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1Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen,

Denmark, 2Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of
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Chronic hepatitis C virus (HCV) infection is the cause of about 400,000 annual liver

disease-related deaths. The global spread of this important human pathogen can

potentially be prevented through the development of a vaccine, but this challenge

has proven difficult, and much remains unknown about the multitude of mechanisms

by which this heterogeneous RNA virus evades inactivation by neutralizing antibodies

(NAbs). The N-terminal motif of envelope protein 2 (E2), termed hypervariable region 1

(HVR1), changes rapidly in immunoglobulin-competent patients due to antibody-driven

antigenic drift. HVR1 contains NAb epitopes and is directly involved in protecting diverse

antibody-specific epitopes on E1, E2, and E1/E2 through incompletely understood

mechanisms. The ability of HVR1 to protect HCV from NAbs appears linked with

modulation of HCV entry co-receptor interactions. Thus, removal of HVR1 increases

interaction with CD81, while altering interaction with scavenger receptor class B,

type I (SR-BI) in a complex fashion, and decreasing interaction with low-density

lipoprotein receptor. Despite intensive efforts this modulation of receptor interactions

by HVR1 remains incompletely understood. SR-BI has received the most attention

and it appears that HVR1 is involved in a multimodal HCV/SR-BI interaction involving

high-density-lipoprotein associated ApoCI, which may prime the virus for later entry

events by exposing conserved NAb epitopes, like those in the CD81 binding site. To fully

elucidate the multifunctional role of HVR1 in HCV entry and NAb evasion, improved E1/E2

models and comparative studies with other NAb evasion strategies are needed. Derived

knowledge may be instrumental in the development of a prophylactic HCV vaccine.
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INTRODUCTION

It is estimated that at least 2 million people become infected with hepatitis C virus (HCV) every
year (1). The majority of these individuals will develop chronic infections adding to the more
than 71 million chronically infected people worldwide, who are consequently at increased risk
of developing liver diseases, such as cirrhosis and hepatocellular carcinoma (1, 2). HCV-related
mortality is estimated at 400,000 people every year, and although direct-acting antiviral therapies
with cure-rates >95% are now available, treatment is often not accessible for multiple reasons,
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including frequent occult infection and high cost (3, 4). Thus,
the development of a prophylactic vaccine is required to control
HCV worldwide, but this challenge has proven difficult owing in
part to the complex measures HCV employs to avoid the host
immune responses (5).

HCV is an enveloped, positive-stranded RNA virus of the
Hepacivirus genus in the Flaviviridae family (6, 7). The genome
is ∼9.6 Kilobases and encodes 10 functional viral proteins
from a single polyprotein. Virus structural proteins form part
of the virus particle with the Core protein assembling into
the viral capsid that protects the HCV genome, and envelope
proteins 1 and 2 (E1 and E2) imbedded in the viral envelope
as the heterodimeric glycoprotein complex, E1/E2 (8, 9). In
vitro systems for studying the role of E1/E2 in HCV entry
and neutralization have been developed. Cell culture infectious
HCV (HCVcc) can be produced in cell lines of hepatic origin
and yields particles that share many similarities with ex vivo
derived HCV (10–12). HCVcc recombinants encoding at least
the structural proteins Core, E1 and E2 of a given HCV isolate,
but depending on the unique replication capabilities of the JFH1
isolate (13), typically do not require cell culture adaptive envelope
mutations (14–19), thus making these HCVcc recombinants
particularly useful in studies of entry and neutralization. Such
recombinants, including marker viruses, have been developed for
major genotypes 1–7 (2, 20, 21).

Another model, used primarily for the study of HCV entry
and neutralization, is HCV pseudo-particles (HCVpp), in which
lentiviral or retroviral particles harbor authentic HCV envelope
proteins (22–24). However, these particles are produced in non-
hepatic 293T cells and therefore lack lipoprotein-association,
potentially introducing additional bias in the in vivo relevance
of obtained results. For example, many studies have shown
that HCV particles associate with apolipoproteins, mainly
ApoE, ApoCI, ApoAI, and debatably, ApoB (25–30). This
is likely explained by the fact that HCV hijacks the very-
low-density lipoprotein (VLDL) production machinery of the
infected hepatocyte for virion production (30). In fact, HCV
particles from patients and HCVcc systems display low density in
gradients due to similarities with VLDL, whereas this is not the
case with HCVpp (31–34). A study found that ApoE decreased
accessibility of E2 neutralization epitopes (35). In addition, both
ApoE and ApoCI appear to facilitate rapid virus entry, which
promotes neutralizing antibody (NAb) resistance by decreasing
time spent in the extracellular environment (36–38).

Initial attachment of HCV to the target hepatocyte has
been shown to depend on virion-associated ApoE interacting
with cell-surface expressed syndecan-1, syndecan-2 and T cell
immunoglobulin and mucin domain-containing protein 1 (39–
41). Following attachment, the HCV particle interacts with
important entry co-receptors, such as scavenger receptor class
B, type I (SR-BI), and CD81 (13, 14, 18, 23, 42–45). In
addition, HCV relies on additional co-receptors, such as low-
density lipoprotein receptor (LDLr) (46–48) and the late-stage
entry receptors claudin-I and occludin (49, 50). Most recently,
cellular factors that modulate HCV co-receptor localization and
possibly prime the cell for infection have also been described
(51–55). While it has been reported that LDLr may facilitate

non-infectious uptake of HCV (48), it seems clear that the
receptor must play an important role in infectious uptake, as
recently confirmed for a number of HCV co-receptors, including
LDLr (56). In addition, one study found redundancy in HCV
entry dependency for SR-BI and LDLr, suggesting some overlap
in function (57). As will be reviewed in the following sections
evidence is mounting that the early entry co-receptors LDLr,
and particularly SR-BI, are involved in HCV antibody evasion,
possibly in an interplay with CD81 (45, 58–61).

Patient studies have found that an early induction of HCV-
specific NAbs is correlated with resolving HCV infection (62–65).
However, the virus employs mechanisms to avoid NAbs. The
high mutation rate of HCV, due to the error-prone polymerase
NS5B, permits continuous escape from NAb responses (66,
67). On a global scale, this heterogeneity has resulted in
the emergence of six epidemiologically important genotypes
and numerous clinically relevant subtypes (2, 6, 7). This has
important implications for treatment and vaccine development,
but this topic is outside the scope of this review. HCV also
avoids NAbs by the capacity for cell-to-cell spread (68) and
association with apolipoproteins as mentioned above (35–38,
69). Finally, HCV NAb sensitivity is intrinsically modulated by
incompletely understood properties of E1/E2, such as envelope
polymorphisms (70–73), N-linked glycans (the glycan shield)
(74–77) and hypervariable region 1 (HVR1) at the N-terminus
of E2 (58, 78, 79) (Figure 1A).

The study of the role of HVR1 in the HCV life cycle is a
great example of how methodological breakthroughs advance
and refine scientific questions. The development of HCVpp and
HCVcc models (13, 14, 22–24), as well as the advent of novel
tools, such as comprehensive panels of monoclonal antibodies
with non-overlapping E1/E2 epitopes (80–91), have facilitated
an increasing number of studies that improve understanding of
the role of HVR1 in important aspects of the HCV life cycle,
particularly immune evasion and viral entry.

CHARACTERIZATION OF HVR1 IN PATIENT
STUDIES

Shortly after the discovery of HCV, sequencing efforts identified
the N-terminus of E2 as a hotspot of sequence variation,
and it was termed HVR1 (92–94). The length of HVR1 was
initially debated, but has since been agreed to be 27 amino
acids long (amino acids 384–410 in the H77 reference strain),
except for some subtypes of genotype 6 in which it appears
to typically be 26 amino acids. In patients, HVR1 begins
accumulating substitutions in the acute phase of infection
(95, 96) and continues evolving during chronic infection (94,
97–99). The reason for this has been the subject of debate.
One study, finding no evidence of positive selection and
no correlation between evolutionary rate and HVR1-specific
antibody responses in patients, suggested that random drift
might be the cause for HVR1 variation (100). However, many
studies did observe strong positive selection of HCV, particularly
in HVR1 (101–103) and a large body of data now supports that
HVR1 variation is due to antibody-driven immune selection.

Frontiers in Immunology | www.frontiersin.org 2 September 2018 | Volume 9 | Article 2146

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Prentoe and Bukh The Role of HVR1 in HCV

FIGURE 1 | HVR1 of HCV is located at the N-terminus of E2 and protects the virus from diverse neutralizing antibodies and modulates entry interactions with LDLr,

SR-BI and CD81. (A) Depicts HCV genome organization with a zoom of E2 showing that HVR1 corresponds to the 27 N-terminal amino acids of E2 (H77 reference

sequence; amino acid position 384–410). (B) Replication of the HCV genome in a permissive cell leads to assembly and release of HCV virions with the E1/E2

complex embedded in the viral envelope. For HVR1-deleted HCV, sensitivity to NAbs is dramatically altered as compiled from multiple studies referenced in the text of

this review. Monoclonal NAbs shown are part of comprehensive panels mentioned in the introduction and their specificities are: E1 (IGH520 and IGH526), E2; HVR1

(J6.36), E2; antigenic domain B (CBH5, HC-1 and HC-11), E2; antigenic domain C (CBH7 and CBH23), E2; antigenic domain D (HC84.26), E2; antigenic domain

E/epitope I (AP33, 3/11, HC33.4), E2; antigenic region 1 (AR1B), E2; antigenic region 2 (AR2A), E2; antigenic region 3 (AR3A), E1/E2; antigenic region 4 (AR4A) and

E1/E2; antigenic region 5 (AR5A). (C) HVR1-deleted HCV interacts differently with entry co-receptors LDLr, SR-BI and CD81, both in terms of dependency for entry

(size of arrows) and how readily binding to the receptors occurs (color of arrow). Data is compiled from multiple studies cited in the text on the effects of deleting HVR1

from HCVcc, HCVpp or expressed forms of E2 or E1/E2.

Firstly, antibodies against HVR1 are commonly detectable
in chronically infected patients (37, 104–110) and the early
induction of such antibodies is associated with acute self-
limited infection (111). Interestingly, an early reduction in
HVR1 sequence diversity is associated with acute self-limited

infection (112), suggesting that a rapid anti-HVR1 response
curtails virus proliferation before the virus is able to adequately
establish a virus population in the host from which to adapt
(e.g., diversify the HVR1 sequence). Secondly, although HVR1
variants are, at least to some extent, able to co-exist with
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the antibodies that recognize them (98, 106, 110, 113), emerging
HVR1 variants have been found to have decreased reactivity
with autologous patient serum antibodies, indicating that these
variants represent escape (98, 106, 110, 113, 114). In addition,
with the advent of the HCVpp entry model, HVR1 variants
emerging in patients have been shown to be directly responsible
for decreased in vitro neutralization with homologous serum
(64). Finally, HVR1 variation is decreased or non-existent in
HCV-infected patients with various types of immunoglobulin
deficiencies (115–119).

The neutralization epitopes in HVR1, responsible for
this antibody-driven hypervariability, seem to commonly
reside in the C-terminus of the region (98, 106, 120, 121).
Interestingly, despite the extremely high sequence diversity
of HVR1, significant cross-reactivity of patient antibodies
between HVR1 variants has been reported (104, 106–108).
This may be because HVR1 contains highly conserved
positions, such as conserved hydrophobic and positively
charged residues, indicating functional constraints on HVR1
evolution (122).

CHARACTERIZATION OF HVR1 IN
STUDIES OF EXPERIMENTALLY INFECTED
CHIMPANZEES

Chimpanzees represent the first infection model of HCV and
it has been used extensively to study HCV pathogenesis
(123–125), including the role of HVR1. Incubation of
hyper-immune serum raised against HVR1 peptide with a
well-characterized homologous HCV chimpanzee inoculum
prevented acute HCV infection in chimpanzees in one out
of two cases (126), thus identifying HVR1 as the first HCV
neutralization epitope. Interestingly, a minor variant of the
inoculum had a different, serum-resistant, HVR1 sequence
and this variant became dominant in the non-protected
animal. It is therefore not surprising that anti-HVR1 antibodies
in chimpanzees have been associated with HVR1 sequence
variation (127), although HVR1 apparently does accumulate
sequence changes more slowly in HCV-infected chimpanzees
than it does in humans (128). This is likely due to subtle
differences in HCV infection of chimpanzees compared
with the human infection (129, 130), most notably the
lower, and typically late, anti-HCV antibody response in
chimpanzees (131).

Interestingly, it was possible to infect chimpanzees by intra-
hepatic injection of HCV RNA with the HVR1 coding sequence
deleted (132), resulting in acute infections, which in one case
became an attenuated chronic infection. It was since shown
that the animals had not raised NAbs and, in fact, that the
chimpanzee that cleared acute infection with HVR1-deleted
HCV could be chronically infected with the homologous virus
following re-challenge (133). These studies confirm that NAbs are
not critical for preventing chronic infection in chimpanzees and
that HVR1 is not essential for HCV infectivity and persistence
in vivo.

HVR1 PROTECTS HCV FROM
NEUTRALIZING ANTIBODIES

It was initially discovered that E2 expressed on the surface of
cells did not appear to lose proper folding upon deletion of
HVR1 (134). Subsequently it was shown that chimpanzees could
be acutely and chronically infected with HCV by intrahepatic
injection with HVR1-deleted HCV RNA transcripts, although
infection was attenuated (132). With the advent of the HCVpp
model of HCV entry it became possible to perform detailed
studies of viral entry and neutralization (22, 23), but the deletion
of HVR1 in the HCVpp model decreased infectivity 10 to 100-
fold, making it challenging to study (44, 60). However, HVR1-
deleted HCVpp was found to have increased susceptibility to
NAbs targeting cross-subtype conserved epitopes (78), suggesting
a role of HVR1 in NAb protection.

These studies were complemented with the advent of the
HCVcc model (13, 14). The removal of HVR1 from HCVcc
harboring E1/E2 from multiple isolates, including genotype
1–3, 5, and 6, had very different effects on culture viability
(79). Some recombinant viruses were only slightly attenuated,
whereas the fitness of others depended on one or two adaptive
envelope substitutions, and the genotype 4a recombinant was
non-viable (58, 79). Interestingly, while the H77(1a) envelope
substitutions identified in the HCVcc model rescued infectivity
of the HVR1-deleted H77 HCVpp, the opposite was true for
HVR1-deleted S52(3a) HCVpp, in which the HCVcc adaptive
envelope substitution decreased HCVpp infectivity even further
(60). However, in all cases the resultant HVR1-deleted HCVcc
displayed dramatically increased sensitivity to HCV NAbs and
patient sera (58, 79). This phenomenon was initially believed to
mainly involve epitopes that overlapped with the CD81 binding
site of E2 (58), but it was recently shown that HVR1 protects a
much wider variety of epitopes, such as antigenic regions 1–5
(AR1-5; on E2 and E1/E2), antigenic domains B-E (on E2) and
even E1 epitopes (135) (Figure 1B). An exception to the broad
increase in sensitivity is that viruses with and without HVR1were
similarly sensitive to the antigenic domain E antibody, HC33.4,
and it has been suggested that this might indicate that HVR1
does not protect certain epitopes within antigenic domain E
(136). However, it should be noted that HC33.4 has a secondary
contact residue at position 408 within HVR1 (137), which could
explain why HVR1-deleted viruses were not more sensitive to
this antibody. The breadth in epitopes protected by HVR1 makes
it less likely that direct steric epitope shielding alone accounts
for the observed differences in NAb sensitivity of HCV with and
without HVR1, but more studies are needed to address this in
detail. Importantly, the ability of HVR1 to protect HCV from
NAbswas recently confirmed in vivo by infusingHCV-permissive
human liver chimeric mice with antibodies from a chronically
infected patient prior to challenge using mouse pools of HCV
with and without HVR1 (11).

The broad NAb-sensitizing effect of removing HVR1 has
enabled the use of HVR1-deleted viruses to study virus escape
in culture using lower doses of NAb than would otherwise have
been needed (138). Although resistance substitutions identified
in this manner for NAb AR5A were relevant for HCVcc retaining
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HVR1 (138), clear differences were observed in similar studies
for NAb AR4A, which also appeared to have a higher barrier
to resistance (139). It was recently found that HVR1-mediated
NAb protection could be increased even further through the
binding of HVR1-specific antibodies, possibly by increased steric
occlusion mediated by HVR1-bound antibody (137). The HVR1-
mediated NAb protection may function in concert with other
highly variable region in E2 (140, 141), but how this interplay
functions is largely unknown.

A related mechanism by which HVR1 has been proposed
to protect HCV from NAbs is in serving as a decoy epitope,
diverting the humoral immune system away from more
conserved epitopes. This is supported by the correlation between
persistence and higher non-synonymous to synonymous
substitution rates in HVR1 (142), thus indicating that HVR1-
directed immune responses can help the virus persist. The
observed positive selection of HVR1 (101–103), combined with
studies of HVR1 variants in immune-complexed HCV further
supports this hypothesis (143, 144). In addition, the appearance
of HVR1-specific antibodies in patient sera was associated
with emergence of immune-complexes of particles carrying
that specific HVR1 sequence, leading to a large reduction of
that viral population within the patient (144). The idea that
HVR1 contains immuno-dominant antibody epitopes with a
high propensity for accumulating fitness-permissive escape
substitutions fits well with the idea that HVR1 also protects
other NAb epitopes on E1/E2. It could be hypothesized that
immuno-dominance would be a possible consequence of the
aforementioned epitope protection.

IN VITRO STUDIES OF THE ROLE OF HVR1
IN HCV ENTRY

SR-BI was identified as a possible HCV co-receptor by its
ability to interact with soluble E2 (43). It was also found that
HVR1-deleted soluble E2 protein lost most of the ability to
interact with this receptor (43), although the interaction could be
restored by the introduction of HVR1-deletion adaptive envelope
substitutions previously identified in vivo (43, 132). These
findings suggested that HVR1 modulates SR-BI interaction, but
may not be directly interacting with SR-BI. The fact that an
antibody against HVR1 blocked soluble E2 binding with SR-BI
(43) is not proof of an HVR1/SR-BI interaction as the antibody
could be sterically interfering with the SR-BI/E2 interaction
without binding directly to the SR-BI binding site, much like
the binding of antibody to an epitope tag on E2 neutralized
taggedHCV (145). It was subsequently shown that HVR1-deleted
soluble E2 more effectively bound CD81 (146). The advent of the
HCVpp model confirmed CD81 (23, 44), and SR-BI (44) as co-
receptors of HCV entry and facilitated in depth studies of their
role in this process.

It was discovered that the human serum component, high
density lipoprotein (HDL), enhanced HCVpp infectivity and this
phenomenon was confirmed in multiple ways to be both HVR1
and SR-BI dependent (78, 147). In addition, HDL appeared
to decrease NAb sensitivity of HCVpp (78, 148), possibly by

increased speed of viral entry, thus minimizing the window
during which neutralization could occur (149). These findings
were corroborated in HCVcc studies (45, 148, 149). In parallel
with these studies it was found that the HDL component,
ApoCI, was sufficient to induce HCV infection enhancement
(37). Interestingly, it appeared that ApoCI was transferred from
HDL to HCV in an HVR1 and SR-BI dependent fashion, linked
with the native lipid transfer function of the receptor (38). HDL
does not interact directly with HCV in the absence of SR-BI
(147, 149), but free ApoCI is able to do so, thus bypassing SR-
BI (38). In fact, low doses of free ApoCI confer enhancement,
while high ApoCI doses destabilize the virus, potentially through
modulating virion fusogenicity (38).

SR-BI/HCV interaction was confirmed with HCV particles
derived from human serum (150). However, this interaction did
not depend on E2, but rather VLDL-like properties of these
particles (150), most likely virion-associated ApoE. The fact
that the interaction with SR-BI was energy-dependent and that
suramin (a compound that reduces ApoE/receptor interaction)
could not decrease the HCV/SR-BI association suggested that SR-
BI might serve a role in endocytosis (150). However, the results
could also be explained by secondary E2/SR-BI interactions,
which might not be inhibited by suramin. HCVcc, which
unlike HCVpp, is associated with apolipoproteins like ApoE,
was used to address this possibility (151). It was found that
the lipid-transfer function of SR-BI was critical for infection,
but particles with densities above 1.1 g/ml depended on SR-
BI specifically for cell attachment (151). While both these
phenomena were independent of E2/SR-BI interaction, a third
interaction involving a complex HVR1/E2/SR-BI/HDL interplay
to enhance infectivity of HCV was also described (151), which is
in line with findings from studies of HCVpp and HCVcc outlined
above.

In addition, ApoE was found to be associated with HCV
both with and without HVR1, but may serve different roles in
the interaction with SR-BI (59, 60). While the nature of these
differences remains unclear it is tempting to speculate that the
high density HVR1-deleted particles interact with SR-BI through
ApoE, as shown to be the case for high-density HCV retaining
HVR1 (151). The fact that temporal blocking of CD81 and SR-BI
yield similar HCV entry inhibition profiles may suggest that these
HCV/receptor interactions are closely linked in time (45, 61),
further stressing the possibility that SR-BI interactions lead to
exposure of the CD81 binding site and downstream entry events.

It was found that the removal of HVR1 greatly increases
accessibility of the CD81 binding site on E2 (58, 59).While HVR1
did not appear to modulate late-stage HCV entry co-receptor
dependency for claudin-I and occludin, it did appear to influence
the ability of HCV to interact with SR-BI (59). However, another
study found that HVR1-deletion adaptive envelope mutations
were responsible for altered SR-BI dependency as opposed to the
deletion of HVR1 itself (60). Non-HVR1 E2 determinants of SR-
BI binding would also be better in line with the fact that HVR1-
deleted soluble E2 binding to SR-BI could be rescued by envelope
mutations (43).

The part of HVR1 involved in modulating these processes,
including the ability of HVR1 to protect HCV from NAbs,
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was since narrowed down to polyprotein positions 400–408
in the HCVpp model (121) and found to include conserved
basic residues in HVR1, such as R408. However, in the HCVcc
model it was also found that changing the N-terminal position
385 of HVR1 broadly influenced NAb sensitivity (152). It
seems clear that intrinsic properties of the HVR1 sequence
helps determine the level of HVR1-mediated NAb protection
(120), but to what degree this depends on E1/E2 properties
outside of HVR1 remains to be determined. Interestingly,
many of the effects of removing or mutating HVR1 can be
reproduced by the introduction of point mutations outside
of HVR1 (153–155), suggesting the existence of non-HVR1
determinants.

HVR1 has also been proposed to interact with
glycosaminoglycans in the HCVpp model, thus suggesting
a role in attachment (156). However, the HCVpp model is
typically deficient in ApoE, which is now believed to be the
primary mediator of HCV attachment (39, 40), suggesting
the results may not be as relevant for native HCV. Finally,
HVR1-deleted HCV was shown to have decreased LDLr entry
dependency (59, 60). In addition, HVR1-deleted HCVcc particles
lost most of the ability to interact with soluble LDLr, suggesting a
role of HVR1 in the interaction (60). Thus, HVR1 modulates the
interaction of HCV with no less than three entry co-receptors
(Figure 1C). Not surprisingly, several open questions remain,
both with regards to receptor usage and NAb protection.

FUTURE PERSPECTIVES FOR DEFINING
THE ROLE OF HVR1

HVR1 apparently modulates interactions with no less than three
HCV entry co-receptors, which may explain the functional
constraints on HVR1 evolution. In addition, the inherent high
variability of HVR1 permits it to serve as a rapidly changing
decoy epitope, while directly protecting the virus from NAbs
targeting a wide array of both conserved and less conserved
E1/E2 epitopes. Not surprisingly, the deletion of HVR1 from
soluble E2 protein fails to fully recapitulate these effects, which
severely impairs reliability of molecular interaction studies and
modeling. The structural flexibility of HVR1 has so far hindered
crystallography studies of E2 protein retaining HVR1 (157, 158)
and consequently we know very little about how this important

region interacts with the remaining part of E2. Being able to
produce and study a recombinantly expressed, native (i.e., as it
sits in the virusmembrane) E1/E2 heterodimer is urgently needed
to further elucidate the contentious multi-functionality of HVR1
at a molecular level. The lack of native recombinant E1/E2 is also
likely why the obvious interest in using HVR1-deleted vaccine
candidates, in which conserved epitopes should be more exposed
and consequently more immunogenic, has yielded conflicting
results (159, 160). It is likely also evidence for the fact that
HVR1 multi-functionality is dependent on the E1/E2 context
on the virion. However, little is known about how much of the
effect of HVR1 on NAb sensitivity and receptor dependency
is intrinsic to the HVR1 sequence and how much depends on
the E1/E2 context. In addition, the interplay between E1/E2
NAb protection caused by polymorphisms, N-linked glycans and
HVR1 is virtually unknown. Such studies should offer a novel way
to insights on howHVR1 serves its many functions, including the
capacity to protect such a wide array of NAb epitopes.

The research on the role of HVR1 in the HCV viral lifecycle
and host responses remains highly relevant, but despite great
advances in our understanding of this unique genome region
for HCV, particularly during the past 15 years, many questions
remain. Providing answers to the role of HVR1may prove critical
in designing a successful HCV vaccine and stemming this global
epidemic.
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