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Genetically determined high activities of
the TNF-alpha, IL23/IL17, and NFkB
pathways were associated with increased
risk of ankylosing spondylitis
Jacob Sode1,2,3,4, Steffen Bank5,6* , Ulla Vogel7, Paal Skytt Andersen8,9, Signe Bek Sørensen1,5,10,
Anders Bo Bojesen5, Malene Rohr Andersen11, Ivan Brandslund12, Ram Benny Dessau13,
Hans Jürgen Hoffmann14,15, Bente Glintborg16,17, Merete Lund Hetland17,18, Henning Locht3,
Niels Henrik Heegaard2,19ˆ

and Vibeke Andersen1,5,10,20

Abstract

Background: Ankylosing spondylitis (AS) results from the combined effects of susceptibility genes and environmental
factors. Polymorphisms in genes regulating inflammation may explain part of the heritability of AS.

Methods: Using a candidate gene approach in this case-control study, 51 mainly functional single nucleotide
polymorphisms (SNPs) in genes regulating inflammation were assessed in 709 patients with AS and 795 controls.
Data on the patients with AS were obtained from the DANBIO registry where patients from all of Denmark are monitored
in routine care during treatment with conventional and biologic disease modifying anti-rheumatic drugs (bDMARDs).
The results were analyzed using logistic regression (adjusted for age and sex).

Results: Nine polymorphisms were associated with risk of AS (p < 0.05). The polymorphisms were in genes regulating a:
the TNF-α pathway (TNF -308 G > A (rs1800629), and − 238 G > A (rs361525); TNFRSF1A -609 G > T (rs4149570),
and PTPN22 1858 G > A (rs2476601)), b: the IL23/IL17 pathway (IL23R G > A (rs11209026), and IL18–137 G > C
(rs187238)), or c: the NFkB pathway (TLR1 743 T > C (rs4833095), TLR4 T > C (rs1554973), and LY96–1625 C >G (rs11465996)).
After Bonferroni correction the homozygous variant genotype of TLR1 743 T > C (rs4833095) (odds ratios (OR): 2.59, 95%
confidence interval (CI): 1.48–4.51, p= 0.04), and TNFRSF1A -609 G > T (rs4149570) (OR: 1.79, 95% CI: 1.31–2.41, p= 0.01) were
associated with increased risk of AS and the combined homozygous and heterozygous variant genotypes of TNF
-308 G > A (rs1800629) (OR: 0.56, 95% CI: 0.44–0.72, p = 0.0002) were associated with reduced risk of AS.

Conclusion: We replicated associations between AS and the polymorphisms in TNF (rs1800629), TNFRSF1A
(rs4149570), and IL23R (rs11209026). Furthermore, we identified novel risk loci in TNF (rs361525), IL18 (rs187238),
TLR1 (rs4833095), TLR4 (rs1554973), and LY96 (rs11465996) that need validation in independent cohorts. The results
suggest that genetically determined high activity of the TNF-α, IL23/IL17, and NFkB pathways increase risk of AS.
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Background
Ankylosing spondylitis (AS) is a type of spondyloarthritis
in which hallmark clinical features are inflammation at
entheses and subchondral bone of the pelvic and spinal
joints with subsequent abnormal new bone formation at
these sites. Ultimately, this leads to ossification of entheses
and joints resulting in loss of joint mobility. The incidence
varies between 0.1 and 1.8% with the highest incidence in
Scandinavia. Onset is typically in young adults with a male
predominance. Medications used include non-steroid
anti-inflammatory drugs (NSAIDs), and biological disease-
modifying anti-rheumatic drugs (bDMARDs), i.e. tumor
necrosis factor-α inhibitors (anti-TNF) and more recently
also an interleukin(IL)-17A inhibitor (secukinumab) [1].
The cause of AS is unknown but is believed to in-

volve a combination of genetic and environmental fac-
tors [2]. The heritability is polygenic and estimated to
exceed 90%, with the HLA-B27 allele as the major con-
tributor accounting for approximately 25% of the herit-
ability of AS [2]. The IL-17/ IL-23 pathway and the
TNF-α pathway are central in the pathogenesis of AS
and alterations in these pathways have been shown in
mouse models to affect development and severity of
enthesitis [3, 4].
TNF-α can be activated by Pathogen-Associated Mo-

lecular Patterns (PAMPs) such as bacterial or viral
DNA, flagellin, or lipopolysaccharide (LPS), through the
NFkB pathway. PAMPs can be recognized by Toll-like
receptors (TLRs) thereby initiating a kinase cascade
which phosphorylates and degrades the NFkB inhibitor
IkBα [5]. This releases NFkB which is transported from
the cytosol to the nucleus where it initiates expression of
pro- and anti-inflammatory cytokines including TNF-α
and IL-17 (http://www.bu.edu/nf-kb/gene-resources/target-
genes/). The TNF-α and NFkB pathway are intertwined
and TNF-α can feedback stimulate NFkB by binding to
TNF receptors (TNFR1 or TNFR2), resulting in a kinase
cascade similar to, but distinct from, the pathway induced
by TLRs [5].
The IL23/IL17 pathway can also stimulate TNF-α ac-

tivity. The pro-inflammatory cytokine IL-17 enhances
the production of other pro-inflammatory cytokines in-
cluding TNF-α, and the secretion IL-17 itself can be en-
hanced by IL-23 [6].
PAMPs can also be recognized by intracellular Nod-

like receptors (NLRs). In turn, NLRs can activate pro-
inflammatory cytokines including IL-18 [7]. IL-18 is
invloved in the IL23/IL17 pathway and can enhance the
production of IL-17 [8].
The aim of this study was to assess whether functional

single nucleotide polymorphisms.
(SNPs) in genes involved in the TNF-α, IL23/IL17,

NFkB, and other pro- and anti-inflammatory pathways
were associated with risk of AS.

Methods
Patients and samples
The DANBIO registry includes prospectively collected
clinical data on patients with inflammatory joint dis-
eases including smoking status, disease characteristics
e.g. HLA-B27 status, disease activity, treatment, and
treatment outcomes. Patients from all of Denmark are
monitored in routine care during treatment with con-
ventional and biologic disease modifying anti-rheumatic
drugs (bDMARDs) [9].
Screening for tuberculosis before initiation of treat-

ment with biological drugs is routinely performed in
Denmark. Left over blood clots (after whole blood ana-
lysis for Mycobacterium tuberculosis) were collected
from all patients screened for tuberculosis at Statens
Serum Institut (Copenhagen, Denmark) from 01.09.2009
to 31.01.2013; the Department of Respiratory Diseases B
and the Department of Clinical Microbiology, Aarhus
University Hospital (Aarhus, Denmark) from 01.01.2011
to 31.01.2014; the Department of Clinical Biochemistry,
Herlev and Gentofte Hospital (Hellerup, Denmark) from
01.03.2012 to 31.01.2014; the Department of Biochemis-
try, Hospital of Lillebaelt (Vejle, Denmark); and the De-
partment of Biochemistry, Hospital of Slagelse (Slagelse,
Denmark) from 01.01.2014 to 31.01.2014. Furthermore,
from 01.01.2013 to 31.12.2013 blood samples were col-
lected from all patients with AS treated with or without
anti-TNF drugs at the Department of Rheumatology,
Frederiksberg Hospital (Frederiksberg, Denmark).
By linking the unique personal identification number

of Danish citizens (CPR-number) from each blood sam-
ple with the clinical data from DANBIO, 709 patients
with AS (ICD-10: M45.9) were identified. The control
group consisted of 795 healthy blood donors recruited
from Viborg, Denmark.

Genotyping
Fifty-one SNPs in genes involved in the TNF-α, IL23/
IL17, NFκB, and other pro- and anti-inflammatory path-
ways were assessed. A list of all SNPs studied and geno-
type distribution is presented in Table 1 and SNPs
associated with AS are summarized in Table 2.
DNA extraction (Maxwell 16 LEV Blood DNA Kit;

Promega, Madison, WI, USA) was performed as de-
scribed by Bank et al. [10]. For the healthy controls,
DNA was extracted from EDTA-stabilized peripheral
blood by either PureGene (Qiagen, Hilden, Germany) or
Wizard Genomic (Promega, Madison, Wisconsin, USA)
DNA purification kit according to the manufacturers`
instructions [11–17]. Competitive Allele-Specific Poly-
merase chain reaction (KASP™), an end-point PCR tech-
nology, was used by LGC Genomics for genotyping
(LGC Genomics, Hoddesdon, United Kingdom) (http://
www.lgcgenomics.com/).
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Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with
ankylosing spondylitis (AS)

Gene
rs-number

Healthy controls AS Unadjusted Adjusted, age & sex Adjusted, age, sex & smoking

OR (95 CI) p OR (9 5CI) p OR (95 CI) p

TLR1
rs4833095

TT 485 415

TC 261 238 1.07 (0.86–1.33) 0.57 1.03 (0.82–1.29) 0.83 1.05 (0.78–1.42) 0.73

CC 20 43 2.51 (1.45–4.34) 0.00095 2.59 (1.48–4.51) 0.00081 2.86 (1.44–5.68) 0.0026

TC or CC 281 281 1.17 (0.95–1.44) 0.15 1.14 (0.91–1.41) 0.25 1.18 (0.89–1.58) 0.26

TLR2
rs3804099

TT 241 197

TC 393 354 1.10 (0.87–1.40) 0.42 1.07 (0.84–1.37) 0.58 1.02 (0.73–1.42) 0.90

CC 144 142 1.21 (0.89–1.63) 0.22 1.24 (0.91–1.68) 0.17 1.30 (0.87–1.96) 0.20

TC or CC 537 496 1.13 (0.90–1.41) 0.29 1.11 (0.89–1.40) 0.36 1.10 (0.80–1.50) 0.57

TLR2
rs11938228

CC 327 314

CA 368 313 0.89 (0.71–1.10) 0.27 0.86 (0.69–1.07) 0.17 0.80 (0.60–1.08) 0.15

AA 76 69 0.95 (0.66–1.36) 0.76 0.92 (0.63–1.33) 0.66 1.03 (0.62–1.69) 0.92

CA or AA 444 382 0.90 (0.73–1.10) 0.30 0.87 (0.70–1.07) 0.19 0.84 (0.63–1.11) 0.22

TLR2
rs4696480

AA 199 179

AT 417 348 0.93 (0.72–1.19) 0.55 0.89 (0.69–1.15) 0.38 0.84 (0.60–1.18) 0.31

TT 155 169 1.21 (0.90–1.63) 0.20 1.16 (0.86–1.58) 0.33 1.18 (0.78–1.78) 0.44

AT or TT 572 517 1.00 (0.79–1.27) 0.97 0.97 (0.76–1.23) 0.78 0.92 (0.67–1.27) 0.62

TLR4
rs5030728

GG 359 322

GA 323 298 1.03 (0.83–1.28) 0.80 1.01 (0.81–1.27) 0.91 0.93 (0.69–1.25) 0.62

AA 78 70 1.00 (0.70–1.43) 1.00 0.98 (0.68–1.42) 0.93 0.87 (0.53–1.42) 0.57

GA or AA 401 368 1.02 (0.83–1.26) 0.83 1.01 (0.82–1.25) 0.94 0.91 (0.69–1.21) 0.53

TLR4
rs1554973

TT 440 395

TC 272 261 1.07 (0.86–1.33) 0.55 1.06 (0.85–1.32) 0.62 0.98 (0.73–1.32) 0.90

CC 62 33 0.59 (0.38–0.92) 0.02 0.55 (0.34–0.86) 0.01 0.68 (0.38–1.23) 0.20

TC or CC 334 294 0.98 (0.80–1.21) 0.85 0.96 (0.78–1.19) 0.72 0.93 (0.70–1.24) 0.63

TLR4
rs12377632

TT 306 271

TC 358 319 1.01 (0.81–1.26) 0.96 1.05 (0.84–1.32) 0.66 1.07 (0.78–1.46) 0.67

CC 102 96 1.06 (0.77–1.47) 0.71 1.11 (0.80–1.55) 0.52 1.41 (0.92–2.17) 0.12

TC or CC 460 415 1.02 (0.83–1.26) 0.86 1.06 (0.86–1.32) 0.58 1.14 (0.85–1.53) 0.37

TLR5
rs5744168

CC 672 605
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Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with
ankylosing spondylitis (AS) (Continued)

Gene
rs-number

Healthy controls AS Unadjusted Adjusted, age & sex Adjusted, age, sex & smoking

OR (95 CI) p OR (9 5CI) p OR (95 CI) p

CT 94 89 1.05 (0.77–1.43) 0.75 1.05 (0.77–1.45) 0.74 0.89 (0.58–1.37) 0.60

TT 5 2 0.44 (0.09–2.30) 0.33 0.45 (0.08–2.43) 0.35 0.04 (0.00–3.54) 0.16

CT or TT 99 91 1.02 (0.75–1.39) 0.89 1.02 (0.75–1.40) 0.88 0.84 (0.55–1.29) 0.43

TLR5
rs5744174

TT 215 216

TC 399 337 0.84 (0.66–1.07) 0.15 0.85 (0.67–1.09) 0.20 0.82 (0.60–1.14) 0.24

CC 144 138 0.95 (0.71–1.29) 0.76 1.02 (0.75–1.39) 0.91 0.87 (0.57–1.32) 0.51

TC or CC 543 475 0.87 (0.69–1.09) 0.23 0.90 (0.71–1.13) 0.36 0.84 (0.62–1.14) 0.26

TLR9
rs187084

TT 262 237

TC 366 335 1.01 (0.80–1.27) 0.92 1.03 (0.82–1.31) 0.78 1.09 (0.79–1.50) 0.60

CC 142 120 0.93 (0.69–1.26) 0.66 0.91 (0.67–1.24) 0.56 1.07 (0.71–1.61) 0.76

TC or CC 508 455 0.99 (0.80–1.23) 0.93 1.00 (0.80–1.25) 0.98 1.08 (0.80–1.46) 0.60

TLR9
rs352139

GG 255 211

GA 347 324 1.13 (0.89–1.43) 0.32 1.08 (0.85–1.38) 0.52 1.01 (0.73–1.40) 0.93

AA 167 139 1.01 (0.75–1.34) 0.97 0.96 (0.71–1.30) 0.79 0.80 (0.53–1.20) 0.27

GA or AA 514 463 1.09 (0.87–1.36) 0.45 1.04 (0.83–1.31) 0.72 0.94 (0.69–1.27) 0.68

LY96
rs11465996

CC 344 341

CG 337 298 0.89 (0.72–1.11) 0.30 0.91 (0.73–1.14) 0.42 0.89 (0.66–1.20) 0.45

GG 81 53 0.66 (0.45–0.96) 0.03 0.68 (0.46–1.00) 0.0498 0.65 (0.39–1.10) 0.11

CG or GG 418 351 0.85 (0.69–1.04) 0.11 0.87 (0.70–1.07) 0.18 0.84 (0.63–1.12) 0.24

CD14
Rs2569190

GG 236 194

GA 360 339 1.15 (0.90–1.46) 0.27 1.18 (0.92–1.51) 0.19 1.27 (0.91–1.78) 0.16

AA 170 157 1.12 (0.84–1.50) 0.43 1.20 (0.89–1.61) 0.24 1.46 (0.98–2.19) 0.06

GA or AA 530 496 1.14 (0.91–1.43) 0.26 1.18 (0.94–1.50) 0.15 1.32 (0.96–1.82) 0.08

TIRAP
rs8177374

CC 556 521

CT 185 159 0.92 (0.72–1.17) 0.49 0.99 (0.77–1.27) 0.94 1.38 (0.99–1.91) 0.06

TT 21 15 0.76 (0.39–1.49) 0.43 0.76 (0.38–1.53) 0.45 1.31 (0.55–3.12) 0.55

CT or TT 206 174 0.90 (0.71–1.14) 0.39 0.97 (0.76–1.23) 0.81 1.38 (1.00–1.89) 0.047

SUMO4
rs237025

TT 215 195

TC 362 358 1.09 (0.86–1.39) 0.48 1.08 (0.84–1.38) 0.55 1.04 (0.75–1.44) 0.80

CC 195 136 0.77 (0.57–1.03) 0.08 0.75 (0.55–1.01) 0.06 0.55 (0.36–0.84) 0.01

TC or CC 557 494 0.98 (0.78–1.23) 0.85 0.96 (0.76–1.22) 0.75 0.87 (0.64–1.19) 0.38
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Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with
ankylosing spondylitis (AS) (Continued)

Gene
rs-number

Healthy controls AS Unadjusted Adjusted, age & sex Adjusted, age, sex & smoking

OR (95 CI) p OR (9 5CI) p OR (95 CI) p

NFKBIA
rs696

GG 298 259

GA 366 336 1.06 (0.85–1.32) 0.63 1.06 (0.84–1.33) 0.64 1.02 (0.75–1.39) 0.88

AA 101 90 1.03 (0.74–1.43) 0.88 0.97 (0.69–1.36) 0.86 1.07 (0.67–1.69) 0.78

GA or AA 467 426 1.05 (0.85–1.30) 0.65 1.04 (0.84–1.29) 0.73 1.03 (0.77–1.38) 0.84

NFKB1
rs28362491

Ins/Ins 269 258

Ins/− 376 316 0.88 (0.70–1.10) 0.25 0.89 (0.70–1.12) 0.31 0.74 (0.54–1.01) 0.06

−/− 122 100 0.85 (0.62–1.17) 0.33 0.82 (0.59–1.13) 0.22 0.78 (0.51–1.19) 0.25

Ins/− or −/− 498 416 0.87 (0.70–1.08) 0.21 0.87 (0.70–1.08) 0.21 0.75 (0.56–1.01) 0.06

TNF
rs1800629

GG 527 549

GA 223 129 0.56 (0.43–0.71) 0.0000032 0.58 (0.45–0.75) 0.000029 0.63 (0.45–0.89) 0.01

AA 25 9 0.35 (0.16–0.75) 0.01 0.39 (0.18–0.85) 0.02 0.19 (0.04–0.79) 0.02

GA or AA 248 138 0.53 (0.42–0.68) 0.00000030 0.56 (0.44–0.72) 0.0000047 0.59 (0.42–0.82) 0.0018

TNF
rs361525

GG 708 669

GA 60 30 0.53 (0.34–0.83) 0.01 0.52 (0.32–0.82) 0.0049 0.61 (0.33–1.12) 0.11

AA 3 0 1.00 (1.00–1.00) 1.00 1.00 (1.00–1.00) 1.00 1.00 (1.00–1.00) 1.00

GA or AA 63 30 0.50 (0.32–0.79) 0.0027 0.49 (0.31–0.78) 0.0024 0.58 (0.32–1.05) 0.07

TNFRSF1A
rs4149570

GG 307 217

GT 355 339 1.35 (1.07–1.70) 0.01 1.33 (1.05–1.68) 0.02 1.46 (1.06–2.00) 0.02

TT 109 132 1.71 (1.26–2.33) 0.00060 1.79 (1.31–2.46) 0.00027 2.26 (1.48–3.47) 0.00017

GT or TT 464 471 1.44 (1.16–1.78) 0.0010 1.44 (1.15–1.80) 0.0013 1.64 (1.21–2.22) 0.0014

TNFAIP3
rs6927172

CC 473 415

CG 264 245 1.06 (0.85–1.32) 0.61 1.06 (0.85–1.33) 0.61 1.03 (0.76–1.39) 0.85

GG 40 25 0.71 (0.42–1.19) 0.20 0.70 (0.41–1.19) 0.18 0.51 (0.23–1.10) 0.09

CG or GG 304 270 1.01 (0.82–1.25) 0.91 1.01 (0.82–1.26) 0.91 0.95 (0.71–1.27) 0.73

TGFB1
rs1800469

CC 383 344

CT 297 299 1.12 (0.90–1.39) 0.30 1.08 (0.87–1.35) 0.48 1.28 (0.95–1.71) 0.11

TT 86 53 0.69 (0.47–1.00) 0.047 0.69 (0.47–1.02) 0.06 0.69 (0.40–1.17) 0.17

CT or TT 383 352 1.02 (0.83–1.26) 0.83 1.00 (0.81–1.23) 0.97 1.14 (0.86–1.52) 0.35

PTPN22
rs2476601

GG 588 557
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Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with
ankylosing spondylitis (AS) (Continued)

Gene
rs-number

Healthy controls AS Unadjusted Adjusted, age & sex Adjusted, age, sex & smoking

OR (95 CI) p OR (9 5CI) p OR (95 CI) p

GA 166 122 0.78 (0.60–1.01) 0.06 0.77 (0.59–1.00) 0.05 0.75 (0.52–1.09) 0.13

AA 11 6 0.58 (0.21–1.57) 0.28 0.57 (0.20–1.58) 0.28 0.83 (0.21–3.28) 0.80

GA or AA 177 128 0.76 (0.59–0.99) 0.04 0.76 (0.58–0.98) 0.04 0.76 (0.53–1.09) 0.13

PPARG
rs1801282

CC 548 511

CG 207 167 0.87 (0.68–1.10) 0.23 0.85 (0.66–1.08) 0.18 0.87 (0.63–1.21) 0.42

GG 14 15 1.15 (0.55–2.40) 0.71 1.33 (0.62–2.83) 0.46 1.54 (0.60–3.98) 0.37

CG or GG 221 182 0.88 (0.70–1.11) 0.29 0.88 (0.69–1.11) 0.27 0.91 (0.67–1.26) 0.58

IL1B
rs4848306

GG 246 215

GA 373 352 1.08 (0.85–1.36) 0.52 1.09 (0.86–1.39) 0.48 1.16 (0.84–1.60) 0.38

AA 151 125 0.95 (0.70–1.28) 0.72 0.96 (0.71–1.31) 0.81 0.88 (0.57–1.34) 0.55

GA or AA 524 477 1.04 (0.83–1.30) 0.72 1.06 (0.84–1.33) 0.64 1.08 (0.79–1.46) 0.64

IL1B
rs1143623

GG 401 365

GC 316 278 0.97 (0.78–1.20) 0.76 0.98 (0.79–1.22) 0.87 1.07 (0.80–1.44) 0.66

CC 55 52 1.04 (0.69–1.56) 0.85 1.12 (0.74–1.69) 0.59 0.87 (0.48–1.57) 0.64

GC or CC 371 330 0.98 (0.80–1.20) 0.83 1.00 (0.81–1.24) 0.98 1.04 (0.78–1.38) 0.79

IL1B
rs1143627

TT 340 305

TC 339 305 1.00 (0.81–1.25) 0.98 1.00 (0.79–1.25) 0.97 1.05 (0.78–1.42) 0.75

CC 97 86 0.99 (0.71–1.37) 0.94 1.01 (0.72–1.41) 0.95 0.85 (0.53–1.36) 0.50

TC or CC 436 391 1.00 (0.81–1.23) 1.00 1.00 (0.81–1.24) 1.00 1.00 (0.76–1.34) 0.97

IL1RN
rs4251961

TT 298 247

TC 360 324 1.09 (0.87–1.36) 0.47 1.04 (0.83–1.32) 0.71 1.22 (0.89–1.67) 0.21

CC 112 105 1.13 (0.83–1.55) 0.44 1.05 (0.76–1.46) 0.76 1.41 (0.92–2.17) 0.12

TC or CC 472 429 1.10 (0.89–1.36) 0.40 1.05 (0.84–1.30) 0.68 1.26 (0.94–1.71) 0.12

IL4R
rs1805010

AA 209 201

AG 410 317 0.80 (0.63–1.02) 0.08 0.79 (0.62–1.02) 0.07 0.73 (0.52–1.02) 0.07

GG 157 133 0.88 (0.65–1.19) 0.41 0.91 (0.67–1.24) 0.55 0.87 (0.58–1.33) 0.53

AG or GG 567 450 0.83 (0.66–1.04) 0.10 0.83 (0.65–1.05) 0.12 0.77 (0.56–1.06) 0.11

IL6
rs10499563

TT 476 439

TC 259 225 0.94 (0.76–1.17) 0.60 0.94 (0.75–1.18) 0.60 0.77 (0.57–1.05) 0.10

CC 35 26 0.81 (0.48–1.36) 0.42 0.72 (0.42–1.25) 0.24 0.80 (0.39–1.63) 0.53

TC or CC 294 251 0.93 (0.75–1.14) 0.48 0.92 (0.74–1.14) 0.43 0.77 (0.57–1.04) 0.09
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Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with
ankylosing spondylitis (AS) (Continued)

Gene
rs-number

Healthy controls AS Unadjusted Adjusted, age & sex Adjusted, age, sex & smoking

OR (95 CI) p OR (9 5CI) p OR (95 CI) p

IL6R
rs4537545

CC 289 247

CT 369 324 1.03 (0.82–1.29) 0.82 1.05 (0.83–1.32) 0.71 1.07 (0.79–1.47) 0.65

TT 117 113 1.13 (0.83–1.54) 0.44 1.18 (0.86–1.63) 0.30 1.17 (0.76–1.79) 0.48

CT or TT 486 437 1.05 (0.85–1.30) 0.64 1.08 (0.86–1.34) 0.51 1.09 (0.81–1.47) 0.55

IL10
rs1800872

CC 482 408

CA 258 225 1.03 (0.83–1.29) 0.79 1.01 (0.80–1.27) 0.94 0.93 (0.68–1.26) 0.63

AA 35 42 1.42 (0.89–2.26) 0.14 1.35 (0.83–2.18) 0.22 1.47 (0.79–2.73) 0.22

CA or AA 293 267 1.08 (0.87–1.33) 0.50 1.05 (0.84–1.30) 0.67 0.99 (0.74–1.33) 0.95

IL10
rs3024505

CC 518 467

CT 221 200 1.00 (0.80–1.26) 0.97 1.01 (0.80–1.28) 0.95 1.19 (0.87–1.61) 0.28

TT 22 24 1.21 (0.67–2.19) 0.53 1.32 (0.72–2.42) 0.37 1.80 (0.79–4.12) 0.16

CT or TT 243 224 1.02 (0.82–1.27) 0.84 1.04 (0.83–1.30) 0.76 1.23 (0.92–1.66) 0.17

IL12B
rs3212217

GG 499 460

GC 235 200 0.92 (0.74–1.16) 0.49 0.95 (0.75–1.19) 0.64 0.94 (0.69–1.29) 0.72

CC 25 21 0.91 (0.50–1.65) 0.76 0.94 (0.51–1.72) 0.84 0.57 (0.23–1.41) 0.22

GC or CC 260 221 0.92 (0.74–1.15) 0.47 0.95 (0.76–1.19) 0.63 0.91 (0.67–1.23) 0.53

IL12B
rs6887695

GG 385 324

GC 293 301 1.22 (0.98–1.52) 0.07 1.24 (0.99–1.55) 0.06 1.31 (0.97–1.77) 0.07

CC 72 70 1.16 (0.81–1.66) 0.43 1.16 (0.80–1.69) 0.43 0.98 (0.59–1.61) 0.94

GC or CC 365 371 1.21 (0.98–1.49) 0.07 1.22 (0.99–1.51) 0.06 1.24 (0.93–1.64) 0.14

IL12RB1
rs401502

CC 360 304

CG 303 311 1.22 (0.98–1.51) 0.08 1.21 (0.96–1.51) 0.10 1.19 (0.88–1.61) 0.26

GG 87 70 0.95 (0.67–1.35) 0.79 0.97 (0.68–1.39) 0.87 1.18 (0.74–1.88) 0.48

CG or GG 390 381 1.16 (0.94–1.42) 0.17 1.15 (0.93–1.43) 0.19 1.19 (0.89–1.58) 0.24

IL17A
rs2275913

GG 340 307

GA 336 301 0.99 (0.80–1.24) 0.94 0.98 (0.79–1.23) 0.89 0.90 (0.67–1.22) 0.51

AA 95 84 0.98 (0.70–1.36) 0.90 1.00 (0.71–1.40) 0.98 1.00 (0.63–1.57) 0.99

GA or AA 431 385 0.99 (0.80–1.22) 0.92 0.99 (0.80–1.22) 0.89 0.92 (0.69–1.22) 0.57

IL18
rs187238

GG 387 380
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Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with
ankylosing spondylitis (AS) (Continued)

Gene
rs-number

Healthy controls AS Unadjusted Adjusted, age & sex Adjusted, age, sex & smoking

OR (95 CI) p OR (9 5CI) p OR (95 CI) p

GC 312 259 0.85 (0.68–1.05) 0.13 0.83 (0.66–1.03) 0.09 0.74 (0.55–1.00) 0.049

CC 64 41 0.65 (0.43–0.99) 0.04 0.69 (0.45–1.06) 0.09 0.58 (0.32–1.04) 0.07

GC or CC 376 300 0.81 (0.66–1.00) 0.0499 0.80 (0.65–0.99) 0.04 0.71 (0.53–0.95) 0.02

IL18
rs1946518

GG 282 259

GT 363 329 0.99 (0.79–1.24) 0.91 0.96 (0.76–1.21) 0.71 0.89 (0.65–1.21) 0.45

TT 113 97 0.93 (0.68–1.29) 0.68 0.95 (0.68–1.31) 0.74 0.80 (0.51–1.24) 0.32

GT or TT 476 426 0.97 (0.79–1.21) 0.81 0.96 (0.77–1.19) 0.68 0.86 (0.64–1.16) 0.32

IL23R
rs11209026

GG 680 646

GA 89 50 0.59 (0.41–0.85) 0.0045 0.63 (0.43–0.91) 0.02 0.64 (0.38–1.05) 0.08

AA 5 1 1.00 (1.00–1.00) 1.00 1.00 (1.00–1.00) 1.00 1.00 (1.00–1.00) 1.00

GA or AA 94 51 0.57 (0.40–0.82) 0.0021 0.60 (0.42–0.87) 0.01 0.63 (0.38–1.03) 0.06

IFNG
rs2430561

TT 199 181

TA 398 369 1.02 (0.80–1.30) 0.88 1.01 (0.79–1.30) 0.92 1.08 (0.77–1.52) 0.65

AA 161 139 0.95 (0.70–1.29) 0.74 0.97 (0.71–1.32) 0.85 1.09 (0.72–1.64) 0.68

TA or AA 559 508 1.00 (0.79–1.26) 0.99 1.00 (0.79–1.27) 0.99 1.08 (0.79–1.50) 0.62

IFNGR1
rs2234711

TT 290 232

TC 361 348 1.20 (0.96–1.51) 0.11 1.20 (0.95–1.51) 0.12 1.15 (0.84–1.57) 0.40

CC 119 108 1.13 (0.83–1.55) 0.43 1.09 (0.79–1.50) 0.60 1.11 (0.72–1.70) 0.65

TC or CC 480 456 1.19 (0.96–1.47) 0.12 1.17 (0.94–1.46) 0.16 1.14 (0.84–1.53) 0.40

IFNGR2
rs8126756

TT 553 522

TC 168 130 0.82 (0.63–1.06) 0.13 0.83 (0.64–1.09) 0.18 0.86 (0.60–1.24) 0.42

CC 18 12 0.71 (0.34–1.48) 0.36 0.69 (0.32–1.49) 0.35 0.53 (0.18–1.54) 0.24

TC or CC 186 142 0.81 (0.63–1.04) 0.09 0.82 (0.64–1.06) 0.13 0.83 (0.59–1.17) 0.28

IFNGR2
rs17882748

CC 199 173

CT 391 341 1.00 (0.78–1.29) 0.98 1.00 (0.77–1.30) 0.99 1.01 (0.71–1.42) 0.97

TT 153 174 1.31 (0.97–1.76) 0.08 1.31 (0.97–1.78) 0.08 1.16 (0.77–1.73) 0.48

CT or TT 544 515 1.09 (0.86–1.38) 0.48 1.09 (0.86–1.39) 0.48 1.05 (0.76–1.45) 0.76

TBX21
rs17250932

TT 526 497

TC 210 179 0.90 (0.71–1.14) 0.39 0.94 (0.74–1.19) 0.61 0.84 (0.60–1.17) 0.30

CC 32 19 0.63 (0.35–1.12) 0.12 0.66 (0.36–1.19) 0.17 0.37 (0.14–0.98) 0.046

TC or CC 242 198 0.87 (0.69–1.08) 0.21 0.90 (0.72–1.14) 0.39 0.78 (0.56–1.07) 0.12
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Power calculation
The Genetic Power Calculator was utilized for power
analysis of discrete traits (http://zzz.bwh.harvard.edu/
gpc/cc2.html). The lowest minor allele frequency (MAF)
of the studied SNPs was 0.10. The ‘high-risk allele fre-
quency’ was set to 0.10, the ‘prevalence’ was set to
0.0018 [18], D-prime was set to 1, type I error rate was
set to 0.05 and number of cases and control:case ratio
was 795:709. This cohort study had more than 80%

chance of detecting a dominant effect with an odds ratio
(OR) of 1.4 for AS.

Statistical analysis
Logistic regression was used to compare genotype dis-
tributions among patients with AS versus healthy con-
trols. Crude odds ratio, odds ratio adjusted for age and
sex, and odds ratio adjusted for age, sex, and smoking
status were assessed (Table 1). A chi-square test was

Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with
ankylosing spondylitis (AS) (Continued)

Gene
rs-number

Healthy controls AS Unadjusted Adjusted, age & sex Adjusted, age, sex & smoking

OR (95 CI) p OR (9 5CI) p OR (95 CI) p

NLRP1
rs2670660

AA 222 202

AG 390 328 0.92 (0.73–1.18) 0.52 0.96 (0.75–1.23) 0.73 1.12 (0.80–1.56) 0.52

GG 154 154 1.10 (0.82–1.47) 0.53 1.11 (0.82–1.49) 0.51 1.12 (0.75–1.67) 0.59

AG or GG 544 482 0.97 (0.78–1.22) 0.82 1.00 (0.79–1.26) 0.98 1.11 (0.81–1.52) 0.50

NLRP1
rs878329

GG 217 206

GC 394 333 0.89 (0.70–1.13) 0.34 0.89 (0.69–1.14) 0.35 0.99 (0.71–1.38) 0.93

CC 155 155 1.05 (0.79–1.41) 0.73 1.05 (0.78–1.41) 0.75 1.03 (0.69–1.54) 0.90

GC or CC 549 488 0.94 (0.75–1.17) 0.57 0.93 (0.74–1.18) 0.56 1.00 (0.73–1.36) 0.98

NLRP3
rs10754558

CC 294 248

CG 355 324 1.08 (0.86–1.36) 0.50 1.06 (0.84–1.34) 0.61 1.10 (0.81–1.51) 0.54

GG 111 116 1.24 (0.91–1.69) 0.18 1.25 (0.91–1.71) 0.17 1.11 (0.71–1.72) 0.65

CG or GG 466 440 1.12 (0.90–1.39) 0.30 1.11 (0.89–1.38) 0.36 1.11 (0.82–1.49) 0.51

NLRP3
rs4612666

CC 435 360

CT 280 277 1.20 (0.96–1.49) 0.11 1.23 (0.99–1.54) 0.07 1.28 (0.95–1.72) 0.10

TT 53 48 1.09 (0.72–1.66) 0.67 1.19 (0.78–1.82) 0.41 1.07 (0.59–1.94) 0.82

CT or TT 333 325 1.18 (0.96–1.45) 0.12 1.23 (0.99–1.52) 0.06 1.24 (0.94–1.65) 0.13

CARD8
rs2043211

AA 321 298

AT 342 316 1.00 (0.80–1.24) 0.97 0.98 (0.79–1.23) 0.89 0.90 (0.67–1.22) 0.50

TT 94 78 0.89 (0.64–1.25) 0.52 0.89 (0.63–1.26) 0.50 0.91 (0.57–1.44) 0.68

AT or TT 436 394 0.97 (0.79–1.20) 0.80 0.96 (0.78–1.19) 0.72 0.90 (0.67–1.19) 0.45

JAK2
rs12343867

TT 398 358

TC 299 263 0.98 (0.79–1.22) 0.84 0.96 (0.76–1.20) 0.69 0.82 (0.61–1.12) 0.21

CC 61 65 1.18 (0.81–1.73) 0.38 1.11 (0.75–1.63) 0.61 1.03 (0.62–1.71) 0.91

TC or CC 360 328 1.01 (0.82–1.25) 0.90 0.98 (0.79–1.21) 0.86 0.86 (0.64–1.14) 0.29
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used to test for deviation from Hardy-Weinberg equi-
librium in the healthy controls and for haplotype ana-
lysis (Tables 3, 4, 5 and 6).
Statistical analyses were performed using STATA ver-

sion 15 (StataCorp LP, College Station, TX, USA).

Results
Study population
Among the patients with AS the median age was 32 years
(SD: 11.5) and 68% (483/709) were males. The healthy
controls had a median age of 43 years (SD: 11.5) and 52%
(411/384) were males. Among the patients 37% (118/323),
23% (73/323), and 41% (132/323) and among the controls
26% (207/788), 24% (189/788), and 50% (392/788) were
current smokers, former smokers and never smokers,

respectively. HLA-B27 staus was available for 498 patients
of which 83% (411/498) were positive. Sixty percent (427/
709) of the patients were treated with anti-TNF.
The genotype distributions among the healthy controls

deviated from Hardy-Weinberg equilibrium for TLR1
(743 T > C (rs4833095)) (p = 0.03), TLR2 (− 16,934 A > T
(rs4696480)) (p = 0.02), TLR4 (rs1554973 T >C) (p = 0.03),
TLR9 (1174 G >A (rs352139)) (p = 0.02) and TGFB1 (− 509
C >T (rs1800469)) (p = 0.02). After correction for mul-
tiple testing, all SNPs studied were in Hardy-Weinberg
equilibrium.

Polymorphisms associated with susceptibility of AS
In the age and sex adjusted analysis, the homozygous vari-
ant genotype of TLR1 743 T > C (rs4833095) (OR: 2.59,

Table 3 Association of the TLR2 haplotype combinations and risk of ankylosing spondylitis (AS). The haplotype combinations in TLR2
described 93% of the genotypes observed

Haplotype
combinations

Haplotypes NAS (%) NControl (%) ORa (95% CI) P-value

rs4696480 A > T rs11938228 C > A rs3804099 T>Cb

11 T:T A:A T:T 69 (11) 76 (10) 1.00 – –

22 A:A C:C C:C 72 (11) 74 (10) 1.07 0.68–1.70 0.82

33 A:A C:C T:T 28 (4) 34 (5) 0.91 0.50–1.65 0.76

44 T:T C:C C:C 14 (2) 10 (1) 1.52 0.64–3.70 0.38

12 T:A C:A C:T 158 (24) 197 (27) 0.88 0.60–1.30 0.55

13 T:A C:A T:T 76 (12) 103 (14) 0.81 0.52–1.26 0.37

14 T:T C:A C:T 59 (9) 49 (7) 1.33 0.80–2.19 0.31

23 A:A C:C C:T 77 (12) 89 (12) 0.95 0.61–1.49 0.91

24 T:A C:C C:C 52 (8) 55 (8) 1.04 0.63–1.72 0.90

34 T:A C:C C:T 51 (8) 44 (6) 1.28 0.76–2.14 0.43

OR Odds ratio
aOR was calculated for each haplotype combination by using the haplotype 11 as reference group
bThe variant allele of rs3804099T T > C has been shown to decrease TNF-α, IL-1β & IL-6 level [68]

Table 4 Association between TLR4 haplotype combinations and risk of ankylosing spondylitis (AS). The haplotype combinations in
TLR4 described 94% of the genotypes observed

Haplotype
combinations

Haplotypes NAS (%) NControl (%) ORa (95% CI) P-value

rs12377632
T > C

rs1554973
T > C

rs5030728
G > A

11 C:C T:T G:G 95 (14) 101 (14) 1.00 – –

22 T:T T:T A:A 69 (10) 74 (10) 0.99 0.64–1.53 1.00

33 T:T C:C G:G 29 (4) 57 (8) 0.54 0.32–0.92 0.03

44 T:T T:T G:G 3 (0) 5 (1) 0.64 0.15–2.74 0.72

12 T:C T:T G:A 154 (23) 188 (25) 0.87 0.61–1.24 0.47

13 T:C T:C G:G 126 (19) 129 (17) 1.04 0.72–1.51 0.85

14 T:C T:T G:G 30 (5) 32 (4) 1.00 0.56–1.77 1.00

23 T:T T:C G:A 99 (15) 106 (14) 0.99 0.67–1.47 1.00

24 T:T T:T G:A 31 (5) 24 (3) 1.37 0.75–2.51 0.36

34 T:T T:C G:G 28 (4) 26 (4) 1.14 0.63–2.09 0.76

OR Odds ratio
The biological effect of the three polymorphisms in TLR4 was unknown
aOR was calculated for each haplotype combination by using the haplotype 11 as reference group
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95% CI: 1.48–4.51, p = 0.0008) and the combined homozy-
gous and the heterozygous variant genotypes of TNFRSF1A
-609 G >T (rs4149570) (OR: 1.44, 95% CI: 1.15–1.80,
p = 0.001) were associated with increased risk of AS.
The homozygous variant genotype of TLR4 T > C
(rs1554973) (OR: 0.55, 95% CI: 0.34–0.86, p = 0.01)
and LY96–1625 C >G (rs11465996) (OR: 0.68, 95% CI:
0.46–1.00, p = 0.05), and the combined homozygous and
the heterozygous variant genotypes of TNF -308 G >A
(rs1800629) (OR: 0.56, 95% CI: 0.44–0.72, p = 0.000005),
TNF -238 G >A (rs361525) (OR: 0.49, 95% CI: 0.31–0.78,
p = 0.002), PTPN22 1858 G >A (rs2476601) (OR: 0.76,
95% CI: 0.58–0.98, p = 0.04), IL18–137 G >C (rs187238)
(OR: 0.80, 95% CI: 0.65–0.99, p = 0.04), and IL23R G>A
(rs11209026) (OR: 0.60, 95% CI: 0.42–0.87, p = 0.01) were
associated with reduced risk of AS (Table 1).
After Bonferroni correction for multiple testing the

homozygous variant genotype of TLR1 743 T > C (rs4
833095) (OR: 2.59, 95% CI: 1.48–4.51, p = 0.04) and
TNFRSF1A -609 G > T (rs4149570) (OR: 1.79, 95% CI:

1.31–2.41, p = 0.01) were associated with increased risk
of AS and the combined homozygous and the heterozy-
gous variant genotypes of TNF -308 G > A (rs1800629)
(OR: 0.56, 95% CI: 0.44–0.72, p = 0.0002) were associated
with reduced risk of AS (Table 2).
SNPs associated with AS and the biological effect of

the SNPs are summarized in Table 2.

Haplotype analysis
Haplotype analyses of TLR2, TLR4, IL1B and TNF are
shown in Tables 3, 4, 5 and 6, respectively.
The TLR4 haplotype combination 33 (rs12377632TT,

rs1554973CC and rs5030728GG) was associated with re-
duced risk of AS (OR: 0.54, 95% CI: 0.32–0.92, p = 0.03)
compared to the haplotype combination 11. In TNF all
haplotype combinations were associated with reduced
risk of AS compared to the haplotype combination 11
(rs361525GG and rs1800629GG).
No associations were found for haplotype combina-

tions of TLR2 or IL1B.

Table 5 Association between IL1B haplotype combinations and risk of ankylosing spondylitis (AS). The haplotype combinations in
IL1B described 97% of the genotypes observed

Haplotype
combinations

Haplotypes NAS (%) NControl (%) ORa (95% CI) P-value

rs4848306
-3737G > A [69, 70]

rs1143623
-1464G > C [69, 71]

rs1143627
-31 T > C [69, 71, 72]

11 A:A G:G T:T 125 (18) 148 (20) 1.00 – –

22 G:G C:C C:C 52 (8) 54 (7) 1.14 0.73–1.79 0.65

33 G:G G:G T:T 32 (5) 41 (5) 0.92 0.55–1.55 0.79

44 G:G G:G C:C 5 (1) 3 (0) 1.97 0.46–8.42 0.48

12 A:G G:C T:C 163 (24) 185 (24) 1.04 0.76–1.43 0.81

13 A:G G:G T:T 141 (20) 147 (19) 1.14 0.82–1.58 0.50

14 A:G G:G T:C 44 (6) 38 (5) 1.37 0.84–2.25 0.26

23 G:G C:G C:T 84 (12) 92 (12) 1.08 0.74–1.58 0.70

24 G:G C:G C:C 28 (4) 34 (4) 0.98 0.56–1.70 1.00

34 G:G G:G T:C 14 (2) 16 (2) 1.04 0.49–2.21 1.00

OR Odds ratio
The variant allele of −3737 G > A [69], −1464 G > C [70] and − 31 T > C [71, 72] have been shown to decrease IL-1β level [69–72]
aOR was calculated for each haplotype combination by using the haplotype 11 as reference group

Table 6 Association of the TNF haplotype combinations and risk of ankylosing spondylitis (AS). The haplotype combinations in TNF
described 97% of the genotypes observed

Haplotype
combinations

Haplotypes NAS (%) NControl (%) ORa (95% CI) P-value

rs361525 G>Ab rs1800629 G>Ac

11 G:G G:G 523 (76) 469 (61) 1.00 – –

22 G:G A:A 9 (1) 25 (3) 0.32 (0.15–0.70) 0.005

12 G:G G:A 125 (18) 210 (28) 0.53 (0.41–0.69) < 0.0001

13 G:A G:G 26 (4) 47 (6) 0.50 (0.30–0.81) 0.007

14 G:A G:A 4 (1) 12 (2) 0.30 (0.10–0.93) 0.05

OR Odds ratio
aOR was calculated for each haplotype combination by using the haplotype 11 as reference group
bThe variant allele of TNF -238A rs361525A G > A has been shown to reduce expression of TNF-α [49]
cThe variant allele of TNF -308A rs1800629 G > A has been shown to reduce mRNA level [48]
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Discussion
In this case-control study, polymorphisms in a: the TNF-α
(TNF (rs1800629 and rs361525), TNFRSF1A (rs4149570),
and PTPN22 (rs2476601)), b: the IL23/IL17 (IL23R (rs11
209026), and IL18 (rs187238)), or c: the NFkB (TLR1
(rs4833095), TLR4 (rs1554973), and LY96 (rs11465996))
pathways were associated with risk of AS.
The found assocaitions for TNF (rs1800629) [19–22],

TNFRSF1A (rs4149570) [23], and IL23R (rs11209026)
[24–33] are in agreement with other case-control stud-
ies. Furthermore, Zhao et al. found that the variant allele
of NLRP3 (rs4612666) was associated with increased risk
of AS in Chinese patients [23]. In our study we found a
trend for associations of the variant allele of NLRP3
(rs4612666) with increased risk of AS (p = 0.06). How-
ever, our results are in contrast to a meta-analysis of the
PTPN22 (rs2476601) polymorphism that did not find an
association with AS [34]. Finally, we identified novel risk
loci in TNF (rs361525), IL18 (rs187238), TLR1 (rs48
33095), TLR4 (rs1554973), and LY96 (rs11465996) that
need validation in independent cohorts.
Most of the SNPs assessed in our study have known

biological effects thus allowing a biological interpretation
of the observed associations based on increased or re-
duced gene activity as summarized in Table 2 [35–47].
The associations observed for the TNF (rs1800629 and
rs361525) polymorphisms suggest that reduced TNF-α
mRNA level and expression of TNF-α was associated
with reduced risk of AS [48, 49]. This is supported by
our haplotype analysis which also suggests that the vari-
ant alleles of TNF rs1800629 and rs361525 were associ-
ated with reduced risk of AS. Likewise, the associations
observed for the TNFRSF1A (rs4149570) polymorphism
indicates that increased expression of the TNF-α recep-
tor 1 was associated with increased risk of AS [50]. Fur-
thermore, the associations observed for the PTPN22
(rs2476601) polymorphism suggests that reduced TNF-α
serum level was associated with reduced risk of AS [51].
Taken together, this suggests that genetically determined
high activity of the TNF-α pathway was associated with
increased risk of AS.
IL-17 is known to induce the production of many cyto-

kines including TNF-α [6]. IL-18 is a pro-inflammatory
cytokine known to enhance the production of IL-17,
TNF-α, and IL-1β [8]. In this study, the association ob-
served for the IL23R (rs11209026) polymorphism suggests
that reduced IL-17 serum level, and thus reduced TNF-α
activity, was associated with reduced risk of AS [52].
Furthermore, the associations observed for the IL18
(rs187238) polymorphism indicates that reduced IL-18
expression, and thus reduced IL-17 and TNF-α activity,
was associated with reduced risk of AS [53, 54]. The as-
sociations found in the IL23R (rs11209026) and the
IL18 (rs187238) polymorphisms thus suggest that a

genetically determined high activity of the IL23/IL17 path-
way was associated with increased risk of AS. The two
SNPs furthermore support that genetically determined
high activity of the TNF-α pathway was associated with in-
creased risk of AS. The observed associations between the
polymorphisms in IL23R and IL18 and risk of AS are in
line with previous studies pointing out the IL23/IL17
pathway as central to the pathophysiology of AS [3, 4, 55].
This study also suggests that the NFkB pathway may

be involved in the etiology of AS. The associations ob-
served for the TLR1 (rs4833095) polymorphism suggests
that increased TLR1 level was associated with increased
risk of AS [56]. High level of TLR1 may lead to in-
creased NFkB activation and thus increased TNF-α and
IL-17 activity, which is in line with the other results.
However, in contrast to the other results, the associa-
tions observed for the LY96 (rs11465996) polymorphism
suggests that increased MD-2 (LY96) and TNF-α level
was associated with a reduced risk of AS [57]. Finally,
the TLR4 (rs1554973) polymorphism was associated with
reduced risk of AS which was supported by the haplo-
type results (Table 4). The biological effect of the TLR4
(rs1554973) polymorphism is unknown, however, the re-
sult supports the notion that the NFkB pathway may be
involved in the etiology of AS.
Both TNF-α [58] and interleukin-17 inhibitors [59]

have been shown to reduce inflammation and improve
symptoms in patients with AS [60]. Furthermore, in-
creased levels of TNF-α, IL-17, IL-23, IL-1β, and IL-6
have been found in sera and synovial fluid from AS pa-
tients [61–64]. The genetic associations between AS and
the polymorphisms in TLR1,TLR4, LY96,TNF,TNFRSF1A,
IL18, and IL23R found in this study, could potentially – in
part – explain this altered cytokine milieu present in AS
patients.
There are aspects of this study which should be inter-

preted with care. Conflicting results have been reported for
the TNF (rs1800629) polymorphism [48, 49, 65]. Further-
more, the TNF polymorphisms, as well as the HLA-B27
locus, are located on chromosome 6, and there is a risk
that even a minor linkage disequilibrium could have
confounded our results [2]. TLR1 (rs4833095), TLR2
(rs4696480), TLR4 (rs1554973), TLR9 (rs352139), and
TGFB1 (rs1800469) were not in Hardy-Weinberg equi-
librium among the healthy controls. Due to the number
of polymorphisms analyzed this is probably a type II error.
The polymorphisms do not deviate from Hardy-Weinberg
equilibrium when corrected for multiple testing. We can-
not exclude that some of our positive findings may be
due to chance due to the obtained p-values and the
number of statistical tests performed. When the results
were corrected for multiple testing only the variant al-
lele of TLR1 (rs4833095) and TNFRSF1A (rs4149570)
were associated with increased risk of AS and the
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variant allele of TNF (rs1800629) was associated with
reduced risk of AS.
A major strength of this study was that the cohort was

rather large including 709 patients with AS and 795 healthy
controls and the associations that we report were biologic-
ally plausible. Also, the validity of the diagnosis is expected
to be high, since the patients were identified via a clinical
database that the rheumatologist use for prospective moni-
toring of patients as part of routine care [66].

Conclusions
In conclusion, we replicated associations between AS
and the polymorphism TNF (rs1800629), TNFRSF1A
(rs4149570), and IL23R (rs11209026). Furthermore, we
identified novel risk loci in TNF (rs361525), IL18 (rs18
7238), TLR1 (rs4833095), TLR4 (rs1554973), and LY96
(rs11465996) that need validation in independent cohorts.
The results suggest that genetically determined high activity
of the TNF-α, IL23/IL17, and NFkB pathways increase the
risk of AS.
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