
u n i ve r s i t y  o f  co pe n h ag e n  

Veritaps

Truth estimation from mobile interaction

Mottelson, Aske; Knibbe, Jarrod; Hornbæk, Kasper

Published in:
CHI 2018 - Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems

DOI:
10.1145/3173574.3174135

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Mottelson, A., Knibbe, J., & Hornbæk, K. (2018). Veritaps: Truth estimation from mobile interaction. In CHI 2018
- Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems: Engage with CHI [561]
Association for Computing Machinery. https://doi.org/10.1145/3173574.3174135

Download date: 09. apr.. 2020

https://doi.org/10.1145/3173574.3174135
https://curis.ku.dk/portal/da/persons/aske-mottelson(3d052bd9-fd04-499a-bb39-67a2be5ef1e1).html
https://curis.ku.dk/portal/da/persons/kasper-hornbaek(148d1e88-e306-46e1-9218-f420470b1ce1).html
https://curis.ku.dk/portal/da/publications/veritaps(4e737ce7-93f1-4d61-ad6c-36b37f6d972c).html
https://doi.org/10.1145/3173574.3174135


Veritaps: Truth Estimation from Mobile Interaction

Aske Mottelson, Jarrod Knibbe, Kasper Hornbæk
Department of Computer Science

University of Copenhagen
DK-2300 Copenhagen, Denmark
{amot, jarrod, kash}@di.ku.dk

ABSTRACT
We introduce the concept of Veritaps: a communication layer
to help users identify truths and lies in mobile input. Existing
lie detection research typically uses features not suitable for
the breadth of mobile interaction. We explore the feasibility of
detecting lies across all mobile touch interaction using sensor
data from commodity smartphones. We report on three studies
in which we collect discrete, truth-labelled mobile input using
swipes and taps. The studies demonstrate the potential of
using mobile interaction as a truth estimator by employing
features such as touch pressure and the inter-tap details of
number entry, for example. In our final study, we report an
F1-score of .98 for classifying truths and .57 for lies. Finally
we sketch three potential future scenarios of using lie detection
in mobile applications; as a security measure during online
log-in, a trust layer during online sale negotiations, and a tool
for exploring self-deception.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation: (e.g., HCI)

Author Keywords
Lie detection; Polygraph; Dishonesty; Deception; Mobile
Input; Smartphones

INTRODUCTION
We frequently lie, whether to advance our own aims or to pro-
tect others [13]. Consequently, we are also subject to many lies.
Though this provides ample opportunity for practice, humans
are only slightly better than chance at detecting lies and exhibit
a positive bias in assessing the truth [3]. This deficiency has
led to a century-long interest in lie detection. Visual, vocal,
and physiological features of communication have all been
explored [25], but, to date, natural language processing leads
the way in identifying lies in digital communication. Through
linguistic, psychological, and personal features, research has
demonstrated success in classifying dishonest prose such as
spam and deceptive reviews [18].
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However, writing prose covers only a small part of our digital
input. As we increasingly use our mobile devices for digital
communication, our input also comes to include individual
taps and swipes, such as button clicks, checkbox selection,
and number entry. This leaves much digital activity open
for deceptive behaviour with our approximately chance-level
truth assessments. To this end, we explore a content-agnostic
approach to mobile lie detection, ignoring the content of the
input (i.e., input text), and enabling lie detection across a much
wider spectrum of input.

To enable content agnostic lie detection, we draw on research
demonstrating that a variety of information is hidden in the
details of mobile input, such as stress [14], boredom [19],
and affective states [16]. We explore whether dishonesty and
deception are similarly hidden. Research suggests the pres-
ence of physiological responses to lying, such as increased
hand/finger activity [25]. We hypothesize that these responses,
although subtle, can be identified through smartphone sensors.

We test this across three crowdsourced smartphone studies. In
Study I, we verify that lying on a smartphone exhibits similar
behavioural cues to lying in conversation, and that this can
support the separation of honest and dishonest responses. In
this study, following the paradigm of Williams et al. [26],
participants are instructed to tell the truth or lie, and the cues
are identified through response time. Visible trends in other
sensor data, such as input speed, motivate a second study using
a more natural, spontaneous lying paradigm. The results from
Study II show that acceleration, rotation, and inter-key-press
duration can drive lie classification with an F1-score of .77.
Finally, we validate this result with an additional study, where
we explore our identified features from Study II with a dice
paradigm. In Study III we show 98% precision, and 97% recall
for truths (F1 = .98), and 65% precision and 59% recall for
lies (F1 = .57).

Following the studies, we sketch the concept of Veritaps, an
additional layer of communication to assist mobile device
users in their own lie detection accuracy. Veritaps enables
users to automatically share a belief state indicator alongside
their input. With high accuracy, Veritaps can label truthful
input . We can also label inconclusive taps and swipes

, informing the user that they should use caution or seek
further information in assessing this input. We illustrate the
opportunities of Veritaps across a range of example scenarios,
including (i) automated lie analysis when completing online
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forms, (ii) increased richness of trust in mobile messaging,
and (iii) as a prompt to prevent self-deception.

We present the following contributions:

1. An exploration of lie detection across mobile devices, re-
gardless of the input content.

2. Results from three studies, showing dishonesty affects user
interaction with mobile devices.

3. Convincing classification rates of lies in mobile entry, po-
tentially improving a user’s ability to judge the veracity of
others’ mobile input.

4. Veritaps: a concept that allows users to share their belief
states with other users and applications.

RELATED WORK
Our work explores lie detection in mobile input. Specifically,
we are interested in classifying lying through sensor data,
rather than actual user input, in order to make lie detection
available for a broader range of mobile input types.

Classifying Behaviors from Mobile Sensors
Research shows that complex cognitive and affective phenom-
ena can be inferred using commodity sensors. The linearity of
swiping, for example, correlates with emotions during game-
play [6]. Similarly, speed, acceleration, and precision in touch
input are indicative of affective states [16]. Mobile activity
can also provide insight into a user’s thinking, where app ac-
tivity, battery level, and time of day are strong correlates of
boredom [19].

Based on the idea of using mobile sensor data to support real-
time inferences about human cognition, we explore indicators
of lying in mobile sensor data.

Lie Detection
Deceptive behavior carries a range of verbal and nonverbal
cues, and research has explored various strategies for using
such cues to uncover deception. Among the most famous
of these strategies is the polygraph. Polygraphs examine the
subject’s heart rate, galvanic skin response, respiration, and
blood pressure as physiological markers of deception. It is
widely accepted, however, that the interpretation of physio-
logical responses and, thus, polygraph results, is ‘a complex
clinical task’ [20]. The debate continues regarding the ac-
curacy and applicability of polygraph testing. For example,
a large body of research assessing the validity of polygraph
techniques uses ‘mock crime’ scenarios, which inherently lack
the consequences of real crime scenarios, and thus call into
question the validity of their results [4].

Other work has provided evidence on verbal, visual, and vo-
cal cues to deception (e.g., [25]). Zuckerman et al. [27], for
example, suggested that lying is a more cognitively complex
task than telling the truth, requiring liars to formulate inter-
nally and externally consistent events. These greater cognitive
challenges result in greater response latency, more hesitations,
increased pupil dilations, and fewer heartbeats.

More recently, research has shown that lies include more com-
plex imagery, longer words, and a greater number of pauses

than truths [1, 11, 25]. This has led to automatic lie detec-
tion in text. Mihalcea et al. [15], for example, reported 71%
accuracy in lie detection across three text corpuses. Ott et
al. [18] used linguistic features (such as average word length
or misspelling rate), psychological features (such as social or
emotional clues), and personal features (such as references to
money or religion), to classify spam and deceptive reviews.

Lying has also become a subject of exploration in crowdsourc-
ing studies. Gino et al. [7] asked participants to report the
outcome of random events (such as dice rolling or coin toss-
ing). They identify lying across all of the input based on the
deviation from the expected mean, offering an insight into
lying across an entire study.

Opportunities for Lie Detection in Smartphones
While current research points towards physiological- and
content-based lie detection, a common and robust strategy
to lie detection has yet to be derived. We look for a commod-
ity, content-agnostic approach to lie detection, that can be used
to identify deception in basic mobile input; taps and swipes.
We hypothesize that the bodily influences of deception can be
measured using sensors available in consumer smartphones,
making commodity lie detecting feasible.

STUDY I: SIMPLE LIES
Research shows that lying takes longer than telling the
truth [24]. A common explanation is that the construction
of a lie forces additional cognitive load compared to telling
the truth, and thus causes longer response times.

Study I had two goals: (i) to establish whether lying through
touch interaction on mobile devices produces results that are
consistent with verbal responses in a laboratory, and (ii) to
demonstrate the feasibility of separating honest and dishon-
est activity using mobile interaction data. We ran a mobile
crowdsourced study of an experimental paradigm originally
developed Williams et al. [26]. The participants were asked to
either lie or tell the truth about the color of the screen, using
common mobile UI elements. This paradigm offers an experi-
mental procedure for studying both instructed and voluntary
lies, while maintaining an even distribution of lies and truths.
This provides a simple method for initially investigating dif-
ferences in interaction patterns between telling lies and truths
using mobile devices.

Task
The experiment progressed as a series of random-ordered trials,
each beginning with an objective: TRUTH, LIE, or CHOICE.
Directed trials (where participants were told to LIE or tell the
TRUTH) presented a continue button, and the CHOICE trials
had two buttons prompting the user to choose between lying
or telling the truth (see Figures 1a and 1b).

Upon establishing the objective, participants were presented
with a screen with a red or blue background. The participant’s
objective was written as a visual reminder at the top of the
screen. The UI controls (button or slider) appeared at the
bottom of the screen (see Figure 1d). The order of UI controls
was randomised. Participants then had to activate the correct
UI control according to (a) the color of the background, (b)
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(a) (b) (c) (d)

Figure 1: Example screens from the experimental application used for Study I. The figures show (a) a directed trial pre-screen, (b) a choice trial pre-
screen, (c) a trial with sliders - where the participant should slide the ‘RED’ slider, in this case, and (d) a trial with buttons - where the participant
should select the ‘RED’ button, in this case.

the text on the UI control, and (c) the trial’s objective (see
Figure 1c). Trials were separated with a white screen for
1s. Participants were instructed to respond as quickly and
accurately as possible. Participants were asked to lie and tell
the truth half of the time each in the choice condition.

The task was similar to the original study [26], with the ex-
ceptions that: (i) instead of a lab-based study, participants
were recruited online and completed the experiment on their
own phones, (ii) vocal responses were replaced with selections
using buttons or sliders, and (iii) the colors were changed to be
visible for color blind (red and blue, instead of red and green).

Design
The study used a 2×2×2 within-subjects design. The inde-
pendent variables were honesty of response (lie vs. truth), type
of instruction (directed vs. choice), and UI (button vs. slider).
The dependent variable was response time. Each participant
did a total of 192 trials, with 64 from the directed to lie con-
dition, 64 from the directed to tell the truth condition, and 64
from the choice condition. In half of the trials participants
responded by tapping a button, and the other half by dragging
a slider. The order of trials was randomized. The study took
15 minutes on average.

Participants
We recruited 100 participants from Mechanical Turk, aged
19-59 (M = 31), 33 females. Participants installed our ex-
perimental application on their own Android smart phones
(Android version ≥ 6.0), and followed onscreen instructions.
Participants were reimbursed with $2.00 USD.

To ensure only qualified participation, we (i) required 90%
HIT approval, (ii) had participants pass a qualification test
about the task before starting the HIT, (iii) stored a unique
device ID to avoid multiple participations, and (iv) ensured
that app and MTurk HIT participation count matched.

Data
Of the 100 participants, ten never lied and one never told the
truth in the choice trials, and were therefore removed. The

remaining 89 participants performed a total of 16,671 trials.
We removed (i) the first 10 trials per participant as warm-up
rounds, (ii) 460 trials (2.9%) that lasted more than 4 seconds,
and (iii) 623 incorrectly answered trials (3.9%). The analysis
is made on a resulting data set comprising 14,788 trials.

Results
Lying took longer than telling the truth, both when answering
with a button and a slider, and when being told whether to lie
or when given the option to choose (see Figure 2).

Button Slider Button Slider
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Figure 2: Response times for telling truths and lies using two different
UIs both for the directed and choice conditions. Error bars show 95%
confidence intervals. It took on average longer to tell a lie for both UIs.

Except for directed trials with the slider, participants took
significantly longer when lying (on .5, see Table 1). The effect
was larger when participants chose whether to lie or not.

Summary
The results show that constructing a lie is a cognitively harder
task than simply telling the truth, reflected by the increased
response time when participants were asked to lie about the
background color of a mobile UI. This corroborates the find-
ings of Williams et al. [26]. While the data sourced do not
allow for an effective binary discrimination of truth and lies per
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Condition UI F df p Cohen’s d

Directed Button 5.05 176 .026 * 0.34
Directed Slider 3.03 176 .084 0.26
Choice Button 8.94 176 .003 ** 0.45
Choice Slider 7.00 176 .009 ** 0.40

Table 1: Results from an ANOVA comparing truths and lies. Lying
caused significantly longer responses for close to all conditions, with the
largest effect for choice trials.

entry, the results imply the feasibility of separating honest and
dishonest activity using mobile interaction data, specifically
timing in this case. We further investigate if this difference
can be observed for other parameters in Study II-III.

Although not statistically significant, we observed that slider
interactions were performed faster (by 4.4%) when telling the
truth; F(1,175) = 2.16, p = 0.14. Although mean response
times pertaining to honest and dishonest behaviour were dis-
tinguishable in this study, we were keen to explore whether
additional features become more prominent with (a) sponta-
neous lying, and (b) a more natural distribution of truths and
lies (i.e., [23]).

STUDY II: ULTIMATUM GAME
We ran a second study to analyze natural deceptive behavior.
We employed a mobile version of the Ultimatum game, a com-
monly studied task in behavioral economics. In this variant
the participants are offered an incentive to lie.

In the Ultimatum Game, the first participant (the proposer)
receives a sum of money and proposes a division of the money
between themselves and the second participant (the respon-
der). The responder then either accepts the division, giving
both participants the proposed funds, or rejects it altogether
resulting in no payout for any of the participants. In the variant
developed by Besancenot et al. [2], which we use, the proposer
is given the opportunity to lie about the amount of allocated
funds. Therefore, for each trial, the proposer to the responder
(i) declares the amount that was allocated and (ii) proposes a
division. This provides a monetary incentive for the partici-
pant to understate the provided funds, enabling the study of
naturally occurring dishonest behavior.

Participants
We recruited 41 participants from the USA from Mechanical
Turk, aged 22–63 (M = 33); 18 females, 36 right-handed. Par-
ticipants were told that they were taking part in an economics
experiment. Participants installed our experimental applica-
tion on their own Android smart phones (Android version ≥
6.0), and followed onscreen instructions. Participants were
reimbursed $1.00 USD, in addition to the money collected
throughout the experiment, which ranged from $1.74-$4.52
(M = $3.35). The experiment took at most 10 minutes. We
employed the same qualification standards as for Study I.

Design
Each participant did 10 trials of proposals, excluding a warm-
up round. The independent variable was funds allocated (25-
99¢). The dependent variables were declared allocated funds

and the proposed division of money. Additionally, throughout
the trials, the mobile application collected data related to inter-
action with the UI using touch, pressure, accelerometer, and
gyro sensors.

All participants had the role of the proposer. Participants
were paired with an AI in the responder role, presented as
the human worker Mary with a fictional worker ID. Mary
would simulate human latency when responding to proposals,
and would accept or reject proposals based on the available
heuristics and basic economic and moral behavior: greed was
punished while fair divisions were rewarded.

The AI was implemented as nine simple steps that would
accept offers deemed favorable, or refuse offers that were
either directly too low (< 25¢), or too unfair (3P < F), where
P is the proposal, and F the declared funds. The AI would
also reject offers when they repeatedly showed lower declared
funds than expected from a random sample. If all steps passed,
a 75% chance of acceptance was returned, to introduce some
degree of unpredictable behavior.

Mary did not know whether the participant was in fact honest
or dishonest, but instead reasoned based on the distribution of
declared allocations from all trials. Mary accepted 86% of all
proposals made (very similar to human behaviour observed in
other of the Ultimatum game studies [17]).

Procedure
Upon installing and opening the experimental application, par-
ticipants were informed that they were playing the proposer
and were paired with our AI (under the guise of another crowd-
worker). For each of the 11 rounds, an amount of US cents
between 25 and 99 were allocated to the participant. The par-
ticipant would then, using num-pads, first state the amount of
allocated funds (about which they could lie), and then propose
a division (see Figure 3a).

(a) (b)

Figure 3: The experimental application used in Study II. Figures show
(a) the screen where participants declare the allocated funds and pro-
pose a division, and (b) a positive response from the AI, Mary, acting as
another human worker.
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Shortly hereafter, the participant would receive a notification
of whether the responder (Mary) had accepted the division
(see Figure 3b). Participants collected money throughout the
trials, and were paid according to their final score to create a
monetary incentive to lie.

Data
An entry was defined as the window of time between when
the proposal screen would appear (see Figure 3a), and until
the participant hit OK. The resulting data set comprised 41
participants and 410 entries.

Participants lied about the available funds on average 35.1% of
time; this was most prominent when the allocated funds were
high. Seventeen participants never understated the available
funds (59% lied at least once). Three participants understated
at every entry. Participants discounted the actual endowment
by 17.4% on average. The crowdsourced participants ap-
pear more loyal than laboratory participants (Besancenot et
al. found that on average 88.5% of the proposers discount the
actual endowment by 20.5% [2]); in this study we observe that
41% of the participants never lied at all, consistent with some
feedback we received, such as:

It seemed fair to me to split the money evenly. I don’t
believe in dishonesty so I did not want to lie

– Crowdworker

Classification
We built a binary truth/lie classifier based on the data obtained.
We defined a lie as an entry where the declared funds were
lower than the allocated.

Choice of Classifier
We tried a range of classification algorithms, including en-
semble methods. An SVM with a radial basis function kernel
provided the most promising classification accuracy. Hyper
parameters were selected using grid search. The classifier was
developed in Python using the ML library Scikit-learn.

Feature Generation
Features were chosen based on previous work in classification
of human factors using mobile devices (e.g., [16, 19]), such
as speed, precision, rotation, and acceleration (sampled at 50
Hz). We also included features from empirical observations of
deception (e.g., [25]), such as immediacy and response length.

Feature Selection
We clustered our features in related groups (see Table 2), and
handpicked the effective predictors for truth classification. The
feature groups acceleration and num-pad presented the most
viable features for classifying truths and lies, and were thus
shown in our final classifier (i.e., manual feature selection).

Performance
We measure how well our predictor works, by reporting the
average binary F1-score obtained over a randomized 5-fold
cross validation. The F1-score can be interpreted as a weighted
average of the precision and recall, where an F1-score reaches

Feature Group Features Description

Timing immediacy t before first event
response entry duration

Finger size touch area finger contact size

Num-pad key dynamics see [5]
hold-time button hold-down time
tap precision distance to target center

Button clicks hold-time button hold-down time
click area quadrant activated
backspaces number of deletions

Done-button taps number of times
precision distance to target center
hold-time button hold-down time
pressure screen pressure
click area quadrant activated

Acceleration x-, y-, and z a for all axes

Rotation α-, β -, and γ ω around all axes

Signal Magnitude
√

x2 + y2 + z2 for both a and ω

Table 2: Feature groups and specific features for each group.

its best value at 1 and worst score at 0, and is defined as:

F1 = 2× precision× recall
precision+ recall

where precision and recall relate to true positives (TP), false
positives (FP), and false negatives (FN) as:

precision =
TP

TP+FP
, recall =

TP
TP+FN

Using a randomized 5-fold cross validation we obtain preci-
sions of 81% and 66% for truths and lies respectively. The
rates for recall are 88% and 52% for truths and lies respec-
tively. This yields an average F1-score of .77; .81 for truths
and .66 for lies. These performances are well over both chance
level (.50), the baseline (.65), and human performance [3].

How Lies and Truths Differ
Next we report on how interaction with the mobile UI differed
between honest and dishonest entries, in particular features
that varied with the honesty of the interaction. We inspect
the distribution of features using density plots: blue areas rep-
resent the prevalence of honest entries; red areas represent
dishonest entries (those with deflated declared funds). Note
that a single feature seldom alone is enough to support classifi-
cation. Instead combinations of features make up the decision,
which is not clear from a single feature’s distribution.

Acceleration
We observed that a low mean acceleration was most frequent
among honest entries. This suggests that honest entries re-
sulted in less hand movement by the device-holding hand
(their non-dominant hand). This was true both on the x-axis,
and the z-axis (see Figure 4). This follows findings from an
existing study of non-phone deceit [25], which showed that
dishonesty causes increased hand/finger activity.
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0 0.12m s2

Dishonest Honest

Figure 4: Mean acceleration on the z-axis during an entry. Entries to-
wards the low spectrum are predominately honest.

Num-pad
For each entry an amount of cents between 25 and 99 was
allocated, requiring participants to input a two-digit number in
the declared input field using a num-pad. We observe that the
duration between the first key event and the second key event
is higher for dishonest entries (see Figure 5). This suggests
that participants decide whether to lie, and by how much, per
individual digit, rather than per input.

0 8000

Dishonest
Honest

ms

Figure 5: Duration between first and second num-pad key event. Truth-
ful entries show shorter durations between the first two num-key presses.

Our num-pad dialog implementation could be dismissed by
tapping outside of the num-pad area (instead of clicking ‘OK’).
Additionally, if, after having entered a number, the participants
decided to correct their entry, additional ‘OK’ taps could be
performed. The more taps on the ‘OK’ button in the num-pad,
the more likely an entry was to be honest (see Figure 6); we
almost exclusively observe dialog dismissal amongst dishonest
entries, and we almost only find honest entries for high number
of taps on ‘OK’1.

−1 4N

Dishonest
Honest

Figure 6: Total number of taps on the ‘OK’ button in the num-pad. Hon-
est entries tend to contain more taps on ‘OK’; almost only dishonest
entries closed the dialog without confirming ‘OK’; almost only honest
entries reopened the dialogue and pressed ‘OK’ again.

Summary
Study II shows that the way people interact with their mobile
UI can change with the level of honesty of the action. Specif-
ically, movement of the phone (acceleration) and num-pad
interactions varied. This increases our confidence in the feasi-
bility of using sensor data to estimate the veracity of input. We
built a classifier based on smartphone sensor data and achieved
an average F1-score of .77. This classification accuracy shows
that mobile sensor data can be a promising path towards lie
1This may also suggest that honest users lied initially, before correct-
ing their input to the truth. Dishonest users may show reluctance to
‘confirm’ their lie, and thus avoid pressing ‘OK’. Further research is
needed to verify this behaviour.

detection. To validate these results, and to assess whether the
results generalize to other settings, we ran a third study.

STUDY III: YATZY GAME
Both Study I and Study II showed that we can observe differ-
ences in interaction data between lies and truths using mobile
UIs. In Study I, participants were instructed to lie and response
time was the only distinguishing feature. In Study II, partici-
pants were made aware that they could lie without punishment,
resulting in a higher proportion of lies than expected in ev-
eryday interaction [23]. From this study, a wider spectrum of
mobile input became valuable features for classification.

In order to validate the classification results from study II, we
ran a third study. This study still facilitated spontaneous lying,
but made no reference to dishonesty in its description. The
study required participants to play a dice-based game on a
mobile device, inspired by a widely used experimental task in
dishonesty research. The task supported spontaneous lying,
and allowed for automatic labeling of discrete trials as either
honest or dishonest. The participants were rewarded based on
their reported score, thereby making lying profitable. We did
not encourage participants to lie, and given that all participants
passed an initial qualification test about the rules, we can
assume that participants were aware of their wrongdoings.
Overstating scores could provoke both moral dissonance and
fear of not having the crowdwork approved (and thus not
getting paid); we hypothesize that this manifests itself in the
participant’s mobile interaction.

Task
A commonly used task in studying deceit and dishonest behav-
ior requires participants to report on the outcome of random-
ized events such as rolling a die, or tossing a coin (see [12] for
an overview). To encourage lying, participants are rewarded
relative to the reported outcomes. The actual outcomes of
the events are only known to the participants. This paradigm
supports inferences about deceit across all reports (based on
deviation from the expected mean) but the individual reports
cannot be labeled as honest or dishonest. To support the train-
ing of a classifier, we used a dice rolling paradigm, but made
changes to allow for labeling of discrete events. Additionally,
we wished to collect data across a range of taps and swipes,
so as to cover a wider spectrum of typical mobile input. The
application required participants to swipe through lists, tap
desired selections, and tap numbers on a num-pad.

We developed a mobile dice game, similar to the popular game
Yatzy. The game consisted of 12 rounds of rolls with five dice.
Each round required an initial roll, and two potential re-rolls
of selected dice (see Figure 7a). Participants then chose from a
list of possible combinations (such as sixes, or three-of-a-kind)
and entered the score that a certain combination would yield
(see Figure 7b). This was typically the sum of the dice. There
was a total of 12 combinations; one for each round. Each
combination could only be selected once. If the final dice of a
round did not equate to a combination, then any combination
could be selected and a score of 0 should be entered. The
game recorded both the participants’ actual score and their
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reported score. The participants were rewarded based on the
sum of their reported scores, providing an incentive to lie:

$0.50 : below 150 points
$1.00 : between 150 and 200 points
$2.00 : more than 200 points

Participants were briefed about the rules and scoring system
of the game. Prior to taking part, participants did a qualifi-
cation test, to ensure that they understood the rules. A help
text was available throughout the game for assistance. After
completing the experiment, a debriefing screen explained the
actual research agenda.

(a) (b)

Figure 7: The experimental application used in Study III. Figures show
(a) the home screen where participants roll and select dice (selected dice
are blue), and see the score board, and (b) the entry screen where com-
binations and amount of points are entered. The entry screen appears
after finishing three rolls and pressing ‘select combination’.

What Constitutes an Entry
In order to train our classifier, we labeled each entry as either
a lie or a truth. When beginning a round, the participants were
presented with the home screen (see Figure 7a). After rolling
the dice the third time, and pressing Select Combination, they
were presented with the entry screen (see Figure 7b). We
define an entry as the time frame from when participants were
presented with the entry screen, until and including they hit
Done. During an entry, the user had to pick a dice combination
from a list, and enter the amount of points that the combination
and the dice roll amounted to. Swipes were recorded when
scrolling the list of combinations; taps were recorded when
entering the amount of points on a num-pad. IMU sensors
recorded motion data throughout the entry.

We expected three possible outcomes of an entry in the game:

1. The participant reports their score accurately (Truth).
2. The participant purposefully inflates their score (Lie)
3. The participant unintentionally inflates the score (Truth -

the participant does not intend to deceive)

In an attempt to differentiate (2) and (3), lies were defined
as scoreenter − scorereal > 4. This was informed by the mean
negative deviation from the real score (i.e., when participants
under-reported their score, M = -3.4).

Participants
We recruited 51 participants from Mechanical Turk, aged 22-
57 (M = 31.5), 20 females. Participants were told that they
were reviewing a mobile game before its launch. Participants
were paid according to their score, ranging from $0.50 US
to $2.00 US, to incentivize lying. We employed the same
qualification standards as for Study I.

Apparatus
We developed the application for Android version 6.0 and
higher. To obtain comparable data between participants, we
excluded tablets and other large-screen devices. A pilot study
identified touch pressure level as a good predictor of truthful
input, so for the final study we invited only participants who
had phones with pressure sensors. This limited the phones
to specific models from Google, LG, Motorola, HTC, and
OnePlus. We also excluded mobile devices that could not
report rotation or acceleration data.

Results
Fifty-one participants took part in the study, completing 561
unique entries, with 44 labeled as lies (8%); 31% of the par-
ticipants lied at least once. The average lie provided the par-
ticipant with 15.6 surplus points. Conversely, nine entries
reported scores below the actual score, with an average short-
fall of 3.4 points.

Our classification results show 98% precision, and 97% recall
for truths (F1 = .98), and 65% precision and 59% recall for
lies (F1 = .57).

Classification
The classifier was built using the same approach as Study II.

Data Cleaning
We removed participants whose entries indicated that they
did not understand the rules, or deliberately rushed the game
to optimize payment (amounting to four participants). No
participant lied on every single entry.

We removed entries with entered points lower than the actual
score (amounted to nine entries, mean shortfall -3.4 points).
While they lack an intention to deceive, they could represent
either miscalculations or lack of attention with the task. We
remove them because correct classification is impossible. We
also removed all first entries to account for participants learn-
ing to use the interface.

The final data set comprised 51 participants, and 561 entries.
The lies covered 44 entries, amounting to 8%. We normalized
features per participant (using L2), and standardized the data
set along all axes.
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Feature Generation
We generated the same features as in Study II (see Table 2).
Additionally, we computed features originating from interac-
tions with the list of dice combinations as well as pressure
data (see Table 3).

Feature Group Features Description

List clicks on list n clicks

Swipe distance d(p0, pn)
duration tn − t0
length ∑d(pi, pi+1)
linearity r2, linear regression
slope linear regression
speed length / duration
number n swipes

Pressure swipe pressure screen pressure
button pressure screen pressure

Table 3: Additional features used for the classifier in Study III.

Feature Selection
Again we handpicked feature groups; acceleration, pressure,
and num-pad presented the most viable feature groups for the
classification task.

We used recursive feature reduction to eliminate specific bland
features within each feature group. From the initial set of
features, 11 remained:

• Num-pad: button precision (mean, min)
• Pressure: button pressure (mean, max, SD, pressure)
• Pressure: swipe pressure (mean)
• Acceleration: x-acceleration (mean, max, SD)
• Acceleration: z-acceleration (SD)

Both Study I and previous work explicitly consider timing
as a key predictor of lying [21]. While promising in an ad-
ministered setting, timing is not robust to the practicalities of
day-to-day mobile device usage, where distractions can easily
occur mid-input. For this reason, we did not use timing, or
response length, as features in our classifier. Additionally, our
focus for this study is on lie classification through physiologi-
cal factors present in sensor data.

There is, however, a temporal dimension within the accelerom-
eter data. Lies took, on average, longer to enter than truths,
resulting in more accumulated acceleration data for dishonest
input. The acceleration statistics that we computed go some
way towards normalizing the effect of this increase in data. To
reduce the effect further, we checked for entries longer than
three standard deviations of the mean (there were none).

Performance
As Table 4 shows, we achieve high performance in classifying
truths (F1 = .98) and above-chance accuracy for lies (F1 = .57).
To clarify our results, we provide classification metrics for two
other “classifiers”. Coin-toss demonstrates classification at
random (i.e., tossing a coin), and Naïve reports truth for every
input (i.e., the most common observation; ZeroR). We observe
that our classifier performs well above the random and the
naïve approach.

Classifier Precision Recall F1-score

Veritaps Truth .98 .97 .98
Lie .65 .59 .57
Avg .96 .95 .95

Coin-toss Truth .92 .50 .65
Lie .08 .50 .14
Avg .85 .50 .61

Naïve Truth 1.0 .50 .67
Lie 0.0 0.0 0.0
Avg .92 .46 .62

Table 4: Performance metrics of classification results. To compare,
we report the theoretical scores from a randomized/Coin-toss and a
naïve/ZeroR classifier. The scores show the mean score from a 5-fold
cross validation. Average is computed with respect to the skewed distri-
bution of truths and lies.

How Lies and Truths Differ
A truth took on average 13.0s (SD = 12.0) to complete. A lie
took on average 20.8s (SD = 30.6) to complete. Lies were
most prominent in the beginning of the experiment; two thirds
of all lies were made in the first half of the experiment.

To understand the fundamental differences between an average
lie and an average truth, we pick a representative entry from
both groups. The entries chosen are the two observations
closest to the centroids of two k-means clusters. Here, we
explain how the most influential features varied.

Num-pad
We analyzed a range of num-pad entry features, including
key dynamics, precision, and hold-down time. Only precision
proved to be an effective predictor - the truthful entry records
taps with closer proximity to the button’s center.

Pressure
Most entries comprise two num-pad taps, excluding an ad-
ditional tap on the done button. The truthful entry showed
a higher average pressure, and also an increase in pressure
between the taps. The lie showed a lower average pressure,
and a decrease in pressure between taps.

Acceleration
Acceleration varies between lies and truthful entries, mainly
on the x-axis. Specifically, the mean, max, and SD of x-
axis acceleration contribute effective indication of truth in
input. For these examples of entries, the mean x-acceleration
is higher for the lie, which hints that the honest entry enforced
a more steady hand during interaction, as in Study II.

Summary
Our results demonstrate an F1-score of .98 in classifying truths.
We also achieve an F1-score of .57 in identifying lies. While
promising, the recall rate of lies (59%) renders the technique
impractical for binary lie-detection. This is in-line with other
so-called lie detectors, such as the polygraph, that report indi-
cators associated with lying for interpretation by a practitioner,
rather than a binary classification [20].
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Research has shown that we are only slightly better than
chance at identifying lies when judging statements with an
evenly distributed truth-value [3, 25]. Instead of acting as a
standalone lie detector then, our results can provide cues to as-
sist us in improving our lie detection accuracy (as in polygraph
tests). Whereas, typically, we would need to assess the truth of
any input information, the sensor data associated with mobile
input allows us to identify only the subset of information that
needs further consideration. We can pre-identify a large part
of input as true. This can reduce the space of statements that
require approximately chance-level lie analysis and make us
significantly more accurate at lie-detection overall.

VERITAPS FOR MOBILE INPUT
We playfully propose to use the results as an additional layer
of communication, Veritaps, helping a recipient determine the
veracity of information from a sender. Veritaps marks both
truthful input , and questionable input . If the input is
questionable, then the recipient can choose whether to request
additional information from the sender. In this way, Veritaps
can limit the space of interaction that requires further consid-
eration and reduce veracity uncertainty in communication.

We sketch the use of Veritaps across three different styles of
mobile interaction: data entry, inter-personal interaction, and
personal reflection. Across these three domains, we provide
concept use cases, based on the styles of interaction we ex-
plored in our studies, and highlight the potential benefits of
increased accuracy in veracity judgment.

Mobile Data Entry
We perform many tasks on our mobile devices for which secu-
rity is paramount, such as online banking. These tasks involve
interactions that do not rely on prose, but instead focus on
taps and swipes for navigating menu items and entering codes.
This renders natural language processing techniques for lie
detection inapplicable. Using Veritaps, however, can provide
additional layers of security.

Veritaps could provide services with an additional layer of
scrutiny for online forms. For example, by adding a mobile en-
try step to the submission process insurance companies could
use Veritaps to flag submissions that need further attention or
further supporting documents (see Figure 8a). Online market-
places could in a similar way use Veritaps to flag suspicious
classified advertisements (see Figure 8b).

Interpersonal Communication
We envision that Veritaps could also afford a layer of inter-
personal communication, such as increasing confidence in
conversations with strangers, or as a playful dimension be-
tween friends. For example, after engaging the seller of a car,
Veritaps could assess the veracity of the chat messages, en-
suring that information presented privately beyond the initial
listing is also verified.

Personal Reflection
Self-deception is common and natural, and believed to relate
closely to ethical fading; the decisions we make, justified by
self-deception, that are ethically questionable [22]. Veritaps

eInsurance

SELECT ITEM

ENTER PURCHASE YEAR

ENTER ORIGINAL PRICE

OK CANCEL

(a)

eCar

SELECT BRAND

SELECT MODEL

SELECT CONDITION

ENTER YEAR

OK CANCEL

ENTER PRICE

(b)

Figure 8: Example Veritaps applications: (a) Veritaps can be used to
verify the veracity of an insurance claim, (b) Veritaps may verify the
declared condition of a vehicle upon creating an online listing.

can provide prompts against self-deception. For example, you
could install a Veritaps browser plugin that prompts you every
time you exhibit deceptive behavior. The plugin could help
make you aware of how often you are finding excuses for
canceling on your trainer, or neglect your diet.

DISCUSSION
The results of the empirical studies, as well as the Veritaps
concept, raise several discussion points. They concern the
studies, the concept, and the ethical concerns of lie detection.

Our classification accuracies across a broader range of mo-
bile input are relevant only for spontaneous lying. In our
directed lying study (Study I), only response time provided a
distinguishable feature. For this reason, we cannot speculate
about Veritaps’ accuracy for habituated lying. Classification
accuracy would likely be low here, however, as we believe
the spontaneity and guilt of lying creates the physiological
features that empower our classification. We also assume that
participants made their decision to lie during the entry step of
the task and that we, therefore, capture this moment. Currently,
we cannot separate the effects of this decision moment from
the entry itself, and thus cannot be certain of the efficacy of
one without the other. This needs further exploration.

Because pressure data contributed an important feature in our
classification, we required participants to have phones with
pressure sensors. This limited the applicable participants, as
only recent Android phones have pressure sensors. As a result,
we found little variation in the phones used in the study. This
assisted our classification accuracy, as it reduced requirements
for preprocessing of data. As smartphone chipsets are not
standardized, a production setup of our proposed technique
would optimally require a per-phone-model training process.
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The lying we are able to classify has a number of characteris-
tics that limit the generalizability of the findings. Three types
of lying may be differentiated [25]: outright lies, exaggeration,
and subtle lies. The experimental task in Study I and II exam-
ined outright lies, while Study III considered exaggeration. We
do not know how our findings generalize to subtle lies. Also,
interpersonal lies as present in Study II, might have caused
participants to react quite differently compared to interaction
without another human being. This could be an explanation
for the difference in classification accuracies for Study II-III.
Verifying this remains an avenue for future work.

As for the Veritaps concept, we have sketched simple example
mock-up scenarios. There are practical challenges that arise
with implementing Veritaps on smartphones, however.

Ideally, the smartphone would receive a steady stream of la-
belled ground truth input, to help train the classifier. In prac-
tice, however, this would lead to repeated training interrup-
tions on the device and likely prevent adoption.The alternative
would be for the phone to come pre-packaged with a trained
model, however, without per-user training this could under-
perform.

Machine learning based estimators require considerable la-
belled data to perform well. We evaluated to what extent our
proposed method would work without per-user calibration. To
do this, we ran Leave-One-Subject-Out (LOSO) cross valida-
tion [9] using the classifiers from Study II-III. This caused an
increase in performance for Study II, but a decrease for Study
III. This shows us the more open-ended nature of the task in
Study III works poor without per-user training, while other
tasks are more suitable to use with pre-trained models.

Within our presented Veritaps scenarios, there remains an op-
portunity to learn the features that suggest truthful input and,
therefore, trick the system. To reduce this risk, we propose that
the user should not be shown their own Veritaps assessments,
rather they should only be made available to the receiver of the
information. In this way, it is important that both parties con-
sent to engaging in a Truth-Verified interaction. Future work
should attempt to implement these to study the users’ reactions
and adaptations based on feedback from our algorithm.

Further, the polygraph has been banned from use in courts
in most justice systems because of negligible reliability. In
the same way, we do not propose the use of Veritaps as any
means of assessment of objective truth. The predictive insights
provided by Veritaps should be used with caution, and we
cannot recommend critical reliance on Veritaps in any system.

The Veritaps concept raises a number of ethical questions.
First, lying is an important social lubricant. For instance, small
lies play an important role in computer-mediated conversations
(e.g., [10]). Also, many lies are simply ignored (the so-called
ostrich effect [25]). Therefore, making lies explicit, as in some
of the design concepts we discussed, threaten to undermine
those functions and introduce mistrust into computer-mediated
communication. We call for empirical studies of the Veritaps
concept to understand how the availability of truth verification
might impact the experience and outcomes of digital communi-
cation. Second, our algorithm, and even improved algorithms,

are likely to misclassify. This might challenge the basis of
human conversation [8]; that the information we communicate
is accurate and truthful. One reaction to this is to have both
parties opt-in to having that basis challenged; this would work
for several of the concepts we discussed.

Based on the feature analyses, we believe that user interfaces
made up of standard UI elements as input fields and buttons are
likely to perform best. Across Study I-III we found the details
of simple user actions such as taps to carry more reliable infor-
mation of the veracity of an action, than for instance sliding
and scrolling gestures. Additionally, if the methods described
in this paper were combined with content-based features, it
could likely outperform the performances presented.

Our data do not suggest that smaller lies are harder to detect
that bigger lies. For Study II, a binary distinction compared to
a scale of deflated scores yielded the clearest division. In other
words; an entry with a deflation of one cent, on average held
more similar interactional properties with dishonest entries
than honest entries.

CONCLUSION
We are frequently subject to lying, and to date lack means
of classifying lies on mobile devices beyond written text and
speech. This leaves a large space of interaction open to decep-
tion. We explore the feasibility of a content-agnostic, sensor-
led approach to lie detection on smartphones that considers
only taps and swipes. Through three studies we presented em-
pirical evidence for the feasibility of commodity lie detection
using mobile interaction.

First, we found significant differences in response times be-
tween lies and truths for simple mobile interactions.

Next, we reported on the individual interaction differences
observed between lying and truth telling in a mobile version
of the Ultimatum game that encouraged lying. The study
showed that some features of mobile interaction varies with
the honesty of an action. Specifically, properties of number
entry were good indicators of deceit.

Last, we reported on a study where participants took part in
a mobile dice game that incentivized lying. We trained a
classifier on mobile sensor data that ignores the input data
itself. We achieved 96% precision and 95% recall in truth
detection, and 65% precision and 59% recall for lie detection.
While promising, these results do not support reliable binary
lie classification. Instead, we suggest their use a means of
improving peoples’ own near-chance level lie classification.

Based on the findings, we introduced Veritaps: an optional
layer in mobile interaction, allowing users to share truth as-
sessments of their input. We presented three potential use
cases of Veritaps, across online form-filling, inter-personal
communication, and personal reflection.
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