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Abstract 23 

Objective: The axis of apolipoprotein M (apoM) and sphingosine-1-phosphate (S1P) is of importance to 24 

plasma lipid levels, endothelial function, and development of atherosclerosis. Menopause is accompanied by 25 

dyslipidemia and an increased risk of atherosclerosis, which can be lowered by exercise training. The aim of 26 

this study was to explore if effects of menopause and training are paralleled by changes in the apoM/S1P 27 

axis.  28 

Methods: Healthy, late premenopausal (n=38, age 49.2±2) and recent postmenopausal (n=37, age 53.3±3) 29 

women from the Copenhagen Women Study participated in a three-month, aerobic high-intensity exercise 30 

intervention.  31 

Results: Before training, plasma apoM was higher in postmenopausal (1.08±0.2 µmol/l (mean±SD)) 32 

compared to premenopausal (0.82±0.2 µmol/l) women (p<0.0001). Plasma S1P was similar in the two 33 

groups (0.44±0.1 and 0.46±0.1 µmol/l, respectively). Hence, the pre-training S1P/apoM ratio was 26% lower 34 

in postmenopausal than premenopausal women (p<0.0001). After the training program, plasma apoM 35 

increased from 0.82±0.2 to 0.90±0.3 µmol/l in premenopausal women and from 1.08±0.2 to 1.16±0.3 µmol/l 36 

in postmenopausal women (p<0.05). Plasma S1P increased from 0.44±0.1 to 0.47±0.1 µmol/l in 37 

premenopausal women and from 0.46±0.1 to 0.48±0.1 µmol/l in postmenopausal women (p<0.05). 38 

Conclusions: The results suggest that menopause is accompanied by higher plasma apoM but not S1P 39 

concentrations, and that exercise training increases plasma apoM and S1P in healthy middle-aged women 40 

irrespective of menopausal status.  41 

 42 

Keywords 43 
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 46 

  47 

Downloaded from www.physiology.org/journal/jappl by ${individualUser.givenNames} ${individualUser.surname} (163.015.154.053) on November 17, 2018.
 Copyright © 2018, Journal of Applied Physiology. All rights reserved. 



3 
 

New & Noteworthy 48 

The ApoM/S1P complex is involved in maintaining a healthy endothelial barrier function. Our study is the 49 

first to show how menopause affects apoM/S1P axis. The results suggest that the menopause is accompanied 50 

by higher plasma apoM but not S1P concentrations. Secondly, the study is also the first to show that exercise 51 

training increases both apoM/S1P in women irrespective of menopausal status.  52 
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Introduction 53 

Menopause is associated with an elevated risk of developing endothelial dysfunction (33) and metabolic 54 

syndrome, including dyslipidemia and atherosclerosis (7). Long-term hormone therapy is not generally 55 

recommended for postmenopausal women due to increased risk of cancer and athero-thrombotic disease 56 

(32). Currently, there is a lack of mechanistic understanding of changes that cause dyslipidemia, 57 

atherosclerosis, and endothelial dysfunction in postmenopausal women. 58 

Apolipoprotein M (apoM) is a lipocalin mainly bound to plasma high density lipoprotein (HDL) 59 

particles (11). ApoM has an important role in protecting the endothelial barrier function (8, 12) and affects 60 

several potential anti-atherogenic pathways, such as reverse cholesterol transport (10, 19), formation of preβ-61 

HDL (10, 34, 47), and removal of reactive oxygen species (10, 18). Moreover, variations in the apoM gene 62 

are associated with risk of cardiovascular disease (CVD) and altered plasma lipids (5). Further investigations 63 

are however needed to clarify the exact role of apoM in atherosclerosis and dyslipidemia.  64 

The bioactive lipid sphingosine-1-phosphate (S1P) is carried by apoM (12). ApoM-containing HDL 65 

carries ~65 % of plasma S1P, while albumin carries ~35 % (27, 35). Hence, apoM is a chaperone, and its 66 

biological effects are likely provided by S1P (36, 40). S1P acts through five G-protein-coupled receptors 67 

(S1Pr1-5) (24), affecting diverse processes such as protection of the endothelial barrier (8, 12, 45), regulation 68 

of angiogenesis (16), promotion of lymphocyte trafficking (39), and activation of endothelial nitric oxide 69 

synthase (eNOS) (23). Accordingly, S1P has been implicated in several diseases, including inflammatory 70 

diseases and  atherosclerosis (30). 71 

Exercise training decreases CVD risk by effects on endothelial function (21) and plasma lipids, 72 

including in postmenopausal women (4, 28, 42). This finding is of particular interest as the menopausal 73 

transition is accompanied by increased prevalence of dyslipidemia (7, 14, 15, 25), and endothelial 74 

dysfunction (33). The apoM/S1P axis is associated with endothelial function (8, 12) and plasma lipids (5), 75 

which are all influenced negatively by the menopausal transition and can be improved with exercise training. 76 

The effect of menopause and exercise training on the apoM/S1P axis itself is unknown, and further 77 

investigation is needed in order to understand if apoM and S1P are involved in menopausal and exercise-78 

induced changes. This has prompted the present study on how plasma apoM and S1P concentrations are 79 
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affected by exercise training in early postmenopausal compared with late premenopausal women, as well as 80 

how apoM and S1P concentrations differ in pre-and postmenopausal women. 81 

 82 
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Materials and methods 84 

The data presented in this study are part of the Copenhagen Women Study (31, 37), which is an 85 

interdisciplinary study on the effects of exercise training in the late premenopausal and early postmenopausal 86 

phase. The study was approved by the Ethics Committee in the capital region of Denmark (protocol number: 87 

H-1-2012-150) and hosted institute. All participants were given informed consent at time of inclusion, and 88 

the study was conducted in accordance with the guidelines of the Declaration of Helsinki.  89 

Participants - In the present study, we used samples from 38 premenopausal women and 37 postmenopausal 90 

women from the Copenhagen Women Study (31, 37). All included participants were healthy non-smokers 91 

with no excessive alcohol intake and a body mass index of 18.5-30 kg/m2. The premenopausal women had 92 

regular menstrual cycles and were not using hormonal contraceptives. The postmenopausal women had not 93 

experienced a menstrual cycle for at least 1 year and were not receiving hormone therapy. All women were 94 

physically active less than 2 hours per week prior to the training intervention. 95 

Study design - As described previously (31, 37), all women underwent testing before and after three months 96 

of high-intensity exercise training on a cycling ergometer for one hour three times per week. The training 97 

sessions were supervised by instructors, and exercise intensity was monitored and increased gradually during 98 

the three-month period. As described by Nyberg et al (37), the heart rate was at 71-95% of the maximal heart 99 

rate almost 90% of the time. On test days, all women were fasting and had not exercised for 24 hours. 100 

Plasma lipids - Blood samples taken with a BD Vacutainer system (Becton-Dickinson, Plymouth, UK) were 101 

analyzed at the Department of Clinical Biochemistry at Rigshospitalet, Denmark. Plasma aliquots were used 102 

for analysis of total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-103 

cholesterol (LDL-C), and triglycerides with enzymatic absorption photometry (Cobas 8000, c702 module, F. 104 

Hoffmann-La Roche Ltd., Rotkreuz, Switzerland). Other blood samples for apoM and S1P measurements 105 

were centrifuged for 5 minutes at 4000g and stored at -80°C. Blood samples for S1P measurements were 106 

placed on ice immediately after collection. 107 
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Plasma apoM - ApoM was measured with ELISA as described by Bosteen et al. with intra and inter assay 108 

coefficients of variation of 3.2% and 7.9%, respectively (6). Plasma for measurement of apoM was available 109 

for 38 premenopausal women (38 pre-training samples and 36 post-training samples) and 37 postmenopausal 110 

women (37 pre- and post-training samples). For the two-way repeated measures ANOVA, we could only 111 

include subjects with paired values obtained before and after exercise training (pre-menopause n=36; 112 

postmenopause n=37). 113 

Plasma S1P - S1P was measured with an HPLC-based method as described by Christoffersen et al. (12). 114 

Plasma for measurement of S1P was available for 37 premenopausal women (36 pre-training samples and 31 115 

post-training samples) and 35 postmenopausal women (32 pre-training samples and 33 post-training 116 

samples). For two-way repeated measures ANOVA, we could only include subjects with paired values 117 

obtained before and after exercise training (premenopause n=30; postmenopause n=30). 118 

Statistical Analysis - Data were analyzed using GraphPad Prism 4 software. The significance level (alpha) 119 

was set at p<0.05. The effects of menopausal status and exercise training were assessed using two-way 120 

repeated measures ANOVA; only women with measurements before and after the training intervention were 121 

included in the two-way repeated measures ANOVA. Correlations were assessed using Pearson correlation 122 

analysis. Normally distributed data are presented as mean±SD. Data that are not normally distributed are log-123 

transformed and presented as median (25-75 percentile). After the log-transformation, all data were normally 124 

distributed. 125 

  126 
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Results 127 

Characteristics of the participants - Before the training intervention, the premenopausal women were 49.2±2 128 

years old. The postmenopausal women were 53.3±3 years old and 3.1±1 years past their final menstruation. 129 

Effects of menopausal status - Before training, the plasma apoM concentration was 32 % higher in the 130 

postmenopausal than in the premenopausal women (1.08±0.2 µmol/l and 0.82±0.2 µmol/l, respectively) 131 

(p<0.0001) (Figure 1A). The plasma S1P concentration was similar in the two groups (p>0.05) (Figure 1B). 132 

Hence, the S1P/apoM ratio was 26 % lower in postmenopausal than premenopausal women before training 133 

(0.45±0.1 and 0.61±0.2, respectively) (p<0.001) (Figure 2A). In accordance with previous findings from the 134 

Copenhagen Women Study (40), plasma TC (p<0.0001), HDL-C (p<0.001), and LDL-C (p<0.01) 135 

concentrations were higher in this subset of postmenopausal compared with premenopausal women, while 136 

the plasma triglyceride concentration was similar in the two groups (p>0.05) (Table 1).  The plasma 137 

apoM/HDL-C ratio was also similar in the two groups (p>0.05) (Figure 2B). 138 

Effects of exercise training - The three-month high-intensity training intervention increased the plasma apoM 139 

concentration from 0.82±0.2 to 0.90±0.3 µmol/l in premenopausal women and from 1.08±0.2 to 1.16±0.3 140 

µmol/l in postmenopausal women (p<0.05) (Figure 1A). The plasma S1P concentration increased from 141 

0.44±0.1 to 0.47±0.1 µmol/l in premenopausal women and from 0.46±0.1 to 0.48±0.1 µmol/l in 142 

postmenopausal women (p<0.05) (Figure 1B). The plasma S1P/apoM ratio was not affected by training 143 

(p>0.05) (Figure 2A). As previously reported (40), plasma TC (p=0.01) and LDL-C (p<0.01) concentrations 144 

decreased after the training period, whereas plasma HDL-C and triglyceride concentrations did not change 145 

(p>0.05) (Table 1). The plasma apoM/HDL-C ratio was increased from 0.50±0.1 to 0.54±0.2 in 146 

premenopausal women and from 0.56±0.2 to 0.60±0.2 in postmenopausal women, which was borderline 147 

statistically significant (p=0.05) (Figure 2B).  148 

Correlations between apoM and lipids in plasma - The plasma apoM concentration correlated positively 149 

with plasma TC, HDL-C, and LDL-C concentrations both before and after the training intervention, while no 150 

correlation was found between the plasma apoM and triglyceride concentration (Figure 3). Also, there was 151 
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no correlation between plasma apoM and S1P concentrations (p>0.05) (Figure 4). Additionally, plasma S1P 152 

concentrations did not correlate with plasma TC, HDL-C, LDL-C, or triglyceride concentrations (p>0.05) 153 

(data not shown).   154 
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Discussion 155 

There were two main findings in the present study. Firstly, recent postmenopausal women had higher 156 

plasma apoM than late premenopausal women. Secondly, exercise training increased plasma apoM and S1P 157 

in both late premenopausal and recent postmenopausal women.   158 

Recent postmenopausal women had 32 % higher plasma apoM concentrations compared with late 159 

premenopausal women before the training intervention. There are at least two possible explanations for this. 160 

The first possible explanation for the higher postmenopausal apoM concentration is a difference in lipid 161 

levels. The postmenopausal women had higher TC (by 15 %), HDL-C (by 21 %), and LDL-C (by 14 %) 162 

compared with the premenopausal women before the training intervention. In accordance with previous 163 

findings, apoM correlated positively with plasma TC, HDL-C, and LDL-C (1). ApoM also correlates 164 

negatively with the fractional catabolic rate of LDL (9), suggesting that LDL-C should be increased when 165 

apoM is increased, which is consistent with our findings. As discussed previously (31), there is a general 166 

agreement that TC and LDL-C are elevated in postmenopausal women compared with premenopausal 167 

women, rendering a more atherogenic profile (7, 14, 25). In contrast, findings on the relationship between 168 

menopause and HDL-C and triglycerides are inconsistent (7, 14, 15, 25, 38). The Study of Women’s Health 169 

Across the Nation (SWAN) found that HDL-C was higher in recent postmenopausal women (<24 months 170 

after the final menstrual period [FMP]), but then declined to the premenopausal level in late postmenopausal 171 

women (>24 months after the FMP) (14). In the present study, no significant correlation between lipid levels 172 

or apoM levels and age was found (data not shown). A study on a sub-cohort from SWAN also found that an 173 

increase in HDL-C over the menopausal transition was associated with a greater development of 174 

atherosclerosis (17). This is an interesting observation as HDL particles are generally considered anti-175 

atherogenic (20). The finding that plasma apoM was higher in the postmenopausal women might be 176 

explained by a concomitant increase in HDL-C, illustrated by a stable apoM/HDL-C ratio between pre- and 177 

postmenopausal women. Thus, one may speculate that apoM-containing HDL particles may lose their 178 

endothelium-protective and anti-atherogenic potential over the menopausal transition. Nyberg et al., found 179 

that the early postmenopausal phase was associated with a marked reduction in vascular function in the 180 

Copenhagen Women Study (37), and observed that several biomarkers of vascular function were adversely 181 
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altered in a similar cohort (38). Further studies are however still needed to conclude whether apoM-182 

containing HDL plays a role in this reduction. Second, it is possible that the higher apoM concentration can 183 

be explained by the changes in hormone levels that occur over the menopausal transition and possibly even a 184 

direct effect of sex hormones on apoM. Axler et al. found that apoM concentrations correlate positively with 185 

age for women only, with women aged 18-49 years having lower apoM concentrations than women aged 50 186 

years or older (1). This observation does not prove a link between apoM and menopause, but the study 187 

supports the notion that apoM concentrations could be dependent on hormone levels, as the positive 188 

correlation with age is seen for women only. Few studies have addressed the effect of sex hormones on 189 

apoM, but it has been shown that estrogen upregulates apoM expression in vitro and in vivo in rats (44). This 190 

suggests that plasma apoM concentrations should be higher in pre- than postmenopausal women, which was 191 

not the case in the present study. Further, we did not find any correlation between levels of estrogen and 192 

apoM (data not shown). Thus, present findings suggest that the difference in apoM levels between groups 193 

may not be related to estrogen alone, but rather to a combination of age, hormonal status, and other unknown 194 

variables. 195 

Plasma S1P was similar in pre- and postmenopausal women, causing the S1P/apoM ratio to be 196 

significantly lower in postmenopausal women. A recent study found that apoM without S1P did not have 197 

anti-inflammatory properties (41); this further supports the notion that the higher apoM concentrations in 198 

postmenopausal women do not necessarily provide an atheroprotective effect as the S1P concentration did 199 

not differ between the two groups. This finding is in contrast to an earlier study which found that plasma S1P 200 

in premenopausal women. The study found S1P to be negatively correlated with age in both men and women 201 

(22). A disadvantage of the study is a large age difference between the subjects (~30 years), and lack of 202 

follow up on the same subject before, during, and after postmenopausal transition. While the Copenhagen 203 

Women Study neither is a prospective study, it has the strength of a minimal age difference (~4 years) 204 

between the two groups. In the future, it would be relevant to examine the effect of menopause on the 205 

apoM/S1P axis by following the same cohort throughout the menopausal transition since the pre-menopausal 206 

women in the present study could be at varies pre-transitional ages.  207 
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The training intervention increased plasma apoM and plasma S1P. Importantly, the S1P/apoM ratio 208 

did not change in contrast to the menopause-related changes, implying that the training-induced increase is 209 

different from and possibly renders a more atheroprotective profile than the menopause-induced changes. 210 

There are at least two possible explanations for the post-training increase in apoM. First, it is possible that 211 

the exercise-induced changes can be explained by changes in plasma lipids. The general consensus is that 212 

exercise training increases HDL-C in healthy adults, providing an atheroprotective effect (13, 29). However, 213 

previous findings in postmenopausal women have shown that exercise training decreases TC and LDL-C 214 

without changing HDL-C (4), which is in accordance with the present findings. Thus, it does not seem likely 215 

that the post-training increases in apoM and S1P can be explained solely by changes in plasma lipids. 216 

Another possible explanation could be that training also lowered plasma insulin during the oral glucose 217 

tolerance test (31) which could lead to an increase in plasma apoM as insulin inhibits the expression of apoM 218 

through a Foxa2-mediated mechanism (46). The increase in S1P with training agrees with a previous study 219 

showing that plasma S1P was 37 % higher in endurance trained (average experience of 4.3±1.7 years of long 220 

distance running) than in untrained healthy, young males (2). However, another study found no difference in 221 

plasma S1P between endurance-trained athletes and obese, sedentary controls (3). The reason for this 222 

discrepancy between studies is unclear, but the variation may be due to differences in study setups, including 223 

gender, age, and duration of the training period.  224 

Potential Clinical Value – Currently, there is a lack of mechanistic understanding of changes that occur 225 

during the menopausal transition. Also, few intervention studies have been conducted addressing the effects 226 

on plasma apoM levels in humans. One study has shown that 8 weeks of statin treatment decreases apoM by 227 

7% (26). In the present study the range of changes are comparable observed between pre-and 228 

postmenopausal women. However, the higher apoM in postmenopausal women without a concomitant 229 

increase in S1P may contribute to understanding how previously atheroprotective apoM-containing HDL 230 

particles can lose their anti-atherogenic and endothelium-protective potential in the menopausal transition. 231 

The finding that postmenopausal women have a lower S1P/apoM ratio gives rise to the question of whether 232 

S1P analogues – which are currently released on the market for treatment of multiple sclerosis (43) – can be 233 
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beneficial in treating risk factors for endothelial dysfunction and atherosclerosis related to the 234 

postmenopausal phase. Finally, exercise increased both plasma apoM and S1P in pre-and postmenopausal 235 

women. It is likely that an extended period of training could increase the plasma apoM/S1P levels further. To 236 

maintain a high level of apoM – and S1P containing HDL particles could be of clinical value due to its anti-237 

atherogenic and endothelial protective value.  238 
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Figure legends 378 

Figure 1. Effect of menopausal status and exercise training on plasma apoM and S1P concentrations. 379 

(A) Plasma apoM concentrations in pre- (n=36) and postmenopausal (n=37) women. Changes between 380 

groups were analyzed using Two-way repeated measures ANOVA: menopause*exercise, P>0.05; effect of 381 

menopause, P<0.0001; effect of training, P<0.05. (B) Plasma S1P concentration in pre- (n=30) and 382 

postmenopausal (n=30) women. Changes between groups were analyzed using Two-way repeated measures 383 

ANOVA: menopause*exercise, P>0.05; effect of menopause, P>0.05; effect of training, P<0.04. Only 384 

women with measurements before and after training have been included. *P<0.05: significantly different 385 

from premenopausal. #P<0.05: significantly different from before training. ApoM, apolipoprotein M; S1P, 386 

sphingosine-1-phosphate.  387 

Figure 2. Effect of menopausal status and exercise training on plasma S1P/apoM and apoM/HDL-C 388 

ratios. (A) Plasma S1P/apoM ratio in pre- (n=30) and postmenopausal (n=30) women. Changes between 389 

groups were analyzed using Two-way repeated measures ANOVA: menopause*exercise, P>0.05; effect of 390 

menopause, P<0.001, effect of training P>0.05. (B) Plasma apoM/HDL-C ratio in pre- (n=34) and 391 

postmenopausal women (n=36). Changes between groups were analyzed using Two-way repeated measures 392 

ANOVA: menopause*exercise, P>0.05; effect of menopause, P>0.05, effect of training P=0.05. Only 393 

women with measures before and after training have been included. *P<0.05: significantly different from 394 

premenopausal. ApoM, apolipoprotein; S1P, sphingosine-1-phosphate; HDL-C, high-density lipoprotein 395 

cholesterol. 396 

Figure 3. Linear correlation between plasma apoM and lipid concentrations. Correlations between 397 

plasma apoM and TC (A, B), HDL-C (C, D), LDL-C (E, F), and triglyceride (G, H) concentrations in all 398 

women before training (n=73) and after training (n=72). Data were evaluated by Pearson’s correlation. 399 

ApoM, apolipoprotein; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-400 

density lipoprotein cholesterol. 401 
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Figure 4. Linear correlations between plasma apoM and S1P concentrations. (A) Pre- and 402 

postmenopausal women before training (n=68). (B) Pre- and postmenopausal women after training (n=64). 403 

Data were evaluated by Pearson´s correlation. ApoM, apolipoprotein M; S1P, sphingosine-1-phosphate.  404 
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Tables 405 

Table 1: Lipid levels (modified from Mandrup et al. (40)) 406 

 
Premenopausal Postmenopausal 

 
Before training 

(n=36) 

After training 

(n=36) 

Before training 

(n=37) 

After training 

(n=36) 

 

TC (mmol/l) 

 

4.89+0.7 

 

4.75+0.7# 

 

5.64+0.7* 

 

5.48+0.6*# 

HDL-C (mmol/l) 1.65+0.4 1.70+0.4 2.00+0.4* 2.03+0.4* 

LDL-C (mmol/l) 2.88+0.7 2.72+0.6# 3.26+0.6* 3.17+0.6*# 

TRIG (mmol/l) 0.83 (0.6-1.1) 0.86 (0.7-1.1) 0.85 (0.7-1.1) 0.78 (0.7-1.1) 

Parametric data are given as mean±SD, and non-parametric data are given as median (25-75 percentiles). 407 

Data are for all available measurements. Changes between groups were analyzed using Two-way repeated 408 

measures ANOVA. Only women with measurements before and after training were included in the two-way 409 

repeated measures ANOVA. No significant interactions for menopause*exercise were found (P>0.05) for 410 

any parameter. *P<0.05: significantly different from premenopausal. #P<0.05: significantly different from 411 

before training. TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 412 

lipoprotein cholesterol; TRIG, triglycerides. 413 

 414 

 415 

 416 

 417 

 418 
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