approach in order to
include the effects of a SOC respecting the symmetries of
the system [83]. At leading order, the free energy is
modified by the addition of the term

δF ¼ α1ðjM1;xj2 þ jM2;yj2Þ þ α2ðjM2;xj2 þ jM1;yj2Þ
þ α3ðjM1;zj2 þ jM2;zj2Þ; ð29Þ

where the α coefficients can be determined from a micro-
scopic model including an atomic L · S coupling [10,84].
Note, however, that a complete picture regarding SOC in
FeSCs requires the consideration of a ten-band model
[85,86], taking into account the two inequivalent Fe sites
of the FeAs layers. Lastly, note that experimental evidence
points to α1 being the smallest for underdoped compounds,
as these display in-plane magnetic order. For systems
approaching optimal hole doping, the magnetic moments
reorient out of plane [1,14], indicating that α3 is the
smallest [87–90].
As the above term adds a quadratic contribution to

the free energy, it plays an important role in selecting the
magnetic order at the leading instability. Moreover, the
additional terms modify the magnetic transition temper-
ature Tmag, obtained for vanishing SOC. Hence, Tmag is
now replaced by TSOC

mag . The normalized difference δTmag ¼
ðTSOC

mag − TmagÞ=Tmag can be either positive or negative and
yields a quantitative measure of the SOC strength. Here we
assume that the SOC is weak [91], i.e., jδTmagj ≪ 1, a
realistic assumption for FeSCs [92]. The presence of SOC
also implies that only certain components of the magnetic
order parameter can condense below the critical temper-
ature TSOC

mag , and these are selected by the smallest of the α
coefficients. At first sight thiswould imply that the energetics
shown in Figs. 5 and 6, obtained without SOC, can be
drastically alteredwhen δF is added. However, as we discuss

below, the results obtained with SOC remain relevant by
virtue of secondary transitions.
As seen from Eq. (29), if either α1 or α2 is the smallest,

the magnetic moments align in the FeAs plane, either
parallel or perpendicular to the ordering vector. If instead α3
is the smallest, the moments point out of plane. Thus, only a
subset of the nine IC magnetic phases found earlier are
compatible with the magnetic moment directions fixed by
the SOC. This subset consists of the IC generalizations of
the three commensurate phases: IC-fMS;CSDW; SVCg.
The possible emergence of the IC-MS phase is completely
unaffected by the presence of SOC, as can be inferred from
Eq. (29). On the other hand, the appearance of the IC SVC
(IC CSDW) is hindered if α3 (α1 or α2) is the smallest
coefficient. In such situations the IC SVC or IC CDSWwill
only appear as the result of secondary transitions. Similarly,
this is always the case for the six textured magnetic phases
which are generally disfavored when SOC is present.
The appearance of these phases becomes possible only if
they minimize the quartic term Fð4Þ of the free energy.
Specifically, these transitions can occur once T is lowered
sufficiently to allow for the modulus of M to grow, and
the quartic part Fð4Þ to overcome the SOC energy. At the

temperature Tð2Þ
mag, where this secondary transition takes

place, the magnetic order reorganizes and develops addi-
tional components in order to minimize Fð4Þ [93].
We proceed by providing the implications of a non-

negligible SOC on the phase diagrams depicted in
Figs. 5(a), 5(c), and 6(a). The IC-MS region is unaffected
by the addition of SOC. On the other hand, the IC CSDW
and IC SVC are affected if α1;2 and α3 are the smallest,
respectively. Starting with BaFe2As2 and α1 (or α2) being
the smallest, we find that the free-energy hierarchy of
Fig. 5(b) implies that the IC phases of Fig. 5(a), DPMH, IC
CSDW, and SWC4, are all replaced by the IC-SVC phase,
while the MH is replaced by the IC-MS phase. On the
contrary, if α3 is the smallest, the IC-CSDW phase replaces
the other IC phases, while the commensurate SVC phase is
replaced by the commensurate CSDW phase. The phase
diagram in the case of LaFeAsO, Fig. 5(c), is unchanged if
α1 (or α2) is the smallest. On the other hand, if α3 is the
smallest, the IC-MS phase is stabilized in the IC regions of
the phase diagram, as can be gleaned from Fig. 5(d). In
Fig. 6, the SWC4 phase is replaced by the IC-SVC phase in
the case where α1 (or α2) is the smallest. In the case where
α3 is the smallest, the IC-CSDW phase replaces both
the SWC4 and the IC-SVC phases. For hni ¼ 5.77, the
IC-CSDW phase is nearly degenerate with the MSkMH
phase, and is thus hidden in Fig. 6.
Note that, while the phases to be replaced do not

constitute leading instabilities in the presence of SOC,
they still minimize the Fð4Þ part of the free energy. As a
result, additional magnetic-order-parameter components
will appear at lower temperatures, possibly resulting in
an admixture of phases [94]. In this manner, all the phases
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predicted by the spin-isotropic free energy are recovered
through secondary phase transitions, provided we remain
within the regime of weak SOC. We remark that the above
analysis holds when one of the α1;2;3 coefficients is smaller
than the other two. Otherwise, possible degeneracies
between pairs of these coefficients can allow for textured
phases to survive as leading instabilities or significantly

narrow down the difference jTSOC
mag − Tð2Þ

magj. Interestingly,
the smaller this difference becomes, the more difficult it
may be to experimentally distinguish the two transitions.

D. Connection to the unknown C2-symmetric
magnetic phase of Ba1 − xNaxFe2As2

Here we comment on the connection between our
findings and the experimental results presented in
Ref. [24]. In Ref. [24], an additional C2-symmetric phase
was observed, which was shown to be distinct from the
usual MS phase. It is challenging to account for such a
phase within the usual commensurate scenario. Indeed,
there are no commensurate candidates resulting from
second-order phase transitions from the paramagnetic
phase. On the other hand, allowing for IC magnetism
introduces six additional phases, five of which are C2

symmetric. As discussed above, however, the presence of
SOC also precludes the appearance of these phases as a
result of a second-order phase transition from the para-
magnetic phase. The experimental observations can be
reconciled with the above facts provided that the magnetic
transition is first order. In this case, the intermediate IC MS,
IC SVC. or IC CSDW dictated by the finite SOC is no
longer required, and a direct transition between the para-
magnetic phase and one of the five new textured IC
C2-symmetric phases is possible. At this stage, very little
is known about the properties of the newly observed
C2-symmetric magnetic phase. Therefore, to resolve the
nature of this phase additional experimental results are
warranted, in particular to confirm whether the magnetic
order is incommensurate in this region or not.

VII. CONCLUSIONS AND OUTLOOK

In the present work we shed light on aspects of IC
magnetism and provide a general classification of the
possible magnetic phases that appear at the paramag-
netic-magnetic transition for particular types of incommen-
surability. Our study is motivated by the marked tendency
of the FeSCs towards magnetism and the observation of a
puzzling C2-symmetric phase, distinct from the magnetic
stripe, in Na-doped BaFe2As2 [24].
By employing two realistic five-orbital models, we

demonstrate that such IC scenarios are feasible in these
systems. Our findings reveal that a subset of these new
phases, consisting of the magnetic helix, double parallel
magnetic helix, and the C4-symmetric spin-whirl crystal,
can emerge in the BaFe2As2 band structure upon electron

or hole doping. On the other hand, an IC spin-vortex crystal
phase can emerge on the substantially hole-doped side of
the LaFeAsO phase diagram. A C4-symmetric spin-whirl
crystal phase is made possible in this case by employing
orbital-dependent interactions.
To detect the IC phases studied here in FeSCs and

other materials, suitable experimental methods have to be
employed. Similar to the predictions of Ref. [95] for the
three standard commensurate magnetic phases, experimen-
tal fingerprints of the novel IC phases are expected to
become evident in spin-resolved scanning tunneling
microscopy. However, since directly probing the spin
structure of the order parameter by, e.g., polarized neutron
scattering can be challenging, we propose alternative routes
for diagnosing the underlying magnetic order. These
indirect measurements rely on inferring the induced charge
order and magnetoelectric coupling. The induced charge
order is expected to be detectable via the observation of
Bragg peaks at particular wave vectors from the set
f�2Q1;2;�Q1 � Q2g, depending on the magnetic phase.
The magnetic helix, the IC spin-vortex crystal, and the
double parallel magnetic helix phases can be directly
distinguished via this method. In contrast, the remaining
six order parameters can be uniquely identified by com-
plementary magnetoelectric measurements. Textured mag-
netic phases induce inversion-symmetry-breaking SOC that
makes direct and inverse spin-galvanic effects accessible.
In more detail, one can induce a ferromagnetic moment via
a current flow or the application of an electric field, while
reciprocal phenomena are also possible. The orientation of
the induced magnetization is given by the spin vectors’
cross products in̂s × n̂�s (s ¼ 1, 2), while its appearance
strictly depends on the orientation of the abovementioned
external perturbations.
In addition to these features, the spin-whirl crystal phases

are of particular interest, since they can acquire a nonzero
Skyrmion charge via applying a Zeeman field, but more
importantly, they can be employed for realizing intrinsic
two-dimensional topological superconductors. The possible
microscopic coexistence of textured phases with spin-
singlet superconductivity opens the door for actualizing
intrinsic topological systems harboring Majorana fermions
[44,45,53–57]. The latter become accessible by virtue of
the inversion-symmetry-breaking SOC and magnetoelectric
effects induced by the textured phases. Hence, a transition
from a topologically trivial to a nontrivial SC phase is
expected to take place as the system enters the coexistence
phase between IC magnetism and superconductivity. As we
demonstrate, texturedphases can be stabilized inFeSCs,with
the most prominent for engineering topological supercon-
ductivity being the C4-symmetric spin-whirl crystal phase,
found as a stable minimum of the free energy for both band
structure types considered here.
Interestingly, the IC nature of these magnetic textures

implies that a nonzero ferromagnetic moment will be
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generated in a finite-sized two-dimensional FeSC. In the
event that this net-magnetization field is felt by the entire
bulk (only by the surface) of the FeSC material, the
resulting magnetic superconductor will belong to the class
of chiral (helical) topological superconductors. In the
case of a gapped bulk energy spectrum, these magnetic
superconductors are characterized by a Z (Z2) topological
invariant [39,44] that, as long as bulk-boundary correspon-
dence remains intact [96], yields the number of chiral
(helical) Majorana modes per edge. Instead, if the bulk
energy spectrum exhibits nodal gap closings, then flatband
or other more complex types of Majorana edge modes
become accessible [82].
The potential experimental observation of microscopic

coexistence of magnetism and superconductivity in FeSCs
opens novel paths for crafting topological superconductors,
distinct from the already existing mechanisms involving
FeSe [64,86,97–99] or other hybrid structures consisting of
two-dimensional magnetic textures [45,54–57] in proxim-
ity to conventional superconductors.
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APPENDIX A: INCOMMENSURATE
MAGNETIC PHASES

As we show in the main text, there exist nine distinct
incommensurate magnetic phases which extremize the
Landau functional considered in Eq. (1). For each one
of these phases we present the configuration of the
respective n̂1;2 spin vectors, the corresponding (or other
symmetry-equivalent) magnetization profileMðrÞ, and also
the corresponding normalized and shifted quartic free-
energy term F ð4Þ ≡ 4Fð4Þ=M4 − 2β̃ (the quadratic term is
the same for all phases).

1. Incommensurate magnetic stripe

This single-Q C2-symmetric phase has a commensurate
analog, appears only for β − β̃ < 0, and has the following
characteristics:

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼ ð0; 0; 0Þ;
MðrÞ ¼ 2M(0; 0; cosðQ1 · rÞ); ðA1Þ
F ð4Þ ¼ 2ðβ − β̃Þ:

2. Incommensurate charge-spin density wave

This double-Q C4-symmetric phase has a commensurate
analog, appears only for g̃ < 0, and is described by

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼ ð0; 0; 1Þ;
MðrÞ ¼ 2M(0; 0; cosðQ1 · rÞ þ cosðQ2 · rÞ); ðA2Þ

F ð4Þ ¼ 2ðβ − β̃ÞGþ G̃þ 1

2
:

3. Incommensurate spin-vortex crystal

This double-Q C4-symmetric phase has a commensurate
analog, appears only for g̃ > 0, and has the following form:

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼ ð0; 1; 0Þ;
MðrÞ ¼ 2M(0; cosðQ2 · rÞ; cosðQ1 · rÞ); ðA3Þ

F ð4Þ ¼ 2ðβ − β̃ÞGþ 1

2
:

4. Magnetic helix

This single-Q C2-symmetric phase is new and appears
only for β − β̃ > 0. One finds

n̂1 ¼
1ffiffiffi
2

p ði; 0; 1Þ and n̂2 ¼ ð0; 0; 0Þ;

MðrÞ ¼ 2M( sinðQ1 · rÞ; 0; cosðQ1 · rÞ); ðA4Þ
F ð4Þ ¼ 0:

5. Incommensurate magnetic stripe
and k magnetic helix

This double-Q C2-symmetric phase is new and we obtain

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼ ði sin λ; 0; cos λÞ;

F ð4Þ ¼ 2ðβ − β̃Þ ðG̃þ 2GÞ2
ðG̃þ 2Þ2 þ 8ðG − 1Þ ; ðA5Þ

MðrÞ ¼ 2M( sin η sin λ sinðQ2 · rÞ; 0; cos η cosðQ1 · rÞ
þ sin η cos λ cosðQ2 · rÞ);

with

cosð2ηÞ ¼ −
G̃2 − 4

ðG̃þ 2Þ2 þ 8ðG − 1Þ ðA6aÞ

and

cosð2λÞ ¼ −G̃
2Gþ G̃

G̃ðG̃þ 2Þ þ 4ðG − 1Þ : ðA6bÞ

Note that the helix becomes isotropic, i.e., λ ¼ π=4, only
for G̃ ¼ 0.
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6. Incommensurate magnetic stripe
and ⊥ magnetic helix

This double-Q C2-symmetric phase is new and has the
following features:

n̂1 ¼ ð0; 0; 1Þ and n̂2 ¼
1ffiffiffi
2

p ði; 1; 0Þ;

MðrÞ ¼
ffiffiffi
2

p
M( sin η sinðQ2 · rÞ; sin η cosðQ2 · rÞ;ffiffiffi

2
p

cos η cosðQ1 · rÞ); ðA7Þ

F ð4Þ ¼ 2ðβ − β̃Þ G2

2G − 1
; with cosð2ηÞ ¼ 1

2G − 1
:

7. Douple parallel magnetic helix

This double-Q C2-symmetric phase (in spite of η ¼ π=4)
is new, appears for G̃ ≠ �2, and is described by

n̂1;2 ¼
1ffiffiffi
2

p ði; 0; 1Þ;

MðrÞ ¼ M( sinðQ1 · rÞ þ sinðQ2 · rÞ; 0; cosðQ1 · rÞ
þ cosðQ2 · rÞ); ðA8Þ

F ð4Þ ¼ 2ðβ − β̃ÞGþ G̃=2
2

:

8. C4-symmetric spin-whirl crystal

This double-Q C4-symmetric phase is new, appears for
G̃ð1 − GÞ þ 4G ≠ 0, and one finds:

n̂1 ¼ ði cos λ; 0; sin λÞ and n̂2 ¼ ð0; i cos λ; sin λÞ;

F ð4Þ ¼ 2ðβ − β̃ÞGðG̃þ 4Þ þ G̃

2ðG̃þ 4Þ ; ðA9Þ

MðrÞ ¼
ffiffiffi
2

p
M( cos λ sinðQ1 · rÞ; cos λ sinðQ2 · rÞ;

sin λ cosðQ1 · rÞ þ sin λ cosðQ2 · rÞ);

with cosð2λÞ ¼ G̃=ðG̃þ 4Þ. The latter implies cosð2ηÞ ¼
0 ⇒ η ¼ π=4. Note also that for g̃; G̃ ¼ 0, we obtain
cosð2λÞ ¼ 0 ⇒ λ ¼ π=4, and leads to a symmetric dou-
ble-Q noncoplanar C4-phase MðrÞ ¼ M( sinðQ1 · rÞ;
sinðQ2 · rÞ; cosðQ1 · rÞ þ cosðQ2 · rÞ).

9. C2-symmetric spin-whirl crystal

This new double-Q C2-symmetric phase consists of an
isotropic magnetic helix for Q1 coexisting with an aniso-
tropic magnetic helix for Q2:

n̂1 ¼
1ffiffiffi
2

p ði; 0; 1Þ and n̂2 ¼ ð0; i sin λ; cos λÞ;

F ð4Þ ¼ 2ðβ − β̃Þ ðG̃þ 4GÞ2
ðG̃þ 4Þ2 þ 16ð2G − 1Þ ;

MðrÞ ¼ 2M

�
cos ηffiffiffi

2
p sinðQ1 · rÞ; sin η sin λ sinðQ2 · rÞ;

cos ηffiffiffi
2

p cosðQ1 · rÞ þ sin η cos λ cosðQ2 · rÞ
�
; ðA10Þ

with

cosð2ηÞ ¼ −
G̃2

ðG̃þ 4Þ2 þ 16ð2G − 1Þ ðA11aÞ

and

cosð2λÞ ¼ −G̃
G̃þ 4G

G̃ðG̃þ 4Þ þ 16G
: ðA11bÞ

APPENDIX B: INDUCED CHARGE ORDER

Here we derive the coupling term between magnetic and
charge order. For simplicity, and without loss of generality,
let us restrict ourselves to be near the magnetic critical
temperature, for which an expansion in terms of the
magnetic order parameters and the charge density is
permissible. We will further assume that the orbital weight
v̂q of the magnetic order parameters M̂q is fixed by the spin
susceptibility, i.e., M̂q ¼ Mqv̂q (see Sec. VI A).
We start from a general multiorbital model Hamiltonian

for an itinerant system, rewritten in k space and within
the framework of second quantization: H0 ¼

P
k ψ

†
k1̂2 ⊗

Ĥ0ðkÞψk, where we introduced the electron creation and
annihilation operators acting in orbital and spin spaces.
Note that Ĥ0ðkÞ is a matrix in orbital space, and the
complete Hamiltonian is diagonal in spin space, since SOC
has been omitted from the outset. We then add the term

V ¼
X
k;q

ψ†
kþqðMq · σ ⊗ v̂q þ ρq1̂2 ⊗ 1̂5Þψk ðB1Þ

and perform a perturbative expansion of the resulting free
energy to the lowest allowed coupling between charge and
magnetic order terms. The lowest-order coupling term
appears at cubic order of perturbation and the correspond-
ing free-energy contribution is

F ¼ 1

3β

X
q;p

X
ikn;k

Tr½1̂2 ⊗ Ĝ0ðikn;kÞV̂q

× 1̂2 ⊗ Ĝ0ðikn;k− qÞV̂p1̂2 ⊗ Ĝ0ðikn;k− q− pÞV̂−q−p�;
ðB2Þ
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with the trace being over spin and orbital indices,
1=β ¼ kBT, kn denotes the fermionic Matsubara frequen-
cies, Ĝ0ðikn; kÞ ¼ ½ikn1̂5 − Ĥ0ðkÞ�−1 defines the bare
Matsubara orbital space matrix Green’s function, and
V̂q ≡Mq · σ ⊗ v̂q þ ρq1̂2 ⊗ 1̂5. By carrying out the trace
over the spin degrees of freedom and after taking into
account all the products of the interaction terms, we have
the general result:

F ¼
X

q;p¼�Q1;2

�
2

β

X
ikn;k

Trorbital½Ĝ0ðikn; kÞv̂qĜ0ðikn; k − qÞ

× v̂pĜ0ðikn; k − q − pÞ�
�
jMqjjMpjn̂q · n̂pρ−ðqþpÞ:

ðB3Þ

Therefore, we can obtain induced charge order for the set of
wave vectors f�2Q1;2;�ðQ1 � Q2Þg, depending on which
spin-vector inner products become nonzero. Note that there
exist additional higher-order contributions to the free
energy that yield (i) corrections to the above and (ii) charge
order at additional wave vectors. However, these contribu-
tions will lead to Bragg peaks with lower intensity
compared to the one found at cubic order, and thus can
be experimentally differentiated.

APPENDIX C: MAGNETOELECTRIC EFFECTS

The aim of this section is to illustrate the emergence of
the magnetoelectric effects discussed in the main text. The
q ¼ 0 ferromagnetic component of the magnetization M0
couples to a generally time-dependent electromagnetic
vector potential A, and generates an electric field (E) or
current (I). The coupling of the itinerant system to the
vector potential will be restricted to the paramagnetic
contribution, sufficient for the lowest-order coupling with
respect to A that is pursued here. Therefore, we employ a
similar approach as in the section above and focus near the
magnetic critical temperature, where the magnetic order
parameters can be treated perturbatively. Then we add to

the Hamiltonian, in the Schrödinger picture, the perturba-
tion term

V ¼
X
k;q

ψ†
kþq

�
Mq · σ ⊗ v̂q þ

�
M0ðtÞ · σ ⊗ 1̂5 þ

e
ℏ
1̂2

⊗
∂Ĥ0ðkÞ

∂k · AðtÞ
�
δq;0

�
ψk; ðC1Þ

with e > 0. We thus perform a perturbative expansion of
the resulting free energy to the lowest allowed coupling
between the vector potential, the ferromagnetic moment,
and the q ¼ �Q1;2 magnetic order terms. The lowest-order
coupling term appears at quartic order of the perturbation
term, and the corresponding free-energy contribution reads

F ¼ 1

4β

X
k;q1;2;3

Tr½1̂2 ⊗ Ĝ0ðkÞV̂q1 1̂2 ⊗ Ĝ0ðk − q1ÞV̂q2

× 1̂2 ⊗ Ĝ0ðk − q1 − q2ÞV̂q3 1̂2 ⊗ Ĝ0ðk − q1 − q2 − q3Þ
× V̂−q1−q2−q3 �; ðC2Þ

where we introduced the four vectors k ¼ ðikn; kÞ and
q ¼ ðiωs; qÞ, where the latter consists of the bosonic
Matsubara frequency iωs and wave vector q. The respective
perturbation terms read

V̂q ≡Mq · σ ⊗ v̂qδωs;0 þ
�
M0ðiωsÞ · σ ⊗ 1̂5

þ e
ℏ
1̂2 ⊗

∂Ĥ0ðkÞ
∂k · AðiωsÞ

�
δq;0: ðC3Þ

For the itinerant systems of interest, inversion symmetry is
present; therefore, Ĥ0ðkÞ ¼ Ĥ0ð−kÞ and ∂Ĥ0ðkÞ=∂ka ¼
−∂Ĥ0ð−kÞ=∂ka. As a result, we find that the magneto-
electric coupling can be nonzero only when Ajjq̂, with
q̂ ¼ q=jqj. By tracing over the spin indices and after taking
into account all the possible combinations, we obtain:

F ¼ e
ℏ

X
ωs

X
q¼�Q1;2

jMqj2M0ð−iωsÞ · ðin̂q × n̂�qÞq̂ · AðiωsÞ
2

β

X
kn;k

×

�
Trorbital

�
Ĝ0ðikn; kÞq̂ ·

∂Ĥ0ðkÞ
∂k Ĝ0ðikn − iωs; kÞĜ0ðikn; kÞv̂qĜ0ðikn; k − qÞv̂−q

�

− Trorbital

�
Ĝ0ðikn; kÞq̂ ·

∂Ĥ0ðkÞ
∂k Ĝ0ðikn − iωs; kÞv̂qĜ0ðikn − iωs; k − qÞĜ0ðikn; k − qÞv̂−q

�

þ Trorbital

�
Ĝ0ðikn; kÞq̂ ·

∂Ĥ0ðkÞ
∂k Ĝ0ðikn − iωs; kÞv̂qĜ0ðikn − iωs; k − qÞv̂−qĜ0ðikn − iωs; kÞ

��
: ðC4Þ
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In order to investigate the arising magnetoelectric response,
one has to perform the analytical continuation, iωs →
ωþ i0þ, to the real frequencies ω.

APPENDIX D: HUBBARD-HUND MODEL,
MAGNETIC ORDER PARAMETERS, AND

ORBITAL STRUCTURE FOR THE CASE OF
IRON-BASED SUPERCONDUCTORS

The magnetic transition temperature is obtained by
identifying the first zero eigenvalue of the static part of

the inverse magnetic propagator matrix when evaluated as a
function of temperature and q. The latter is defined as
Ď−1

magðqÞ ¼ Ǔ−1 − χ̌0ðqÞ, with ˇ denoting rank-4 tensors in
orbital space. Note that for our calculations we neglect the
Hartree shift of the chemical potential induced by inter-
actions. The orbital weight of the magnetic order parameter
is obtained from the eigenmatrix associated with the zero
eigenvalue, i.e., Ď−1

magðQ1;2Þv̂1;2 ¼ 0̂. As incommensurabil-
ity sets in, the orbital content acquires imaginary parts; e.g.,
for LaFeAsO we find [in the basis ðxz; yz; xy; x2 − y2; z2Þ]

v̂1 ¼

0
BBBBBB@

0.395 0 i0.045 0 0

0 0.501 0 i0.028 −i0.025
i0.045 0 0.574 0 0

0 i0.028 0 0.335 −0.038
0 −i0.025 0 −0.038 0.377

1
CCCCCCA

and v̂2 ¼

0
BBBBBB@

0.501 0 0 i0.028 i0.025

0 0.395 −i0.045 0 0

0 −i0.045 0.574 0 0

i0.028 0 0 0.335 0.038

i0.025 0 0 0.038 0.377

1
CCCCCCA
;

ðD1Þ

where v̂1 is plotted in Fig. 4(l) in the main text. The quartic
coefficients of the free energy are computed by performing
a Hubbard-Stratonovich decoupling in the magnetic chan-
nel and expanding the trace-log to fourth order in the
magnetic order parameters. The expression is truncated by
assuming that only the lowest harmonics contribute. This is
justified by comparing the magnitude of the peak at Q1;2 in
the bare susceptibility with the peaks at higher integer

multiples of Q1;2, as shown in Figs. 4(d) and 4(j). The
quartic coefficients are rank-8 tensors in orbital space,
and to determine the magnetic order at the instability the
coefficients are projected onto the leading instability using
the orbital content provided by the above eigenmatrices.
The expressions for the quartic coefficients of the free

energy are related to the microscropic band structure
through

β̃abcdefgh1 ¼ 1

16βN

X
k

½GabGcd
1 GefGgh

1 þ GebGch
1 GafGgd

1 þ 2GgbGcd
1 GehGaf

−1 − 2GgbGch
1 GadGef

−1�; ðD2Þ

β̃abcdefgh2 ¼ 1

16βN

X
k

½GabGcd
2 GefGgh

2 þ GebGch
2 GafGgd

2 þ 2GgbGcd
2 GehGaf

−2 − 2GgbGch
2 GadGef

−2�; ðD3Þ

ðβ1 − β̃1Þabcdefgh ¼
1

16βN

X
k

½−GabGcf
1 GgdGeh

1 þ 2GebGcf
1 GghGad

−1�; ðD4Þ

ðβ2 − β̃2Þabcdefgh ¼
1

16βN

X
k

½−GabGcf
2 GgdGeh

2 þ 2GebGcf
2 GghGad

−2�; ðD5Þ

gabcdefgh ¼ 1

8βN

X
k

½GabGcd
1 GefGgh

2 þ GgbGcd
1 GehGaf

−2 þGadGeb
−1G

cfGgh
2 þ GgdGeb

−1G
chGaf

−2

−GefGgb
2 Gch

1þ2G
ad
1 −GchGad

1 Gef
1þ2G

gb
2 �; ðD6Þ

g̃abcdefgh1 ¼ 1

8βN

X
k

½−GabGcf
1 GgdGeh

2 þ GebGcf
1 GghGad

−2 þGafGgb
−1G

cdGeh
2 −GefGgb

−1G
chGad

−2

þGgdGeb
2 Gch

1þ2G
af
1 þ GabGcd

1 Gef
1þ2G

gh
2 �; ðD7Þ
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g̃abcdefgh2 ¼ 1

8βN

X
k

½GebGcf
1 GghGad

2 − GabGcf
1 GgdGeh

−2 −GefGgb
−1G

chGad
2 þ GafGgb

−1G
cdGeh

−2

þ GghGab
2 Gcd

1þ2G
ef
1 þGebGch

1 Gaf
1þ2G

gd
2 �; ðD8Þ

with N denoting the number of sites in k space. Here,
k ¼ ðikn; kÞ and Gab

1;2 is the fermionic Green function
centered at Q1;2:

Gab
1;2 ¼

X
ν

uaνðkþ Q1;2Þubνðkþ Q1;2Þ�
ikn − Eνðkþ Q1;2Þ

; ðD9Þ

with kn a fermionic Matsubara frequency. In the above we
also employed the shorthand notation f1þ2 ≡ fQ1þQ2

.

Note that the tensorial coefficients, e.g., β̃abcdefgh1 and
β̃abcdefgh2 , are not identical but are related by C4 rotations.
To proceed we project these onto the leading magnetic
instability utilizing the orbital content provided by the
matrices vabðQ1;2Þ as in Ref. [11]; for instance, we have

β1 − β̃1 ≡
X
abcd
efgh

ðβ1 − β̃1ÞabcdefghvabðQ1Þ

× vcdðQ1Þv�efðQ1Þv�ghðQ1Þ: ðD10Þ

Note that the contracted coefficients, such as β1 − β̃1 and
β2 − β̃2, are identical.
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Séamus Davis, and P. J. Hirschfeld, Orbital Selective Pair-
ing and Gap Structures of Iron-Based Superconductors,
Phys. Rev. B 95, 174504 (2017).

[64] P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K.
Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin,
Observation of Topological Superconductivity on the Sur-
face of Iron-Based Superconductor, Science 360, 182
(2018).

[65] D. Wang, L. Kong, P. Fan, H. Chen, Y. Sun, S. Du, J.
Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, H. Ding, and H.
Gao,Observation of Pristine Majorana Bound State in Iron-
Based Superconductor, arXiv:1706.06074.

[66] H. J. Schulz, Incommensurate Antiferromagnetism in the
Two-Dimensional Hubbard Model, Phys. Rev. Lett. 64,
1445 (1990).

[67] G. E. Volovik, The Universe in a Helium Droplet
(Clarendon Press, Oxford, 2003).

[68] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, The Electronic Properties of
Graphene, Rev. Mod. Phys. 81, 109 (2009).

[69] S. Murakami, N. Nagaosa, and S.-C. Zhang, SU(2) Non-
Abelian Holonomy and Dissipationless Spin Current in
Semiconductors, Phys. Rev. B 69, 235206 (2004).

[70] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A.
Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan,
Observation of a Large-Gap Topological-Insulator Class
with a Single Dirac Cone on the Surface, Nat. Phys. 5, 398
(2009).

[71] L. Fu, Hexagonal Warping Effects in the Surface States of
the Topological Insulator Bi2Te3, Phys. Rev. Lett. 103,
266801 (2009).

[72] A similar situation takes place for the surface states of
warped topological insulators, cf. Ref. [71].

[73] D. Xiao, M.-C. Chang, and Q. Niu, Berry Phase Effects
on Electronic Properties, Rev. Mod. Phys. 82, 1959
(2010).

[74] Θ is a symmetry of the IC magnetization profile alone since,
due to the IC nature of Q1;2, the involved translations are not
contained in the ones given by the crystalline periodicity of
the FeSCs lattice. Nevertheless, as long as the low-energy
properties of these itinerant magnets are primarily dictated by
the Fermi-surface electrons, we expect Θ to be effectively
present. This is because the electrons near the Fermi surface
can be described by an effective continuum model which is
unaware of the lattice constant.

[75] Notably, taking the commensurate limit for the magnetic
profiles of DPHM and SWC4, without any further consid-
erations, is ambiguous since fDPMH;SWC4g →
fCSDW;SVCg. This is due to the translational invariance
of the system and our freedom to pick alternative spatial
profiles other than the ones chosen in Sec. III. Nonetheless,
by additionally demanding that the free-energy minimum
varies continuously when taking this limit, Fig. 3(b) yields
DPMH → CSDW and SWC4 → SVC.

[76] D. F. Agterberg and H. Tsunetsugu, Dislocations and
Vortices in Pair-Density-Wave Superconductors, Nat. Phys.
4, 639 (2008).

CHRISTENSEN, ANDERSEN, and KOTETES PHYS. REV. X 8, 041022 (2018)

041022-22

https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1038/ncomms10395
https://doi.org/10.1103/PhysRevB.93.140503
https://doi.org/10.1103/PhysRevB.93.140503
https://doi.org/10.1103/PhysRevB.94.144509
https://doi.org/10.1103/PhysRevB.94.144509
https://doi.org/10.1103/PhysRevB.89.115109
https://doi.org/10.1103/PhysRevB.91.115415
https://doi.org/10.1103/PhysRevB.91.115415
https://doi.org/10.1103/PhysRevB.91.155405
https://doi.org/10.1103/PhysRevB.91.155405
https://doi.org/10.1103/PhysRevB.92.214502
https://doi.org/10.1103/PhysRevB.92.214502
https://doi.org/10.1103/PhysRevB.93.224505
https://doi.org/10.1103/PhysRevB.93.224505
https://doi.org/10.1103/PhysRevB.81.214503
https://doi.org/10.1103/PhysRevB.81.054502
https://doi.org/10.1103/PhysRevB.81.054502
https://doi.org/10.1038/s41535-017-0059-y
https://doi.org/10.1038/s41535-017-0059-y
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1103/PhysRevB.95.174504
https://doi.org/10.1126/science.aan4596
https://doi.org/10.1126/science.aan4596
http://arXiv.org/abs/1706.06074
https://doi.org/10.1103/PhysRevLett.64.1445
https://doi.org/10.1103/PhysRevLett.64.1445
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevB.69.235206
https://doi.org/10.1038/nphys1274
https://doi.org/10.1038/nphys1274
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1038/nphys999
https://doi.org/10.1038/nphys999


[77] C. Castellani, C. R. Natoli, and J. Ranninger, Magnetic
Structure of V2O3 in the Insulating Phase, Phys. Rev. B 18,
4945 (1978).

[78] A. M. Oleś, Antiferromagnetism and Correlation of Elec-
trons in Transition Metals, Phys. Rev. B 28, 327 (1983).

[79] F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee,
Functional Renormalization-Group Study of the Pairing
Symmetry and Pairing Mechanism of the FeAs-Based High-
Temperature Superconductor, Phys. Rev. Lett. 102, 047005
(2009).

[80] C. Platt, W. Hanke, and R. Thomale, Functional Renorm-
alization Group for Multi-Orbital Fermi Surface Instabil-
ities., Adv. Phys. 62, 453 (2013).

[81] R.-Q. Xing, L. Classen, M. Khodas, and A. V. Chubukov,
Competing Instabilities, Orbital Ordering, and Splitting of
Band Degeneracies from a Parquet Renormalization Group
Analysis of a Four-Pocket Model for Iron-Based Super-
conductors: Application to FeSe, Phys. Rev. B 95, 085108
(2017).

[82] D. Steffensen, M. H. Christensen, B. M. Andersen, and P.
Kotetes, Topological Magnetic Superconductors (to be
published).

[83] V. Cvetkovic and O. Vafek, Space Group Symmetry, Spin-
Orbit Coupling, and the Low-Energy Effective Hamiltonian
for Iron-Based Superconductors, Phys. Rev. B 88, 134510
(2013).

[84] D. D. Scherer and B. M. Andersen, Spin-Orbit Coupling
and Magnetic Anisotropy in Iron-Based Superconductors,
Phys. Rev. Lett. 121, 037205 (2018).

[85] H. Eschrig and K. Koepernik, Tight-Binding Models for the
Iron-Based Superconductors, Phys. Rev. B 80, 104503
(2009).

[86] N. Hao and J. Hu, Topological Phases in the Single-Layer
FeSe, Phys. Rev. X 4, 031053 (2014).

[87] H. Luo, M. Wang, C. Zhang, X. Lu, L.-P. Regnault,
R. Zhang, S. Li, J. Hu, and P. Dai, Spin Excitation
Anisotropy as a Probe of Orbital Ordering in the
Paramagnetic Tetragonal Phase of Superconducting
BaFe1.904Ni0.096As2, Phys. Rev. Lett. 111, 107006 (2013).

[88] C. Zhang, M. Liu, Y. Su, L.-P. Regnault, M. Wang, G. Tan,
T. Brückel, T. Egami, and P. Dai, Magnetic Anisotropy in
Hole-Doped Superconducting Ba0.67K0.33Fe2As2 Probed by
Polarized Inelastic Neutron Scattering, Phys. Rev. B 87,
081101 (2013).

[89] N. Qureshi, C. H. Lee, K. Kihou, K. Schmalzl, P. Steffens,
and M. Braden, Anisotropy of Incommensurate Magnetic
Excitations in Slightly Overdoped Ba0.5K0.5Fe2As2 Probed

by Polarized Inelastic Neutron Scattering Experiments,
Phys. Rev. B 90, 100502(R) (2014).

[90] Y. Song, H. R. Man, R. Zhang, X. Y. Lu, C. L. Zhang,
M. Wang, G. T. Tan, L.-P. Regnault, Y. X. Su, J. Kang,
R. M. Fernandes, and P. C. Dai, Spin Anisotropy due
to Spin-Orbit Coupling in Optimally Hole-Doped
Ba0.67K0.33Fe2As2, Phys. Rev. B 94, 214516 (2016).

[91] For a weak SOC we can approach the problem using the
already-obtained set of magnetic-order-parameter extrema
of Eq. (1). However, if the SOC becomes strong, one should
minimize the combination of Eqs. (1) and (29), that will
generally lead to a new set of extrema.

[92] S. V. Borisenko, D. V. Evtushinsky, Z.-H. Liu, I. Morozov,
R. Kappenberger, S. Wurmehl, B. Büchner, A. N. Yaresko,
T. K. Kim, M. Hoesch, T. Wolf, and N. D. Zhigadlo, Direct
Observation of Spin-Orbit Coupling in Iron-Based Super-
conductors, Nat. Phys. 12, 311 (2016).

[93] Note that the potential inclusion of SOC terms at quartic
order would lower Tð2Þ

mag, and if they were sufficiently strong,
they could even prevent the occurrence of the secondary
transition. However, such a situation is beyond the scope
and applicability of the present analysis.

[94] M. H. Christensen, P. P. Orth, B. M. Andersen, and R. M.
Fernandes, Magnetic Phase Diagram of the Iron Pnictides
in the Presence of Spin-Orbit Coupling: Frustration be-
tweenC2 and C4 Magnetic Phases, Phys. Rev. B 98, 014523
(2018).

[95] M. N. Gastiasoro, I. Eremin, R. M. Fernandes, and B. M.
Andersen, Scanning Tunneling Spectroscopy as a Probe of
Multi-Q Magnetic States of Itinerant Magnets, Nat. Com-
mun. 8, 14317 (2017).

[96] M. T. Mercaldo, M. Cuoco, and P. Kotetes, Magnetic-Field-
Induced Topological Reorganization of a p-Wave Super-
conductor, Phys. Rev. B 94, 140503(R) (2016).

[97] Z. Wang, P. Zhang, Gang Xu, L. K. Zeng, H. Miao,
X. Xu, T. Qian, H. Weng, P. Richard, A. V. Fedorov, H.
Ding, X. Dai, and Z. Fang, Topological Nature of the
FeSe0.5Te0.5 Superconductor, Phys. Rev. B 92, 115119
(2015).

[98] Z. F. Wang, H. Zhang, D. Liu, C. Liu, C. Tang, C. Song, Y.
Zhong, J. Peng, F. Li, C. Nie, L. Wang, X. J. Zhou, X. Ma,
Q. K. Xue, and F. Liu, Topological Edge States in a
High-Temperature Superconductor FeSe=SrTiO3ð001Þ
Film, Nat. Mater. 15, 968 (2016).

[99] G. Xu, B. Lian, P. Tang, X.-L. Qi, and S.-C. Zhang,
Topological Superconductivity on the Surface of Fe-Based
Superconductors, Phys. Rev. Lett. 117, 047001 (2016).

UNRAVELLING INCOMMENSURATE MAGNETISM AND ITS … PHYS. REV. X 8, 041022 (2018)

041022-23

https://doi.org/10.1103/PhysRevB.18.4945
https://doi.org/10.1103/PhysRevB.18.4945
https://doi.org/10.1103/PhysRevB.28.327
https://doi.org/10.1103/PhysRevLett.102.047005
https://doi.org/10.1103/PhysRevLett.102.047005
https://doi.org/10.1080/00018732.2013.862020
https://doi.org/10.1103/PhysRevB.95.085108
https://doi.org/10.1103/PhysRevB.95.085108
https://doi.org/10.1103/PhysRevB.88.134510
https://doi.org/10.1103/PhysRevB.88.134510
https://doi.org/10.1103/PhysRevLett.121.037205
https://doi.org/10.1103/PhysRevB.80.104503
https://doi.org/10.1103/PhysRevB.80.104503
https://doi.org/10.1103/PhysRevX.4.031053
https://doi.org/10.1103/PhysRevLett.111.107006
https://doi.org/10.1103/PhysRevB.87.081101
https://doi.org/10.1103/PhysRevB.87.081101
https://doi.org/10.1103/PhysRevB.90.100502
https://doi.org/10.1103/PhysRevB.94.214516
https://doi.org/10.1038/nphys3594
https://doi.org/10.1103/PhysRevB.98.014523
https://doi.org/10.1103/PhysRevB.98.014523
https://doi.org/10.1038/ncomms14317
https://doi.org/10.1038/ncomms14317
https://doi.org/10.1103/PhysRevB.94.140503
https://doi.org/10.1103/PhysRevB.92.115119
https://doi.org/10.1103/PhysRevB.92.115119
https://doi.org/10.1038/nmat4686
https://doi.org/10.1103/PhysRevLett.117.047001

