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Identification of Expression QTLs Targeting Candidate Genes for 
Residual Feed Intake in Dairy Cattle Using Systems Genomics
Salleh MS1,2, Mazzoni G2, Nielsen MO1, Løvendahl P3 and Kadarmideen HN2,4*

Abstract

Background: Residual feed intake (RFI) is the difference 
between actual and predicted feed intake and an important 
factor determining feed efficiency (FE). Recently, 170 can-
didate genes were associated with RFI, but no expression 
quantitative trait loci (eQTL) mapping has hitherto been per-
formed on FE related genes in dairy cows. In this study, an 
integrative systems genetics approach was applied to map 
eQTLs in Holstein and Jersey cows fed two different diets to 
improve identification of candidate genes for FE.

Methods: Liver RNA-seq transcriptomics data from nine 
Holstein and ten Jersey cows that had been fed control (C) 
or high concentrate (HC) diets were integrated with genomic 
data (from 777k BovineHD Illumina BeadChip) by using the 
Matrix eQTL R package. A total of 170 previously identified 
candidate genes for FE (89 differentially expressed genes 
(DEGs) between high and low RFI groups and 81 hub 
genes (HG) in a group of co-expressed genes) were used in 
the data integration analysis.

Results: From the 241,542 SNPs used in the analysis, 
we identified 20 significant (FDR < 0.05) local-eQTLs tar-
geting seven candidate genes and 16 significant (FDR < 
0.05) local-eQTLs targeting five candidate genes related to 
RFI for the C and HC diet group analysis, respectively, in a 
breed-specific way.

Conclusions: Interestingly, Holstein and Jersey cows ap-
pear to rely on different strategies (lipid and cholesterol 
metabolism versus immune and inflammatory function) to 
achieve low RFI. The eQTLs overlapped with QTLs previous-
ly associated with FE trait (e.g. dry matter intake, longevity, 

body weight gain and net merit). The eQTLs and biological 
pathways identified in this study improve our understanding 
of the complex biological and genetic mechanisms that de-
termine FE traits in dairy cattle. The identified eQTLs/genet-
ic variants can potentially be used in new genomic selection 
methods that include biological/functional information on 
SNPs.
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Background

Feed intake and the conversion of absorbed nutri-
ents into milk components are major determinants of 
feed efficiency (FE) in dairy cattle and hence production 
economics. FE is a complex trait that is influenced by 
several genetic and environmental factors, which in an 
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between the phenotype and the genome. Therefore, 
eQTL analysis can identify interesting genetic variants 
even with a low sample size [12,13]. The identification 
of genomic regions influencing the expressions of the 
candidate genes could give a better perspective to use 
the information in animal selection as well as provide a 
better explanation about the way genomic regions con-
trol traits of interest.

A few studies have been conducted to identify ge-
nomic regions determining FE traits in beef cattle, chick-
en and other livestock species [14-17]. However, no 
eQTL mapping has hitherto been performed on FE relat-
ed genes in dairy cows.

In this study, we performed an eQTL mapping anal-
ysis on candidate genes for the RFI trait. The hypoth-
esis of the integrative genomics analysis is that SNPs 
associated with the expression of candidate genes are 
involved or in linkage with genomic regions regulat-
ing their expression. Therefore, the objective of this 
study was to identify eQTL regions together with their 
functional annotations associated with the RFI trait in 
two breeds of dairy cattle (Danish Holstein and Danish 
Jersey) fed two different diets and to present an eQTL 
mapping of candidate genes for RFI using matrix eQTL 
analysis, as well as characterize the SNPs by comparing 
our findings with previously annotated QTLs. The eQTL 
identified in this study could be important candidate ge-
netic markers defining actual FE in dairy cattle, and our 
study suggests that there are differential traits relating 
to RFI in Danish Holsteins as compared to Jerseys.

Materials and Methods

Experimental animals, RFI characteristics and ex-
perimental design

The present study is based on biological samples ob-
tained from nine Holstein and ten Jersey cows, housed 
at the Danish Cattle Research Centre (DCRC), Aarhus 
University, Denmark. The animals were part of a larg-

interactive way control feed intake, nutrient partition-
ing and metabolic adaptation to lactation in different 
body tissues as well as milk synthesis and immune func-
tion. In dairy cattle, the use of FE for breeding purposes 
is quite complicated, since recording of individual feed 
intake is difficult in group fed cows. It is therefore de-
sirable to be able to predict the genetic contributions 
to this trait to be able to select the most feed efficient 
cows for breeding purposes.

To date, transcriptomics has given precise and re-
liable results that identify candidate genes related to 
phenotypes of interest [1]. Although gene expressions 
associated with FE related genes have been studied 
for a long time, also in cattle [2-4], genetic markers are 
more easily accessible and not affected by environmen-
tal factors in contrast to gene expression data.

However, in some cows, the actual feed intake devi-
ate from the predicted by their genetic heritage, even 
when they are exposed to similar environmental condi-
tions. The term residual feed intake (RFI) describes this 
deviation and is calculated as the difference between 
the actual measured and the predicted feed intake of 
the cow [5]. Among groups of high and low RFI cattle, 
we have recently identified several candidate genes 
that predict the RFI in Danish dairy cattle [6].

Therefore, in this present study we focused on ge-
netic markers for RFI in an attempt to improve the pre-
diction of genetic merit for FE, which is needed to be 
able to use this type of determinants in practice.

Integration of transcriptomics and genomics data 
can be used to identify potential causal genetic vari-
ants that affect particular phenotypes. This approach is 
known as Genetical Genomics or Integrative Genomics 
[7]. The identified regions are called expression Quanti-
tative Trait Loci (eQTL). In other words, an eQTL is a re-
gion in a particular locus that influences or controls the 
differences of expressions of causal genes [8-11]. The 
expression profile is an intermediate biological space 
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Figure 1: Mean ± SE of Residual Feed Intake (RFI) value for the Holstein and Jersey cows used in the present experiment [6].
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vine reference genome release 82 using STAR aligner 
[20]. After the alignment, quality control of the mapped 
reads was done using Qualimap version 2.0 [21]. Then 
the HTSeq-count tool was used to compute the gene 
expression counts [22]. The DEGs analyses were done 
using DESeq2 package [23] and weighted gene co-ex-
pression analyses using WGCNA package [24]. Hub 
genes were selected from the top significant modules 
that have significant association with RFI trait and hav-
ing more than 80% module membership. The RNA-seq 
data for the present study is available in

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?ac-
c=GSE92398.

Subsequently, the two gene expression datasets of 
Holsteins and Jerseys were preprocessed independently 
to filter low counts genes in each breed. Next, the two 
datasets were merged by keeping only genes present in 
both RNA-seq datasets.

We performed two separate analyses as replicates, 
one using the expression profile of the cows on C diet 
and another one using the expression profile of the cows 
on the HC diet. A summary of the eQTL mapping pipe-
line is presented in Figure 2. The eQTL mapping analysis 
was performed on 170 candidate genes for RFI (Supple-
mentary Table 1, Supplementary Table 2, Supplementa-
ry Table 3 and Supplementary Table 4) that were identi-
fied in two previous studies based on the same RNA-seq 
data. The total list of candidate genes included 89 DEGs 
between cows with high and low RFI [6] and 81 hub 
genes in groups of co-expressed genes associated with 
RFI identified by using a weighted gene co-expression 
network analysis (WGCNA) (unpublished).

Among the 170 candidate genes, 160 survived after 
the filtering step in both datasets and were used in the 
rest of the analyses. The numbers of candidate genes 
that survived after filtration were the same in the two 
separate analyses, which were performed for cows fed 
low as compared to high concentrate diets. The log2 
transformation of the gene count matrix was used in 
the eQTL mapping.

The genotype data was filtered by Hardy Weinberg 

er experiment, where FE was determined in 200 dairy 
cows distributed on the two breeds [18]. The details 
about the animal’s background and the overall experi-
mental design of the larger trial can be found in Salleh, 
et al. and Li, et al. [6,18].

The experimental cows used in the present study 
were selected based on individually recorded RFI of 
cows from the larger study. A total of four Holstein cows 
with very high and five with very low RFI, and five Jer-
sey cows with very high and five with very low RFI were 
selected, and their deviation from the average recorded 
RFI is shown in Figure 1. The experimental cows under-
went two periods of feeding trials low concentrate (con-
trol (C)) and high concentrate (HC) diet. The two dietary 
exposures were separated by a conditioning period of 
14 - 26 days. The details of the ration composition for 
both diet can be found in Salleh, et al. [6].

Biological samples

Liver biopsies (approximately 20 mg) were collected 
from each cow at the end of each feeding trial, RNA was 
extracted and sequenced. The details of the samples 
collection and processing were described in Salleh, et 
al. [6].

Blood samples were used for the DNA genotyping 
procedure. Ten milliliters blood samples were collected 
from the 19 cows using Ethylenediaminetetraacetic acid 
(EDTA) coated blood tubes. The blood samples were 
stored at -20 °C pending genomic DNA isolation and ge-
notyping. The DNA was isolated and genotyped by Neo-
gen GeneSeek® (Lincoln, NE, USA) using 777k BovineHD 
BeadChip (Illumina, Inc., San Diego, CA, USA).

Gene expressions data, genotype data and data 
pre-processing

Briefly, the RNA-seq data were pre-processed and 
processed to find candidate gene through differential 
expression analysis and weighted gene co-expression 
network analysis (WGCNA). RNA-seq analysis was per-
formed as previously described in Salleh, et al. [6]. Brief-
ly, the RNA raw reads were pre-processed using FastQC 
version 0.11.3 [19]. The reads were aligned to the Bo-

         

Figure 2: eQTL mapping pipeline used to find candidate genes for Residual Feed Intake (RFI) in dairy cattle. Among 170 
candidate genes, only the 160 genes present in RNA-seq datasets for both breeds were used in the further analyses.
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Equilibrium (HWE < 0.0001), Minor Allele Frequency 
(MAF < 0.15), and missing genotype rates (mind > 0.1). 
The genotype data were also pruned to remove SNPs 
in strong linkage disequilibrium [25]. The preprocessing 
was performed using PLINK 1.90 beta software [26]. A 
total of 536,420 SNPs was removed after the filtration 
procedure. The remaining 241,542 SNPs were used for 
the rest of the analysis.

Integrative genomics analysis (eQTL mapping)

The theoretical aspects of eQTL mapping and applica-
tions of findings in animal sciences are well described in 
the literature, including our previous studies [9-11]. The 
eQTL mapping was performed by fitting an analysis of 
variance (ANOVA) model to test both additive and dom-
inant effects. The Matrix eQTL v2.1.1 [27] package in R 
software was used to identify the local and distant-eQTL 
associated to the RFI trait. We included the breed and 
the lactation number as covariates in the model.

The local-and distant-eQTLs analyses were per-
formed separately. The analysis of local eQTL was per-
formed on SNPs that were located at less than 1 Mb 
distance from the start or end position of the gene of 
interest, while distant-eQTLs analysis was performed on 
SNPs located at a distance of more than 1 Mb on the 
same chromosome and on SNPs in other chromosomes. 
The SNPs were mapped onto the Bos taurus genome 
UMD 3.1. The information about gene locations were 
retrieved from Ensembl database for Bos taurus v82. 
P-values were adjusted using the false discovery rate 
(FDR) procedure for multiple comparison corrections 
[28]. SNPs were considered significant with FDR lower 
than 0.05.

Comparison of the eQTL with the Animal Genome 
cattle QTLdb

The significant eQTLs identified in this study were 
further compared to the Animal Genome cattle QTLdb 

database [29]. From the cattle QTL database we filtered 
out long QTL regions and more than one flank markers. 
In total, 94,322 SNPs were used in the comparison. The 
SNPs information was obtained from 337 studies, 63 
breeds, 366 traits of 6 trait types. The flanking regions 
of 500 kb around the eQTL identified in our studies were 
compared against the cattle QTLdb. The QTLs overlap-
ping for at least one nucleotide were considered as a 
match.

Results and Discussion

The eQTL mapping analysis allows identification of 
SNPs associated with the expression level of specific 
genes. The hypothesis of this analysis is that the eQTL 
or eSNPs are in linkage with regulatory regions or region 
that encode for transcription factors responsible for the 
control of the expression of the targeted gene [10]. In 
the present study, we have analyzed candidate genes 
associated with the RFI trait in dairy cattle. Despite the 
small sample size, we identified several loci significant-
ly related to the expression of the candidate genes. In 
addition, since the study focused on genes significantly 
associated with RFI, and the eQTL analysis was done on 
animals with widely different RFI, either very low or very 
high, our study had enough power to detect biologically 
meaningful expression variants.

Different strategies for obtaining significant eQTLs 
associated to RFI candidate genes by using C versus 
HC dataset

In the expression profile of cows fed the control 
diet, we identified 20 local-eQTLs SNPs or cis-eQTLs SNP 
(FDR < 0.05) associated with the expression of seven 
genes (BDH2, CHRNE, ELOVL6, GIMAP4, FDXR, CXCL9 
and CD52) (Table 1). However, there was no significant 
distant-eQTL (trans-eQTLs) associated with the candi-
date genes in the analysis performed among cows fed 
the control diet. On the other hand, among cows fed 

Table 1: Top significant local-eQTLs targeting candidate genes for cows fed the control (C) diet.

rsID Gene.name Gene type FDR Position Freq Genotype Gene position
rs133674837 BDH2 DE 7.35E-04 6:23051485 6/8/5 CC/CA/AA 6:23047057-23077431
rs109975461 CHRNE DE 4.23E-02 19:26981374 8/6/5 AA/AG/GG 19:27118517-27123114
rs109947248 CHRNE DE 4.23E-02 19:26994134 8/6/5 AA/AG/GG 19:27118517-27123114
rs109341116 CHRNE DE 4.23E-02 19:27098154 8/6/5 AA/AG/GG 19:27118517-27123114
rs110896981 CHRNE DE 4.23E-02 19:27192150 10/4/5 AA/AG/GG 19:27118517-27123114
rs43318602 ELOVL6 DE 4.23E-02 6:16656338 15/2/2 GG/GA/AA 6:16376642-16510240
rs43318545 ELOVL6 DE 4.23E-02 6:16678359 15/2/2 GG/GA/AA 6:16376642-16510240
rs43317462 ELOVL6 DE 4.23E-02 6:16731878 9/8/2 GG/GA/AA 6:16376642-16510240
rs110036492 ELOVL6 DE 4.23E-02 6:16738741 8/8/2 GG/GA/AA 6:16376642-16510240
rs43315610 ELOVL6 DE 4.23E-02 6:16755625 6/11/2 GG/GA/AA 6:16376642-16510240
rs43316358 ELOVL6 DE 4.23E-02 6:16761983 6/11/2 GG/GA/AA 6:16376642-16510240
rs43317449 ELOVL6 DE 4.23E-02 6:16725243 9/8/2 GG/GA/AA 6:16376642-16510240
rs109963253 GIMAP4 DE 3.02E-02 4:113638587 8/9/2 GG/GA/AA 4:113866800-113874303
rs134589272 FDXR DE 4.23E-02 19: 56624163 10/8/1 GG/GA/AA 19: 57164031-57175524

rs ID = reference SNP cluster ID; Gene Name = name of the targeted genes; Gene type = type of candidate gene: Hub genes 
(HG) or differentially expressed genes (DE); FDR = False Discovery Rate of the association between SNP and gene expression, 
Position = genome position of the SNP, Freq = frequency of each genotypes (A1A1/A1A2/A2A2) in the cows analysed, Genotype 
= genotype at the SNP locus (A1A1/A1A2/A2A2), Gene position = genome position of the targeted gene.
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corresponding to seven candidate genes (BDH2, CHRNE, 
ELOVL6, GIMAP4, FDXR, UHRF1 and HSD17B4) for the 
RFI trait in the present study.

Previous studies showed that identification of eQTLs 
and genomic regions would give additional informa-
tion towards the identification of causal variants [30]. 
Hence, the eQTLs that were identified as associated to 
the RFI trait in the present study would provide addi-
tional information for the development of biomarkers.

The first top eQTL with a significant relationship be-
tween the gene expression and genotype is rs133674837, 
which is associated to the BDH2 gene (Supplementary 
Figure 1a), and as mentioned the association was found 
to be significant in the two separate analyses for cows 
when fed the C diet as well as when fed the HC diet. The 
expression of the BDH2 gene was previously identified 
to be upregulated in high FE cows [6]. All low RFI (high 
FE) Holstein cows (n = 5) had homozygous (AA) genotype 
at this locus, while 80% of the high RFI (low FE) Holstein 
cow had heterozygous genotype (CA). BDH2 encodes 
for the enzyme 3-Hydroxybutyrate Dehydrogenase 2, 
which is responsible for degradation of 3-hydroxybutyr-
ate-a ketone body derived partly from rumen fermen-
tation and partly from incomplete oxidation of fatty ac-
ids in the liver [31,32]. The BDH2 gene in the liver has 
been observed to be downregulated in animals, when 
ketogenesis occurred (mice and pigs) [31,33]. This hap-
pens, for example, during feed restriction or fasting of 
animals, and mRNA expression of BDH2 gene has been 
shown to be lower in such animals compared to normal 
feeding animals [33]. In the present study, the hepatic 
BDH2 gene expression was downregulated in high RFI 
(low FE) animals. The positive association between a ho-
mozygous (AA) genotype and upregulation of the BDH2 
gene in low RFI (high FE) Holstein cows shows that this 
locus might influence the RFI trait. However, in Jersey 
cows, 80% (n = 4) of low RFI (high FE) cows were homo-
zygous (CC) at this allele. Hence, specifically for Holstein 
cows, a homozygous (AA) genotype is expected to favor 
low RFI and hence high FE.

GIMAP4 gene is another gene that has been detected 
as significantly associated with the eQTLs listed in Table 
1 and Table 2 in both analysis (i.e. when cows were fed 

the high concentrate diet, we identified 16 local eQTLs 
SNPs (FDR < 0.05) associated with the expression of 
five genes (UHRF1, BDH2, HSD17B4, GIMAP4 and EN-
SBTAG00000047529) (Table 2) and 2891 distant-eQTLs 
associated with the expression of 45 genes. Among the 
local-eQTL, genes that were in common in both diet 
groups were the BDH2 and GIMAP4 genes. Figure 3 
shows the significant eQTLs targeting candidate genes. 
A complete list of the significant distant-eQTLs, includ-
ing the chromosomal position and annotation of the 
SNPs in the HC dataset analysis is presented in Supple-
mentary Table 5.

In Holstein, cows fed with C diet dataset, we detect-
ed eQTLs associated to the three genes BDH2, CHRNE 
and ELOVL6, whereas for cows fed the HC diet dataset, 
the eQTLs associated to two other genes, UHRF1 and 
HSD17B4. In Jersey cows, two DEGs (GIMAP4 and FDXR) 
and two HG’s (CXCL9 and CD52) belonging to a group 
of co-expressed genes associated with RFI, when they 
were fed the C diet, whereas only the GIMAP4 gene was 
detected as significant local-eQTL, when they were fed 
the HC diet. However, the HG’s (CXCL9 and CD52) were 
not further analyzed, since only one animal with rare 
allele at these loci were present in the dataset. Supple-
mentary Figure 1 and Supplementary Figure 2 present 
boxplots of genotypes and their correlation with gene 
expressions for the top seven significant local-eQTLs 

Table 2: Top significant local-eQTLs targeting candidate genes for cows fed the high concentrate (HC) diet.

rsID Gene.name Gene type FDR Position Freq Genotype Gene position
rs135948495 UHRF1 DE 6.72E-03 7:20322296 5/9/5 CC/CA/AA 7:20436670-20469912
rs134849198 UHRF1 DE 6.72E-03 7:20327318 5/9/5 CC/CA/AA 7:20436670- 20469912
rs137012774 UHRF1 DE 6.72E-03 7:20336175 5/9/5 CC/CA/AA 7:20436670- 20469912
rs133674837 BDH2 DE 4.81E-03 6:23051485 6/8/5 CC/CA/AA 6:23047057- 23077431
rs109739833 HSD17B4 DE 1.14E-02 7:35653128 7/10/2 AA/AG/GG 7:35662599- 35763653
rs110212970 GIMAP4 DE 7.88E-04 4:113608223 8/9/2 GG/GA/AA 4:113866800- 113874303
rs109963253 GIMAP4 DE 7.88E-04 4:113638587 8/9/2 GG/GA/AA 4:113866800- 113874303

rs ID = reference SNP cluster ID; Gene Name = name of the targeted genes; Gene type = type of candidate gene: Hub genes 
(HG) or differentially expressed genes (DE); FDR = False Discovery Rate of the association between SNP and gene expression, 
Position = genome position of the SNP, Freq = frequency of each genotypes (A1A1/A1A2/A2A2) in the cows analysed, Genotype 
= genotype at the SNP locus (A1A1/A1A2/A2A2), Gene position = genome position of the targeted gene.

         

Figure 3: Venn diagram showing the participation of the 
significant eQTLs targeting candidate genes in cows when 
fed control (C) as compared to high concentrate (HC) diets.
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[35-38]. A possible explanation is that animals with 
poorer immune function are more prone to develop 
infectious diseases like e.g. mastitis, and this can reduce 
milk production, induce fever-associated increases in 
metabolism, and hence increased energy expenditures 
per kg of produced milk, which subsequently reduces 
FE [39].

rs109975461, which is associated with the CHRNE 
gene, was also a significant eQTL. At this locus, all high 
RFI (low FE) Holstein cows had a homozygous (GG) gen-
otype, whereas 80% of the low RFI (high FE) cows (n = 
4) had a heterozygous (AG) genotype (Supplementary 
Figure 1c). In other words, high feed efficient cows that 
had a high expression of the CHRNE gene also had the 
heterozygote genotype. However, in the Jersey group, 
there was no association to be seen for this CHRNE gene. 
The CHRNE gene encodes for the acetylcholine recep-

the C and HC diets). The top significant eQTLs targeting 
GIMAP4 was rs109963253. All the five low RFI (high FE) 
Jersey cows were heterozygous (GA) at this SNP locus, 
while 60% (n = 3) of the high RFI (low FE) cows were 
homozygous (GG) (Supplementary Figure 1b). GIMAP4 
encodes for a GTPase binding protein responsible 
for regulating lymphocyte apoptosis (http://www.
genecards.org/cgi-bin/carddisp.pl?gene=GIMAP4). 
Hence in humans, the GIMAP4 gene has been shown 
to be involved in immunological responses [34]. We 
already in our previous paper [6] stated the importance 
of the GIMAP genes for the FE trait, since the GIMAP4 
gene was significantly higher expressed in high feed 
efficient than low feed efficient Jersey cows. The present 
study is thus in line with conclusions from previous 
studies, where function of immunological responses has 
been associated to productivity and FE in farm animals 

         

A)

B)

Figure 4: Heatmap showing SNPs corresponding to seven genes overlapping with previous QTLs for major traits in cattle QTL 
database (a) Local-eQTLs associated with genes in cows on the control (C) diet analysis; (b) Local-eQTLs associated with 
genes in cows on the hogh concentrate (HC) diet. Red: with at least one hit; Blue: no hit. 
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In addition, another four eQTLs associated to the 
gene HSD17B4 and UHRF1 expression were found as 
significant in the analysis for cows fed the HC diet (Sup-
plementary Figure 2a and Supplementary Figure 2b). In-
terestingly, these two genes were also previously found 
associated with the FE trait. The HSD17B4 gene encodes 
for a major enzyme involved in peroxisomal β-oxidation, 
and it was found to be upregulated in abdominal fat of 
low growth chicken [50], and this appears to be in line 
with the present study, where the HSD17B4 gene ex-
pression was upregulated in the high RFI Holstein cows. 
UHRF1 encodes for Ubiquitin like With PHD and Ring 
Finger Domains 1 (http://www.genecards.org/cgi-bin/
carddisp.pl?gene=UHRF1), which is an essential regula-
tor of DNA methylation. Several studies have identified 
that Ubiquitin family genes were significantly associated 
with RFI traits in Bos taurus [51,52]. In the present study 
UHRF1 gene was found significantly downregulated in 
high RFI Holstein cows.

Overlapping genomic regions for FE trait in the 
QTL database

In order to gain more information regarding the 
eQTLs that we discovered in the present study, we com-
pared the results of the SNPs locations with the previ-
ously reported QTLs and variants from GWAS study from 
the Animal genome cattle QTL database. We identified 
several overlaps of our eQTLs with QTLs from previous 
studies. The QTLs overlapping with our eQTLs were as-
sociated with a different type of traits (Figure 4a and 
Figure 4b).

The eQTLs which associated to the expression of 
ELOVL6 and FDXR genes are the most overlapped with 
many traits. Only the GIMAP4 gene was previously as-
sociated to production traits, such as RFI, rump width, 
metabolic body weight, body weight gain, body weight 
(yearling), body weight, body depth, average daily gain 
as well as average daily feed intake [53,54]. However, 
the same region contains QTLs for other traits, such as 
reproduction, milk, meat and carcass, health and exteri-
or association traits [55,56].

The fact that all these associations with different type 
of traits were found within this 1Mb region, shows that 
this must be a significant region with control points for 
several targeting genes. The eQTLs identified are close 
to the QTL for production traits and for FE traits. At the 
same time, this confirms that the candidate genes which 
associated to FE trait in our findings were also closely 
associated to several production traits. However, the 
association with other important traits can be a sign of 
double association between reproduction and produc-
tion traits, which were well discussed elsewhere [57]. 
Thus, the uses of genomic region information need to 
be tested and validated in a different and a larger pop-
ulation before further usage in any genomic selection 
procedures can be implemented.

tors in mature mammalian neuromuscular junctions. In 
general, this gene was never discussed before in rela-
tion with FE traits. Acetylcholine has been reported to 
influence hepatocyte glucose metabolism in rodents 
via actions on muscarinic receptors [40], but whether 
this is also the case in ruminants is not clear. Perhaps, 
more importantly, acetylcholine plays a critical role in 
the complex regulation of hypothalamic neuronal activ-
ity that influences feed intake [41], and in dairy cows, 
feed intake is a major factor limiting milk production in 
high-yielding dairy cows in early lactation [42].

Another interesting candidate identified in the anal-
yses of Holstein cows on the C diet was the ELOVL6 
gene. In our study, the top SNP targeting ELOVL6 gene 
was rs43315610. The ELOVL6 gene has previously been 
discovered as an important gene that influences FE 
in beef cattle and pigs [43,44]. ELOVL6, which is also 
known as elongation of very long chain fatty acids pro-
tein 6, is part of the pathway of de novo fatty acid syn-
thesis [45]. The lower expression of this gene in low RFI 
Holstein cows might be associated with low rates of de 
novo synthesis of fatty acids, as it has previously been 
described in pigs [44,46], and de novo synthesized fat-
ty acids constitute up to 50% of fatty acids in milk on 
a molecular weight basis [47]. This gene has also been 
associated to long chain fatty acid synthesis in beef cat-
tle [48]. Previously, the expression of ELOVL6 was found 
differentially expressed in liver, adipose tissue and mus-
cle [48]. In another study on QTL mapping for RFI in Hol-
stein calves, it was found that another gene involved in 
fatty acid metabolism, FABP4 gene were significantly 
associated with the top SNPs significantly associated 
RFI across three stages of age [49]. This gene is encoded 
for fatty acid binding protein which suggests that fatty 
acid synthesis and metabolism may be important parts 
of the RFI trait. In Jersey cattle, we did not observe any 
relation between RFI genotype and the ELOVL6 gene ex-
pression. We found that 80% (n = 4) of the low RFI (high 
FE) Holstein cows had a heterozygous (GA) genotype, 
while 20% (n = 1) were homozygous (GG) (Supplemen-
tary Figure 1d). Therefore, a heterozygous genotype is 
expected to favor high FE.

When cows were fed the C diet, rs134589272 was 
identified as an eQTL, which corresponded to the FDXR 
gene in Jersey cows. All (n = 5) low RFI (high FE) Jersey 
cows were heterozygous (GA) and had high expression 
of this gene, while 80% (n = 4) of the high RFI (low FE) 
Jersey cows were homozygous (GG) corresponding to 
a lower expression of the FDXR gene (Supplementary 
Figure 1e). For Holstein cows, RFI was not related nei-
ther to this eQTL nor to the genotype for the FDXR gene. 
Functions of the FDXR gene are related to cholesterol 
metabolism [6], which is an important feature of e.g. 
membrane synthesis, which is important for formation 
of the milk fat globule membrane covering secreted 
milk fat.
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Conclusion

To bridge the gap between genotype and pheno-
type, we attempted in this study to identify DEGs and 
HG’s among previously identified candidate genes for 
the FE trait. The identified local-eQTLs provide addition-
al evidence of the involvement of some of previously 
identified candidate genes in RFI determination, and 
our study provides new information on possible regula-
tory and causative genetic variants that can be used in 
genomics-based selection for FE in dairy cows. We iden-
tified eQTL associated to the expression of seven genes 
(BDH2, CHRNE, ELOVL6, GIMAP4, UHRF1, HSD17B4 and 
FDXR) that appear to be involved in metabolic pathways 
related to RFI and hence feed efficiency. The eQTLs 
overlapped with QTLs previously associated with FE 
trait (e.g. dry matter intake, longevity, body weight gain 
and net merit). Interestingly, Holstein and Jersey cows 
appear to rely on different strategies to achieve low RFI, 
and this was associated to cholesterol and lipid metabo-
lism related pathways in Holstein cows, but to immune 
and inflammatory related functions in Jersey cows. 
Thus, our findings suggest that the identified eQTLs can 
be used as potential biomarkers for feed efficiency and 
used to predict feed efficiency level. The genomic re-
gion around the identified SNP markers could be includ-
ed in genomics/genetic-based selection in Holstein and 
Jersey. However, before applying this new knowledge 
in genetic testing or in commercial applications, the 
results must be validated in a larger population, and it 
must be further analyzed if pleiotropic effects of eQTLs 
also include adverse disease traits.
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Supplementary Table 1: List of differentially expressed genes for Holstein.

  Ensembl.Gene.ID Associated.Gene.Name baseMean log2FoldChange padj
1 ENSBTAG00000000170  Uncharacterized protein 226.9268 -0.42496 0.013405

2 ENSBTAG00000000654 ARMC4 58.66466 -0.59056 0.000358

3 ENSBTAG00000001009 HCLS1 440.5817 0.322596 0.028031

4 ENSBTAG00000001154 DGAT2 511.454 -0.36983 0.0292

5 ENSBTAG00000001204 KIAA1462 225.2099 -0.41583 0.017639

6 ENSBTAG00000002224 UHRF1 77.58827 -0.49601 0.000209

7 ENSBTAG00000002526 BDH2 1382.085 -0.57884 3.67E-16

8 ENSBTAG00000002705 REC8 304.6793 -0.36531 0.00171

9 ENSBTAG00000003696 CCDC64 45.09122 0.445439 0.026992

10 ENSBTAG00000003718 HACL1 6329.552 0.315377 0.038742

11 ENSBTAG00000004076 OXER1 223.6781 -0.43485 0.010458

12 ENSBTAG00000004558 C15orf48 89.05707 0.504892 0.003366

13 ENSBTAG00000004908 CHRNE 246.4988 -0.74877 6.38E-08

14 ENSBTAG00000005287 CYP7A1 4126.209 0.456229 0.013057

15 ENSBTAG00000005629 AIM1L 913.5876 -0.29846 0.003366

16 ENSBTAG00000006452 CD3D 77.7469 0.40702 0.036637

17 ENSBTAG00000006599 INHBE 605.9473 -0.4237 0.044088

18 ENSBTAG00000006675 PCSK6 3039.353 -0.1866 0.028031

19 ENSBTAG00000006934 CYP11A1 649.8806 0.48638 0.004844

20 ENSBTAG00000006978 HSD17B4 13797.37 0.301172 0.026992

21 ENSBTAG00000006999 RYR1 148.3439 0.516872 0.001988

22 ENSBTAG00000007554 IFI6 136.8134 0.375726 0.049041

23 ENSBTAG00000007828 SLA 118.2561 0.322695 0.038742

24 ENSBTAG00000007895 SLC20A1 880.0804 -0.56325 1.36E-05

25 ENSBTAG00000008160 MBOAT2 440.5952 0.344004 0.043864

26 ENSBTAG00000008424 ABR 459.6035 0.329325 0.031825

27 ENSBTAG00000008913 TMEM98 333.1394 -0.51804 0.001004

28 ENSBTAG00000009085 SLC35A5 1691.358 0.277516 0.006652

29 ENSBTAG00000009137 NKG7 215.4444 0.380987 0.028031

30 ENSBTAG00000009263 MFSD1 2661.739 0.240088 0.013057

31 ENSBTAG00000010463  Uncharacterized protein 394.1386 0.383919 0.002458

32 ENSBTAG00000010564 ELOVL6 994.7373 0.43905 0.026992

33 ENSBTAG00000011771 FICD 107.9076 -0.35997 0.037153

34 ENSBTAG00000011832 ALDH18A1 404.9092 0.313185 0.025962

35 ENSBTAG00000012007 SOCS2 835.3211 0.422255 0.043864

36 ENSBTAG00000012995 CCDC109B 52.93337 0.424138 0.037153

37 ENSBTAG00000013596 NR1H4 1215.489 0.241071 0.011983

38 ENSBTAG00000014064 FGFR2 1554.53 -0.40189 0.001141

39 ENSBTAG00000014791 CTH 224.7532 -0.5345 1.74E-06

40 ENSBTAG00000015313 CEACAM19 51.60282 -0.94436 1.81E-14

41 ENSBTAG00000015419 ARHGEF37 204.9786 0.471594 0.001988

42 ENSBTAG00000016542 LAMB3 1783.587 0.424674 0.024742

43 ENSBTAG00000017567 ACACA 844.7716 0.404374 0.005072

44 ENSBTAG00000018116 MTFP1 88.16198 -0.38701 0.025962

45 ENSBTAG00000018548 INTS7 6522.273 0.238158 0.001988

46 ENSBTAG00000018604 SEMA4G 4847.004 -0.16063 0.049041

47 ENSBTAG00000018723 SLC25A34 96.51437 -0.44163 0.0292

48 ENSBTAG00000019585 MYOM1 962.386 0.453079 0.025089
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49 ENSBTAG00000020116 JSP.1 2041.873 0.323612 0.016775

50 ENSBTAG00000020371 ACOT8 312.3978 0.417754 0.013405

51 ENSBTAG00000020375  Uncharacterized protein 5129.183 0.421767 0.031078

52 ENSBTAG00000020499  Uncharacterized protein 68.21442 0.571805 0.000358

53 ENSBTAG00000020755 SELP 478.8212 -0.39216 0.014977

54 ENSBTAG00000021746 ANXA5 333.8561 -0.38421 0.038742

55 ENSBTAG00000023851 FAM102A 229.0066 -0.50952 0.001422

56 ENSBTAG00000023929 FOSL2 189.6217 0.424473 0.028031

57 ENSBTAG00000024044 CDKL4 82.11652 0.51475 0.001988

58 ENSBTAG00000025258  Uncharacterized protein 102.6902 0.544344 0.00171

59 ENSBTAG00000025898 TBC1D8 442.302 0.271973 0.047591

60 ENSBTAG00000026779 LYZ 516.8438 0.643794 6.78E-06

61 ENSBTAG00000030966 TAF6 419.5936 -0.25649 0.010458

62 ENSBTAG00000035998 CKB 332.0427 0.385047 0.049041

63 ENSBTAG00000037913  Uncharacterized protein 436.5267 0.212286 0.042867

64 ENSBTAG00000037917 SLC17A1 2786.405 0.438054 0.017094

65 ENSBTAG00000038496 CR2 1355.757 -0.54159 3.72E-06

66 ENSBTAG00000038962 SLC6A11 2637.353 -0.37017 0.010028

67 ENSBTAG00000039731 RND3 1761.21 -0.25436 0.028031

68 ENSBTAG00000046076  Uncharacterized protein 124.7543 -0.41978 0.04847

69 ENSBTAG00000046730  Uncharacterized protein 139.8274 0.365363 0.049041

70 ENSBTAG00000047529  Uncharacterized protein 110.8376 -0.53501 0.001896

+v e log2 fold change = upregulated in low feed efficiency group; - ve log2 fold change = downregulated in low feed efficiency 
group.

Supplementary Table 2: List of hub genes for Holstein.

  Ensembl gene ID Gene name Module membership Gene significance
1 ENSBTAG00000000197 TRMT10A 0.801 0.576

2 ENSBTAG00000001774 SPRY2 -0.814 -0.52

3 ENSBTAG00000001950 RDH11 0.852 0.441

4 ENSBTAG00000002412 CYB5B 0.907 0.633

5 ENSBTAG00000002435 PTPRE 0.852 0.767

6 ENSBTAG00000002714 GNAI1 0.901 0.557

7 ENSBTAG00000002827 ACAT2 0.946 0.691

8 ENSBTAG00000002966 DNAJC13 0.813 0.71

9 ENSBTAG00000003068 MSMO1 0.852 0.579

10 ENSBTAG00000003305 NCF1 0.802 0.642

11 ENSBTAG00000003696 CCDC64 0.837 0.679

12 ENSBTAG00000003718 HACL1 0.854 0.705

13 ENSBTAG00000003948 0.919 0.559

14 ENSBTAG00000004075 IDI1 0.87 0.607

15 ENSBTAG00000004688 DHCR24 0.859 0.555

16 ENSBTAG00000005183 MVK 0.906 0.497

17 ENSBTAG00000005498 SQLE 0.816 0.442

18 ENSBTAG00000005650 SKAP2 0.826 0.589

19 ENSBTAG00000005976 HSD17B7 0.809 0.55

20 ENSBTAG00000006999 RYR1 0.929 0.763

21 ENSBTAG00000007014 CEP63 0.823 0.623

22 ENSBTAG00000007079 LCP1 0.806 0.583

23 ENSBTAG00000007840 HMGCR 0.888 0.522

24 ENSBTAG00000007844 CETN2 0.836 0.335
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25 ENSBTAG00000008160 MBOAT2 0.865 0.534

26 ENSBTAG00000008329 CYTIP 0.823 0.477

27 ENSBTAG00000010347 EZR 0.85 0.506

28 ENSBTAG00000011146 RAB8B 0.884 0.473

29 ENSBTAG00000011839 HMGCS1 0.871 0.507

30 ENSBTAG00000012059 MVD 0.831 0.364

31 ENSBTAG00000012170 UBL3 0.813 0.729

32 ENSBTAG00000012432 FDFT1 0.821 0.529

33 ENSBTAG00000012695 LCK 0.837 0.534

34 ENSBTAG00000013284 0.886 0.736

35 ENSBTAG00000013303 ACSS2 0.866 0.571

36 ENSBTAG00000013749 RHOQ 0.868 0.525

37 ENSBTAG00000014517 KLB 0.857 0.64

38 ENSBTAG00000015327 SPTAN1 0.899 0.637

39 ENSBTAG00000015980 FASN 0.859 0.49

40 ENSBTAG00000016445 YME1L1 0.807 0.717

41 ENSBTAG00000016465 DHCR7 0.903 0.521

42 ENSBTAG00000016709 NT5C3A 0.824 0.615

43 ENSBTAG00000016721 ZNF791 0.824 0.559

44 ENSBTAG00000016740 ACLY 0.918 0.52

45 ENSBTAG00000018936 LSS 0.839 0.58

46 ENSBTAG00000018959 RAB11A 0.828 0.67

47 ENSBTAG00000020984 RAPGEF4 0.856 0.775

48 ENSBTAG00000021842 0.804 0.492

49 ENSBTAG00000030951 0.844 0.508

50 ENSBTAG00000036260 LPXN 0.801 0.391

51 ENSBTAG00000037413 TMEM164 0.81 0.468

52 ENSBTAG00000047970   0.835 0.558

Supplementary Table 3: List of differentially expressed genes for Jersey.

  Ensembl.Gene.ID Associated.Gene.Name baseMean log2FoldChange padj
1 ENSBTAG00000006525 FDXR 125.97 -0.64501 6.21E-13

2 ENSBTAG00000008066 PKDREJ 76.74951 0.561566 1.15E-05

3 ENSBTAG00000013689 MCTP2 148.2616 0.528627 1.07E-05

4 ENSBTAG00000027727 Uncharacterized protein 284.1996 0.479634 0.000373

5 ENSBTAG00000038487 ZNF613 155.3981 -0.39026 0.026308

6 ENSBTAG00000046257 GIMAP4 650.1794 -0.38726 0.0024

7 ENSBTAG00000005182 BOLA-A 434.9538 -0.38721 0.001332

8 ENSBTAG00000014402 GIMAP8 713.0488 -0.38164 0.008566

9 ENSBTAG00000045727 Uncharacterized protein 921.1041 0.380952 0.032465

10 ENSBTAG00000019026 EXTL2 34.58975 0.377761 0.03724

11 ENSBTAG00000037440 ZNF197 281.1009 0.357972 0.016391

12 ENSBTAG00000021751 RASEF 36.02273 -0.3504 0.010571

13 ENSBTAG00000027205 PGBD5 30.06234 -0.34041 0.026308

14 ENSBTAG00000031737 TMEM102 26.52997 0.338561 0.03724

15 ENSBTAG00000009087 GNG10 1516.44 -0.32465 0.026308

16 ENSBTAG00000040323 Uncharacterized protein 1003.599 -0.32071 0.026308

17 ENSBTAG00000014161 ARMC10 258.84 -0.2983 0.026308

18 ENSBTAG00000013106 C19orf81 26.34468 0.295346 0.026308

19 ENSBTAG00000047379 CYP3A4 2422.366 0.286561 0.043386

+ ve log2 fold change = upregulated in low feed efficiency group; - ve log2 fold change = downregulated in low feed efficiency group.
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  Ensembl gene ID Gene name Module membership Gene significance
1 ENSBTAG00000000431 TRDC 0.858 -0.411

2 ENSBTAG00000000432 TRAC 0.86 -0.526

3 ENSBTAG00000000715 0.889 -0.487

4 ENSBTAG00000001198 0.81 -0.555

5 ENSBTAG00000002669 RASSF4 0.802 -0.722

6 ENSBTAG00000003037 0.829 -0.485

7 ENSBTAG00000004894 0.907 -0.497

8 ENSBTAG00000004917 KLRK1 0.826 -0.437

9 ENSBTAG00000005628 0.818 -0.49

10 ENSBTAG00000005892 ZAP70 0.864 -0.609

11 ENSBTAG00000006452 CD3D 0.9 -0.494

12 ENSBTAG00000006552 LAMP3 0.827 -0.501

13 ENSBTAG00000007191 CCL5 0.909 -0.48

14 ENSBTAG00000008401 PFKFB3 0.808 -0.547

15 ENSBTAG00000009381 LCP2 0.857 -0.654

16 ENSBTAG00000012695 LCK 0.852 -0.51

17 ENSBTAG00000013730 CD5 0.857 -0.403

18 ENSBTAG00000014725 CD27 0.822 -0.474

19 ENSBTAG00000015708 CXCR6 0.879 -0.469

20 ENSBTAG00000015710 CD3E 0.875 -0.537

21 ENSBTAG00000017256 CD2 0.914 -0.474

22 ENSBTAG00000019403 MALSU1 0.8 -0.536

23 ENSBTAG00000020904 JAK3 0.857 -0.439

24 ENSBTAG00000027246 UBD 0.888 -0.621

25 ENSBTAG00000030426 0.889 -0.379

26 ENSBTAG00000037510 0.853 -0.433

27 ENSBTAG00000038639 CXCL9 0.906 -0.425

28 ENSBTAG00000039588 0.815 -0.535

29 ENSBTAG00000047988   0.842 -0.365

Supplementary Table 4: List of hub genes for Holstein.
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Supplementary Figure 1: a-e) The boxplots show the five significant eQTLs with the associated genes for control diet group 
analysis. X-axis: genotypes; y-axis: gene expression (log2); red line: Holstein; blue line: Jersey.
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Supplementary Figure 2: a,b) The boxplots show the two significant eQTLs with the associated genes for high concentrate 
diet group analysis. x-axis: genotypes; y-axis: gene expression (log2); red line: Holstein; blue line: Jersey.
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