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KEY MESSAGE 12 

· An in-depth review was conducted to address the weak current understanding of the potential influence 13 

of climate change on whiteflies.  14 

· Our study highlights the dynamism of the interactions between vector, natural enemies and transmitted 15 

viruses, and confirms that the impacts of climate change will vary widely depending on local 16 

circumstances.  17 

· Future efforts to manage whiteflies must be cognisant of the complex effects of climate on the agro-18 

ecological systems inhabited by these globally important insects.  19 

 20 

ABSTRACT 21 

Whiteflies (Hemiptera: Aleyrodidae) are important insect pests causing serious damage to plants and 22 

transmitting hundreds of plant viruses. Climate change is expected to influence life history and trophic 23 

interactions among plants, whiteflies, and their natural enemies. Here, we review the potential impacts of 24 

climate change on whiteflies and the likely consequences for agricultural systems. This review concludes that 25 

while climatic stress tends to negatively affect life history traits, the effects differ with the tolerance of the 26 

whiteflies and the amount of stress experienced. Whiteflies also differ in their adaptability. Better adapted 27 

species will likely experience increased distribution and abundance provided their tolerance limits are not 28 

exceeded, while species with lower tolerance and adaptation limits will suffer reduced fitness, which will have 29 

overall effects on their distribution and abundance in space and time. The majority of methods used to control 30 

whiteflies will still be useful especially if complementary methods are combined for maximum efficacy. 31 

Parasitism and predation rates of whitefly natural enemies could increase with temperature within the optimum 32 

ranges of the natural enemies, although life history traits and population growth potential are generally 33 

maximised below 30 °C. Changes in climatic suitability modifying the distribution and abundance of whiteflies, 34 

and environmental suitability for plant viruses, will likely affect epidemics of viral diseases. Greater efforts are 35 

required to improve understanding of the complex effects of climate change on multi-species and multi-trophic 36 

interactions in the agro-ecological systems inhabited by whiteflies, and to use this new knowledge to develop 37 

robust and climate-smart management strategies. 38 

Keywords: whiteflies, population dynamics, begomoviruses, pest management, species interaction  39 

 40 

 41 

INTRODUCTION 42 

Whiteflies are important global agricultural pests (Oliveira et al. 2001). They have a wide host range and are 43 

very adaptive to different environmental conditions (Oliveira et al. 2001; CABI 2017). The Bemisia tabaci 44 

(Gennadius) species group is the most economically important whitefly (Lowe et al. 2000; Navas-Castillo et al. 45 
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2011). It causes damage to crops directly through phloem feeding as well as the excretion of honeydew leading 46 

to the growth of sooty moulds that reduce photosynthesis. Whiteflies also cause indirect damage through the 47 

transmission of economically important viral plant pathogens (Navas-Castillo et al. 2011; Tzanetakis et al. 2013; 48 

Polston et al. 2014).  Crop damage due to plant viruses transmitted by whiteflies globally results in losses worth 49 

more than $US 1 billion (Gonzalez et al. 1992; Legg et al. 2006). 50 

The Intergovernmental Panel on Climate Change (IPCC) fifth assessment report predicted a 1.5 °C increase in 51 

global surface temperature, and an increasing contrast in precipitation between wet and dry regions over the 21st 52 

century (IPCC 2013). Independent observations by the National Oceanic and Atmospheric Administration 53 

(NOAA) and the National Aeronautics and Space Administration (NASA) showed that globally, temperatures in 54 

2016 were 0.99 °C warmer compared to records from the 20th century, and the third year in a row to set a new 55 

record high temperature (NASA 2017). Global CO2 concentration is the primary driver of the recent 56 

anthropogenic climate change. While the global concentration of CO2 in the atmosphere reached 400 parts per 57 

million (ppm) for the first time in recorded history in 2013, the trend has continued, with the 2016 estimate at 58 

404.4 ppm (NASA 2013, 2016).  59 

Climatic change is affecting agricultural and natural ecosystems, and directly affects the development, 60 

reproduction, survival, population dynamics, potential distribution and abundance of whitefly species (Muñiz 61 

and Nombela 2001; Bonato et al. 2007; Bellotti et al. 2012; Gilioli et al. 2014). Some studies have reported 62 

direct effects of temperature (Xie et al. 2011; Guo et al. 2013; Han et al. 2013), CO2 (Koivisto et al. 2011; 63 

Curnutte et al. 2014), and O3 (Cui et al. 2012, 2014) on life history traits. Others have discussed effects of 64 

rainfall (Castle et al. 1996; Naranjo and Ellsworth 2005; Naranjo et al. 2009; Sharma and Yogesh 2014) on 65 

whiteflies.  66 

At the present time, information on the potential influence of climate change on whiteflies is limited and effects 67 

of climate change on several biological parameters of whiteflies are poorly understood. New research initiatives 68 

aim to deepen insights into the influence of climate change on whiteflies, and on the tri-trophic interactions 69 

within the agricultural systems in which they cause so much damage. This review explores the influence of 70 

climate change on the life history, distribution, population dynamics and efficacy of management strategies of 71 

whiteflies. Through this analysis, we have been able to identify important trends for some whitefly species and 72 

biological parameters, and based on these, we highlight needs for further research.  73 

 74 

HOW WILL WHITEFLIES RESPOND TO CLIMATE CHANGE? 75 

 76 

Life history traits 77 

There are differences in response of whiteflies to climate change resulting from differences in whitefly species, 78 

host plants, climatic zones and climate factors. The response of different whiteflies and host plants to changes in 79 

climatic factors are summarised in Table 1. Temperature and host-plant effects have been identified as important 80 

factors affecting development, mortality and fecundity rates in whitefly populations. Temperature increase 81 

within the thermal optimum leads to a decrease in developmental time (Madueke and Coaker 1984; Sengonca 82 

and Liu 1999; Muñiz and Nombela 2001; Nava-Camberos et al. 2001; Bayhan et al. 2006; Bonato et al. 2007; 83 

Xie et al. 2011; Han et al. 2013). These trends are commonly observed in insects due to the influence of 84 

temperature on their physiology. Other effects of temperature increase (especially above the optimum threshold) 85 

on life history traits include decreasing fecundity (Bonato et al. 2007; Xie et al. 2011; Guo et al. 2013) and 86 

decreasing longevity (Sengonca and Liu 1999; Bonato et al. 2007; Guo et al. 2013). Elevated CO2 and O3 87 

increased developmental time of whiteflies (Cui et al. 2012; Wang et al. 2014), but elevated CO2 did not affect 88 

adult longevity (Koivisto et al. 2011; Curnutte et al. 2014) and fecundity of whiteflies (Curnutte et al. 2014; 89 

Wang et al. 2014). There is a dearth of information regarding the effects of elevated O3 on whitefly longevity 90 

and fecundity (Table 1).  91 

In nature, insects often experience stressful temperatures (high and low) that may affect not only their life 92 

history, but also their distribution and abundance (Cui et al. 2008; Lü et al. 2014b). Research on the thermal 93 

biology of insects has revealed that the ability of insects to tolerate extreme temperatures is one of the most 94 

crucial biotic factors defining the distribution of most insects, which may have further implications in the face of 95 

global climate change (Bowler and Terblanche 2008; Cui et al. 2008; Ma et al. 2014). There is an increasing 96 

number of empirical studies on thermotolerance and its associated evolutionary implications in whiteflies. Traits 97 

commonly investigated are survival, fecundity and viability of the offspring after heat shock.  98 
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Comparing both B. tabaci MEAM1 and MED, Mahadav et al. (2009); Elbaz et al. (2011) and Xiao et al. (2016) 99 

showed that survival of both species reduced as temperature increased, and that B. tabaci MED performed better 100 

than MEAM1 after brief exposure to higher temperatures (41 � 45 °C). Similarly, Cui et al. (2008) showed that 101 

survival rates drop after brief exposure to higher temperatures (39 � 45 °C), and B. tabaci MEAM1 is more 102 

thermotolerant than Trialeurodes vaporariorum (Westwood). A similar decline in survival after exposure to 103 

high temperatures was also reported for B. tabaci MED (Zhu et al. 2010; Lü et al. 2014a) and B. tabaci MEAM1 104 

(Muñoz-Valencia et al. 2013; Diaz et al. 2015). Fecundity of whiteflies after brief exposure to heat shock 105 

generally reduces with temperature increase (Elbaz et al. 2011; Xiao et al. 2016). However, other studies have 106 

shown no significant effect (Cui et al. 2008; Zhu et al. 2010; Lü et al. 2014a). Furthermore, progeny viability 107 

post-heat shock could either decrease (Cui et al. 2008; Diaz et al. 2015) or show an inconsistent pattern (Muñoz-108 

Valencia et al. 2013; Xiao et al. 2016) with temperature increase. Several studies on thermotolerance and life 109 

history of whiteflies suggest that female B. tabaci are more thermotolerant than males (Cui et al. 2008; Muñoz-110 

Valencia et al. 2013; Ma et al. 2014). 111 

 112 

In some cases, significant differences in thermotolerance have been reported among populations experiencing 113 

different levels of environmental stress, pointing towards adaptive divergence (Diaz et al. 2014; Ma et al. 2014). 114 

For instance, Diaz et al. (2014) associated significant differences in survival and fecundity among populations 115 

with mean temperature and temperature variation in the local environment respectively. Similarly, Ma et al. 116 

(2014) also demonstrated that differences in habitat temperature resulted in significant differences in the 117 

adaptive strategies to heat stress between the Harbin and Turpan B. tabaci MED populations from China. Their 118 

work suggests that adaptive microevolution of B. tabaci is directly related to its high narrow-sense heritability 119 

for both heat and cold resistance. These potential evolutionary changes could be used by B. tabaci to maintain 120 

its populations with climate change (Ma et al. 2014). Elbaz et al. (2011) showed that B. tabaci MEAM1 and 121 

MED deploy different adaptation strategies when experiencing heat stress. B. tabaci MEAM1 achieves 122 

maximum reproduction at the expense of soma protection, while B. tabaci MED invests more of its resources on 123 

processes beneficial to somatic maintenance. In another interesting study, Lü et al. (2014b) highlighted the 124 

significance of stress-inducing conditions on the ecological adaptations and distribution of insects in the context 125 

of climate change. Their work demonstrated that thermotolerance and longevity were more important than 126 

reproductive traits, and that enhanced thermotolerance and prolonged longevity were essential adaptive 127 

strategies that contributed to the survival of MEAM1 under the hot and harsh desert climate reported in the 128 

study. Pusag et al. (2012) showed that acquisition of Tomato yellow leaf curl virus (TYLCV) by B. tabaci MED 129 

resulted in increased development rate and increased susceptibility to thermal stress which may result in a 130 

decline in vector longevity. This highlights how the complex interactions between vector fitness and thermal 131 

stress could influence the ability of the vector to acquire and transmit plant viruses especially with climate 132 

change. 133 

 134 

Apart from temperature and other environmental factors, other important factors could influence the life history 135 

and response of whiteflies to climate change. For instance, adaptation to one environmental stress (insecticides 136 

like thiamethoxam) increased thermotolerance in B. tabaci MEAM1 (Su et al. 2017) which could be beneficial 137 

to B. tabaci MEAM1 in the light of climate change. Absence of secondary endosymbionts in cassava-colonising 138 

whiteflies increased their fitness and vector abilities, and a possible ecosystem service in suppressing 139 

populations of cassava-colonising whiteflies has been proposed (Ghosh et al. 2018). Nutrition and defensive 140 

chemistry of host plants (Jiao et al. 2018) could also influence the response of whiteflies to climate change.  141 

 142 

Population dynamics 143 

The major factors that regulate population dynamics are climate, natural enemies, initial population size, host-144 

plant suitability, farming systems and management practices (Price et al. 2011). Generally, rainfall has been 145 

noted to negatively affect populations of B. tabaci (Naranjo and Ellsworth 2005; Sharma and Yogesh 2014). 146 

Using sprinkler irrigation to simulate rainfall, Castle et al. (1996) found a consistent reduction in densities of 147 

immature whiteflies. Some of the most abundant populations of B. tabaci in history were from irrigated desert 148 

cropping systems where consistently high temperatures shorten generation times and rainfall is infrequent 149 

(Naranjo et al. 2009). Experiments considering prolonged exposure to constant temperatures and brief exposure 150 

to heat shock agree that elevated temperatures (above the optimum threshold of whiteflies) negatively affect life 151 

history of whiteflies.  However with climate change, high thermotolerance and the polyphagous nature of some 152 

whiteflies (B. tabaci MEAM1 and MED) which contribute to their invasion success, could possibly facilitate 153 

their population increase in some locations depending on the amount of heat stress experienced (Bellotti et al. 154 

2012; EFSA 2013; Gilioli et al. 2014; Gamarra et al. 2016b). By combining general circulation models (GCMs) 155 

with a stochastic weather generator and population dynamics models, Zidon et al. (2016) studied population 156 
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dynamics of B. tabaci in three locations in the Mediterranean region under two future scenarios. Their study 157 

suggests that temperature increase will increase population size and average number of generations completed 158 

by B. tabaci yearly, and a lengthening of growing season in the three locations. 159 

 160 

Bemisia afer (Priesner and Hosny) can go through 8 � 10 and 4 � 8 generations per year in tropical and sub-161 

tropical regions respectively, under current temperature conditions, while T. vaporariorum can have up to 11 162 

generations per year (Gamarra et al. 2016a, c). Considering the effects of climatic change up to 2050, B. afer is 163 

predicted to increase by only 1 generation per year in temperate regions of Europe, North America, and parts of 164 

Asia. An increase of 1 � 2 generations per year is predicted for tropical and sub-tropical regions in Asia 165 

(Malaysia, Philippines, Indonesia); Europe (Portugal); South America (southern Brazil, central Colombia, 166 

Peruvian coast); Central, East, and Southern Africa; the Caribbean; central and southern China; and Oceania 167 

(Papua New Guinea) (Gamarra et al. 2016a). Furthermore, an increase of 1 � 2 generations per year is predicted 168 

for T. vaporariorum in most tropical regions. T. vaporariorum will likely have a small increase in temperate 169 

regions (mainly Europe and North America), while increasing temperatures around the Equator will possibly 170 

reduce T. vaporariorum activity (Gamarra et al. 2016c).  171 

 172 

Increases in the number of generations do not necessarily translate into range expansion or elevated whitefly 173 

populations. Generally, increasing temperature within developmental thresholds leads to an increase in insect 174 

population by reducing development time and hastening metabolic and physiologic activities. However, at 175 

extreme temperatures (above optimum), other important life history traits are negatively affected (Qui et al. 176 

2003; Bonato et al. 2007). Hence, with a high number of generations per year due to faster development rate, 177 

there is also an increased possibility of lower population increase over time. Nevertheless, these same studies 178 

that indicated increased number of generations based on generation index (which measures mean number of 179 

generations that can be produced by an insect within a given year) (Gamarra et al. 2016a, b, c) also presented a 180 

more robust estimate of changes in abundance of insects called activity index, which accounts for the whole life 181 

history traits, measures the rate of finite increase and also indicates the severity of the pest problem. Based on 182 

this additional estimate, climate change is predicted to cause a small increase in the population of T. 183 

vaporariorum in the temperate regions of Europe and America, while T. vaporariorum populations along the 184 

Equator will likely reduce with increasing temperature. Similarly, due to climate change, the population growth 185 

potential of B. afer is predicted to decrease in most of the sweet potato growing areas in tropical and sub-186 

tropical regions. However, the abundance of B. afer will potentially increase in southern sub-tropical and 187 

temperate zones (Gamarra et al. 2016a).  For B. tabaci MEAM1, a small increase in potential growth is 188 

predicted for most tropical and sub-tropical regions. B. tabaci MEAM1 populations will possibly reduce along 189 

the Equator as temperature increases (Gamarra et al. 2016c). Furthermore, based on the activity index and 190 

generation index available in the Insect Life Cycle Modelling software used by Gamarra et al. (2016a, b, c), 191 

populations of cassava-colonising B. tabaci sub-Saharan Africa 1 � Sub-group 3 (SSA1-SG3) have been 192 

predicted to increase in East, Central and Southern Africa (Aregbesola 2018). Using the Physiologically Based 193 

Demographic Model, Gilioli et al. (2014) simulated changes in distribution and population of B. tabaci MED in 194 

Europe considering a worst-case scenario (upper threshold for development, survival and fecundity), and 195 

indicated that climate change resulted in increased population density and infestation of B. tabaci MED which is 196 

highly consistent with the high thermotolerance previously reported for B. tabaci MED. 197 

 198 

Movement and distribution 199 

 200 

Spread of whiteflies is facilitated partly by human transportation of infested plant materials, but there is 201 

increasing concern that climate change allows establishment in hitherto unsuitable regions (Bebber et al. 2013). 202 

Climate change will also have additional implications for the invasion success of whitefly species as climatic 203 

suitability and overall community interaction will play a key role in the establishment and geographical 204 

expansion of the introduced whitefly species. Ecological niche models which generate maps of a species� 205 

environmental suitability based on its current distribution (e.g Campos et al. 2011; Jarvis et al. 2012; Bellotti et 206 

al. 2012), and insect physiology based models (e.g Gilioli et al. 2014; Gamarra et al. 2016a, b, c; Aregbesola 207 

2018) which utilise detailed descriptions of the life history of the insect, provide very powerful tools to assess 208 

the potential impact of climate change on the distribution of whiteflies. Both ecological niche modelling and 209 

physiology-based modelling are commonly used, and our review considers research relating to both approaches. 210 

In Europe, expansion of B. tabaci northwards is expected to be limited by low temperatures, reducing the risk of 211 

B. tabaci establishment because of climatic limitations (Gilioli et al. 2014). B. tabaci could possibly expand its 212 

range in some of the Mediterranean countries (Spain, France, Italy, and Greece) and in countries along the 213 

Adriatic coast line (Gilioli et al. 2014) as a consequence of climate change. Increased climatic suitability for B. 214 
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tabaci has been predicted to occur in northern Argentina, south-central Bolivia, north-eastern Brazil, south-west 215 

Peru, northern Australia, southern China, as well as parts of the USA (Bellotti et al. 2012). A similar trend is 216 

predicted for Central African Republic, Ethiopia and Cameroon (Jarvis et al. 2012) and southern India (Campos 217 

et al. 2011).  There will also be more B. tabaci further south, in regions where there is a cool and dry winter 218 

(Bellotti et al. 2012; Aregbesola 2018). According to Gamarra et al. (2016a, b), in 2050, temperature will 219 

potentially reduce B. afer and T. vaporariorum establishment in current high-risk areas of the tropics globally. 220 

By contrast, the risk of establishment of B. afer will increase in the sub-tropical sweet potato growing areas of 221 

South Africa, southern Brazil, Peru, Uruguay, Chile, and Argentina. The temperate regions of Europe, North 222 

America and Asia will become increasingly suitable for T. vaporariorum, although the risk of establishment will 223 

still be very low (Gamarra et al. 2016a, b). 224 

 225 

Since virus transmission by whiteflies is mainly mediated by B. tabaci and T. vaporariorum, any change in the 226 

distribution of these vectors may affect the overall geography of viral diseases. Populations of B. tabaci are 227 

distributed in tropical and sub-tropical zones all around the globe and viruses transmitted by B. tabaci are found 228 

� as a group � roughly within the same areas (Navas-Castillo et al. 2011) although local patterns of seasonal 229 

temperature, precipitation and altitude appear to play an important role (Morales and Jones 2004). Sporadic 230 

records of viruses from greenhouse plants in cooler climates most likely reflect the importation of infected plant 231 

material and not per se the natural spread of viruses (Botermans et al. 2009). However, any future increase in 232 

temperature will allow populations of B. tabaci to expand towards the poles and the epidemic areas of the 233 

viruses vectored will most likely follow (Bebber et al. 2013). A scenario of climate change has been outlined for 234 

B. tabaci and begomoviruses using TYLCV in Europe as an example. Manifest and frequent infection of field-235 

grown tomato by TYLCV in Europe is restricted to the most southern, coastal/lowland regions, particularly the 236 

islands of Cyprus, Crete, Sicily, Sardinia and the southern parts of Spain and Portugal (Khan et al. 2013). The 237 

same regions are characterised by year-round outdoor cultivation of tomato (main virus host) and the presence 238 

of populations of B. tabaci (EFSA 2013; Gilioli et al. 2014). In case of a temperature increase of 2 °C, both 239 

studies predict a movement of established populations of B. tabaci approximately 300 � 500 km northwards, 240 

taking into account significant local variations due to local topography. The spread of TYLCV in open fields is 241 

expected to follow the same pattern. 242 

 243 

Efficacy of management strategies 244 

 245 

Evidence from Wang et al. (2014) indicates that the biological control of B. tabaci by Encarsia formosa (Gahan) 246 

would not be influenced by transgenic Bt cotton and/or elevated CO2. Cui et al. (2014) suggest that elevated O3 247 

enhanced the attraction of En. formosa to whiteflies with resulting augmented biological control. This probably 248 

relates to the enhanced production of volatile organic compounds by the host plant, which indirectly increased 249 

the attraction of En. formosa to whiteflies. Furthermore, it has been experimentally confirmed that parasitism 250 

and predation rates of whitefly natural enemies could increase with temperature within the optimum ranges of 251 

the natural enemies as in the case of En.  formosa (Burnett 1949; Enkegaard 1994; Qui et al. 2004; Zilahi-252 

Balogh et al. 2006), Eretmocerus eremicus (Rose & Zolnerowich) (Qui et al. 2004), Er. mundus (Mercet) (Qui 253 

et al. 2004), Eretmocerus spp. (McCutcheon and Simmons 2001), Delphastus catalinae (Horn) (Simmons and 254 

Legaspi 2004) and Nesidiocoris tenuis (Reuter) (Madbouni et al. 2017). Similarly, walking speed, walking 255 

activity and flight activity of whitefly natural enemies have been shown to be positively correlated with 256 

temperature (van Roermund and van Lenteren 1995; Bonsignore 2016), while handling time decreases with 257 

temperature increase (Enkegaard 1994; Madbouni et al. 2017). Comparable studies on the impact of temperature 258 

on walking pattern and flight activity of whitefly are very scarce; however, Reader and Southwood (1984) 259 

suggest that temperature did not strongly affect flight activity of Aleurotuba jelinekii (Frauenfeld). For most 260 

natural enemies, however, immature survival, fecundity, adult longevity and intrinsic rate of natural increase are 261 

maximised below 30 °C, and above this temperature the chance of population expansion drops significantly 262 

(Table 3).  Of course, the effects of diurnal temperature regimes could increase adaptability of these insects 263 

(Kingsolver et al. 2015). Hence, how a natural enemy responds to temperature increase will be a function of its 264 

life history traits in relation to the amount of environmental stress experienced (Qui et al. 2004; Qui et al 2006; 265 

Zandi-Sohani and Shishehbor 2011; Malekmohammadi et al. 2012), which could either favour population build 266 

up or decline (Deutsch et al. 2008; Youngsteadt et al. 2016).  In line with this, biocontrol companies recommend 267 

temperatures between 21 � 29 °C for optimal performance of commercially available natural enemies. To ensure 268 

efficacy of their products, commercial producers of whitefly biocontrol products now combine more than one 269 
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natural enemy. For instance, En. formosa is combined with Er. eremicus to harness the rapid population growth 270 

potential of En. formosa and high temperature tolerance of Er. eremicus (Biobest, 2017).  271 

Host-natural enemy interactions are not linear or directly predictable due to complex species and environment 272 

interactions. Greenberg et al. (2000) compared the life history of Er. eremicus and two host whiteflies (T. 273 

vaporariorum and B. tabaci MEAM1), while Burnett (1949) compared the life history of T. vaporariorum and 274 

En. formosa under the same experimental conditions respectively. Their results show that the parasitoids 275 

perform better than the whiteflies at higher temperatures (24 � 32 °C) for most of the traits tested. Similarly, 276 

Youngsteadt et al. (2016) compared the changes in abundance of whiteflies, predators and parasitoids, and 277 

reported that parasitoids had higher abundance per °C urban warming compared to whiteflies, while predators 278 

show lower response to  warming compared to parasitoids and whiteflies respectively. 279 

Insecticides have long been applied successfully in diverse environments from hot, irrigated desert regions to 280 

cool temperate regions. Although the toxicity of insecticides may be influenced by temperature (Sparks et al. 281 

1983; Boina et al. 2009; Glunt et al. 2014), diurnal variations in temperature will still permit insecticide 282 

applications to be made within temperature ranges relevant to the functionality of the compounds. Moreover, 283 

compensatory feeding at elevated CO2 levels would increase the consumption of insecticide (Coviella and 284 

Trumble 2000) and could therefore increase the efficacy of insecticides. However, climate change and faster 285 

population growth of whiteflies may also increase insecticide application rates and associated costs of 286 

management with insecticides (Chen and McCarl 2001; Koleva and Schneider 2009). Climate change may also 287 

indirectly affect the efficacy of insecticides since periods suitable for spraying will likely increase with drier 288 

locations and decrease where it is wetter (Harrington et al. 2001). 289 

 290 

Cultural practices are commonly used as part of an overall strategy for whitefly management. Where efficient 291 

weather forecasting systems are available to farmers, changing planting date will remain an easy and effective 292 

tool to reduce pest pressure. However, climatic uncertainties may render this practice less useful (especially for 293 

small-holder farmers because of their limited use of weather information). The greenhouse strategy (physical 294 

barrier) is to a large extent already in place in the new areas that might be invaded by whiteflies, and will 295 

continue to be useful especially in intensive production systems if well managed and combined with other 296 

control methods. Phytosanitary measures, such as quarantine and the removal of weeds and crop residues, are 297 

widely used today and will continue to be useful since there are no indications that climate change will affect 298 

their effectiveness. Although constitutive and induced plant defences can be affected by climatic change due to 299 

changes in C:N ratio, which could in turn affect both synthesis and functioning of defence compounds (Zavala 300 

et al. 2013), there is insufficient evidence as to how this will influence resistance to whiteflies. Even under 301 

current production conditions, insect pests and pathogens often develop mechanisms for breaking down host 302 

resistance. How climate change will affect whitefly resistance is unknown, although it will most probably be 303 

host-whitefly specific. This topic presents an important opportunity for additional research. 304 

 305 

 306 

CONCLUSION AND FUTURE PROSPECTS  307 

 308 

The study reviewed the impact of climate change on whiteflies with the primary goal of identifying important 309 

trends for biological parameters. Among the new insights from our study is that while environmental stress 310 

tends to negatively affect life history, the effects differ with tolerance of the whiteflies, amount of stress 311 

experienced (which is often related to habitat characteristics) and the host plant. Whiteflies differ in their 312 

adaptability and adaptive strategies, and these will influence their eventual response in terms of distribution and 313 

abundance with climate change. With climate change, better adapted species will likely experience increased 314 

distribution and abundance provided their tolerance limits are not exceeded, while species with lower tolerance 315 

and adaptation limits will suffer reduced fitness, which will have overall effects on their distribution and 316 

abundance in space and time. Most methods used to control whiteflies will still be effective, especially if 317 

complementary methods are combined for maximum efficacy. Changes in climatic suitability modifying the 318 

distribution and abundance of whiteflies and the environmental suitability for plant viruses will likely affect 319 
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epidemics of viral diseases. Overall, the impacts of climate change on whiteflies will show latitudinal or 320 

location specificity, as reported for other insect species (Deutsch et al. 2008; Bebber et al. 2013; Youngsteadt et 321 

al. 2016). Although reduced climatic suitability and establishment risk of whiteflies is predicted for some parts 322 

of the tropics, and temperature will remain a limiting factor to the distribution and abundance of whiteflies in 323 

temperate regions (outside greenhouses), some regions will see population increases and whiteflies will still 324 

continue to pose a threat to crop production (Gamarra et al. 2016a, b, c). However, there are uncertainties 325 

associated with predicting the effects of climate change when considered locally in space and in time. Effects of 326 

single climatic factors on whiteflies species are often not complementary and may be antagonistic (Table 1). The 327 

study also shows that the influence of temperature (in comparison to other environmental variables) on 328 

whiteflies has been given overwhelming attention probably due to its established importance in the biology of 329 

whiteflies and other insects. Studying the influence of multiple climatic factors simultaneously (Curnutte et al. 330 

2014) is an important further step in elucidating how climate change is likely to affect whiteflies. Additionally, 331 

there is very little information currently available on how climate change will affect trophic interactions 332 

involving whiteflies. The limited research that has been done suggests that climate change impacts may be 333 

significant or negligible depending on the host, whitefly and factors considered (Tripp et al. 1992; Cui et al. 334 

2012; Wang et al. 2014). More research insights addressing the effect of single or multiple factors on trophic 335 

interactions of whiteflies will significantly contribute to our knowledge of whitefly biology and will help in the 336 

design of robust future management guidelines. 337 

Our key message here is that developing effective responses to the additional whitefly threat that may result 338 

from climate change will depend heavily on improving understanding of the complex interactions between 339 

whitefly species, host plants, natural enemies and the components of climate change that will affect them in each 340 

of the world�s major agro-ecological zones. A varied set of control tactics for whiteflies and the viruses that they 341 

transmit are already being applied. The challenge will be working out, through research, how to apply this 342 

basket of technologies most effectively in the dynamic new agricultural environment that is emerging as humans 343 

continue to modify the world. This is a challenge of global significance, but certainly one that can be resolved if 344 

addressed with appropriate levels of investment, leading to a more sustainable, food secure future. 345 

 346 
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Table 1: Effects of climatic factors on life history traits that include fecundity, immature development 

time and adult longevity of whiteflies 

Whitefly spp. Host plant  Climatic variable Effects 

on life 

history 

trait 

Range 

** 

Geographic 

locations 

Key 

references 

   Fecundity     

B. tabaci MEAM1 Eggplant, 

Tomatoes,  
 Temperature 

increase 
- 20 � 32a USA; 

China; 

China 

*Wang and 
Tsai 1996; 
Qui et al. 
2003; Guo et 

al. 2013 

B. tabaci MED  Tomatoes  Temperature 

increase 
- 21 � 35 France Bonato et al. 

2007 

T. vaporariorum Kidney bean,   
Brassica spp. 

 Temperature 

increase 
- 19 � 26; 

15-24 

Colombia; 

China 

Manzano 
and Lenteren 
2009; Xie et 

al. 2011 

B. tabaci MEAM1 Brassica spp.  Temperature 

increase 
+ 15 � 24 China Xie et al. 

2011 

T. vaporariorum Tomatoes  Elevated CO2 - 400 � 

1200  
Finland  Koivisto et 

al. 2011 

B. tabaci MEAM1  Collard, Cotton  Elevated CO2 0 424 � 

753; 

375 � 
750 

USA; China Curnutte et 
al. 2014; 
Wang et al. 

2014 

B. tabaci MEAM1  Tomatoes  Elevated ozone - 37.3 � 

72.2***  
China Cui et al. 

2012 

        

  Immature developmental 

time 

   

B. tabaci MEAM1 and 

MED  
Sweet pepper  Temperature 

increase 
- 17 � 33 Spain Muñiz and 

Nombella 

2001 

B. tabaci MED  Tomatoes, 
Sweet pepper, 
Eggplant and 

Oriental melon 

 Temperature 

increase 
- 15 � 30 France; 

Korea 

Bonato et al. 
2007; Han et 

al. 2013 

 

T. vaporariorum Greenhouse 

crops 
 Temperature 

increase 
- 18 � 27 England Madueke 

and Coaker 

1984 

B. tabaci MEAM1  

 

Fruits and 

vegetables 
 Temperature 

increase 
- 20 � 30b USA; 

China; 

Turkey 

*Nava-
Camberos et 
al. 2001; 
*Yang and 
Chi 2006; 



Bayhan et al. 

2006 

Aleurotuberculatus 

takahashi (David et 

Subramaniam) 

Citrus  Temperature 

increase 
- 15 � 35  China Sengonca 

and Liu 

1999 

B. tabaci MEAM1 and 

T. vaporariorum 
Brassica spp.  Temperature 

increase 
- 15 � 24 China Xie et al. 

2011 

Bemisia afer (Priesner 

and Hosny) 
Sweet potato  Temperature 

increase 
- 17 � 25   Gamarra et 

al. 2016a 

B. tabaci MEAM1  Cotton  Elevated CO2 + 375 �750  China Wang et al. 

2014 

B. tabaci MEAM1  Tomatoes  Elevated ozone + 37.3 �    

72.2***  
China Cui et al. 

2012 

   Adult longevity     

B. tabaci MEAM1  Eggplant, 

Tomatoes 
 Temperature 

increase 
- 20 � 32c China; 

USA; China 

Qui et al. 
2003; 
*Wang and 
Tsai 1996; 
Guo et al. 
2013 

A. takahashi Citrus  Temperature 
increase 

- 15 � 35 China Sengonca 
and Liu 

1999 

B. tabaci MED  Tomatoes  Temperature 

increase 
- 21 � 35  France  Bonato et al. 

2007 

T. vaporariorum Kidney bean  

 
 Temperature 

increase 
- 19 � 26  Colombia Manzano 

and Lenteren 

2009 

B. afer Sweet potato  Temperature 

increase 
- 17 � 28  Philippines Gamarra et 

al. 2016a 

T. vaporariorum Tomatoes  Elevated CO2 0 400 � 

1200 
Finland Koivisto et 

al. 2011 

B. tabaci MEAM1  Cotton  Elevated CO2 0 375 � 

750 
China Wang et al. 

2014 

+ represents an increase, - represents a decrease, 0 represents no change 
MEAM1 (Middle East-Asia Minor 1) = B biotype 
MED (Mediterranean) = Q biotype 
*B. argentifolii = MEAM 1 
**Temperatures were measured in °C, CO2 and ozone levels are in ppm except where otherwise stated. 

*** measured in nmol/mol 
a. Wang and Tsai (1996) and Guo et al. (2013) reported up to 35 °C and 37 °C respectively. 
b. Yang and Chi et al. (2006) reported a range from 15 � 35 °C. 
c. Guo et al. (2013) reported 27 � 37 °C, while Wang and Tsai (1996) reported up to 35 °C. 

 

 



Table 2: Temperature conditions at which peak performance for selected life history traits of whiteflies 

was reported 

Whitefly species Development 

time 

Immature 

survival  

Adult 

longevity 

Fecundity Intrinsic 

rate of 

increase 

Geographic 

location 

References 

B. tabaci MEAM 1 29 °C  26 °C 20 °C 20 °C  29 °C  China Qui et al. 
2003  

B. tabaci MEAM 1 35 °C NA 20 °C 25 °C 30 °C China Yang and 
Chi 2006 

B. tabaci MED 30 °C 25 °C 17 °C 21 °C 30 °C France Bonato et al. 
2007 

B. tabaci MED 27.5 &30 °C * 27.5 � 32.5 °C * NA NA NA Korea Han et al. 
2013 

T. vaporariorum  24 °C NA 18 °C  18 °C  NA China Xie et al. 
2011 
 

T. vaporariorum 26 °C 19 °C 19 °C 22 °C 19&22 
°C * 

Colombia Manzano 
and Lenteren 
2009 

A. takahashi 35 °C 15 °C 15 °C 25 °C NA China Sengonca 
and Liu 
1999 

Parabemisia 

myricae (Kuwana) 
30 °C 25±1 °C 15±1 °C 25±1 °C NA Turkey Uygun et al.  

1993 

Singhiella simplex 
(Singh) 

 
30 °C 

 
15 °C 

 
15 °C 

 
27 °C 

 
27 °C 

 
USA 

 
Legaspi et 
al. 2011 

*multiple host plants 
NA � not available 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Temperature conditions at which peak performance for selected life history traits of whitefly 

natural enemies was reported 

Whitefly species Development 

time 

Immature 

survival  

Adult 

longevity 

Fecundity Intrinsic rate 

of increase 

Geograp

hic 

origin 

References 

Parasitoids        

En. formosa 28 °C 22 °C 16 °C 28 °C 28 °C Germany Enkegaard 1993 

En. formosa 
 

32 °C NA 15 °C NA NA USA Qui et al. 2004 

En. inaron 

(Walker) 

30 °C 25 °C 20 °C 25 °C 25 °C Iran Malekmohamm
adi et al. 2012 

En. bimaculatus 

(Heraty and 
Polaszek) 

32 °C 
 
 

26 °C 20 °C 29 °C 29 °C China Qui et al 2006 

En. acaudaleyrodis 

(Hayat) 

 

32°C 25 °C 20 °C 25 °C 25 °C Iran Zandi-Sohani 
and Shishehbor 
2011 

Er. eremicus (Rose 

& Zolnerowich) 

32 °C NA 15 °C NA NA USA Qui et al. 2004 

Er. sp. Nr. 

furuhasii (Rose & 

Zolnerowich) 

29 °C 26 °C 20 °C 26 °C 29°C China Qui et al. 2007 

Er. mundus 

(Mercet)  

30 °C 25 °C 20 °C 25 °C 30 °C Iran Zandi-Sohani et 
al. 2009 

Er. mundus 

(Mercet)  

32 °C NA 15°C NA NA Italy Qui et al. 2004 

Predators        

Serangium 

japonicum 

(Chapin) 

32 °C 26 °C 20 °C 26 °C 29 °C China Yao et al. 2011 

Axinoscymnus 

cardilobus (Ren 

and Pang) 

29 � 32 °C 23 °C 17 °C 23 °C 23 °C China Huang et al. 
2008 

A. apioides 

(Kuznetsov and 

Ren) 

29 °C 26 °C 20 °C 23 °C 26 °C China Zhou et al. 2017 

Clitostethus 

brachylobus 

29 °C 26 °C 17 °C 26 °C 26 °C China Deng et al. 2016 

C. arcuatus (Rossi) 30 °C 25 °C 15 °C 20 °C 30 °C Portugal Mota et al. 2008 

Nephaspis oculatus 

(Blatchley) 
33 °C 26 °C 20 °C 26 °C 26 °C USA Ren et al. 2002 

 

 

 

 


