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Abstract. Classical results concerning slenderness for commutative integral domains are
generalized to commutative rings with zero divisors. This is done by extending the methods
from the domain case and bringing them in connection with results on the linear topologies
associated to non-discrete Hausdorff filtrations. In many cases a weakened notion “almost
slenderness” of slenderness is appropriate for rings with zero divisors. Special results for
countable rings are extended to rings said to be of “bounded type” (including countable rings,
‘small’ rings, and, for instance, rings that are countably generated as algebras over an Artinian
ring).

More precisely, for a ring R of bounded type it is proved that R is slender if R is reduced
and has no simple ideals, or if R is Noetherian and has no simple ideals; moreover, R is almost
slender if R is not perfect (in the sense of H. Bass). We use our methods to study various
special classes of rings, for instance von Neumann regular rings and valuation rings. Among
other results we show that the following two rings are slender: the ring of Puiseux series over
a field and the von Neumann regular ring kN/k(N) over a von Neumann regular ring k.

For a Noetherian ring R we prove that R is a finite product of local complete rings iff
R satisfies one of several (equivalent) conditions of algebraic compactness. A 1-dimensional
Noetherian ring is outside this ‘compact’ class precisely when it is almost slender. For the rings
of classical algebraic geometry we prove that a localization of an algebra finitely generated
over a field is either Artinian or almost slender. Finally, we show that a Noetherian ring R is
a finite product of local complete rings with finite residue fields exactly when there exists a
map of R-algebras RN → R vanishing on R(N).
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1. Introduction and setup

The notion slenderness was first introduced by J. Loś in 1954 for abelian groups and has since
then be generalized in various directions. Slenderness and compactness are in some sense
extreme opposites. In the previous paper [JJT] we elaborated on this point for commutative
integral domains, where unexpected connections turned up. In the present paper we extend
the work to commutative rings with zero divisors, where several new obstacles appear. New
proof ideas – lying in the intersection of set theory, topology and ring theory – are needed;
some of them may be of independent interest.

The admission of zero divisors for the rings is in some sense parallel to the admission
of torsion elements in modules over domains. For the module case there is a well-known
natural weakening of slenderness, called almost slenderness, see [E–M, p. 57].

For rings with zero divisors the notion of being slender, transferred verbatim from do-
mains, is not adequate in all cases, and it is natural to consider in addition a similar weak-
ening, the notion of being almost slender.

After an introduction of the basic concepts and definitions the next Section 2 gives a
number of results concerning general (commutative) rings. We recall the fundamental
result of Dimitrić that a ring is slender iff it is halfslender and not complete with respect
to any linear topology defined by a (countable) non-discrete Hausdorff filtration of ideals.
Many additional results in Section 2 are based on a technical key lemma 2.6. They concern
the question of slenderness/almost slenderness with respect to ring extensionsR0 ⊆ R. For
instance, we analyze in detail conditions under which graded rings and their subrings are
slender/almost slender, see 2.7 and 2.8. A similar analysis of conditions for the slenderness
of a “localization” (ring of fractions)R ⊆ R[S−1] is much more delicate, see 2.9. The final
result of the Section, Proposition 2.11 describes various filtrations with respect to which a
nonslender ring is complete.

The following Section 3 deals with rings that roughly speaking are not “too large”. There
are several results on ‘small’ rings, that is, rings of cardinality strictly less than 2ℵ0 , see for
instance [EB-K1], where modules over not necessarily commutative rings are considered.
We generalize this notion to rings of bounded type, which are rings that in some sense are
‘small’ as algebras over a field, see Definition 3.1, and we prove results similar to those
obtained in [EB-K1]. In fact, we extend some of their results to the non-reduced case
(Theorem 3.12), and we present a non-trivial generalization to rings that are ‘of bounded
type’ as algebras over an Artinian ring.

Sections 4 and 5 contain a series of rather concrete applications to well-known classes
of rings, for instance von Neumann regular rings, valuation rings and perfect rings.

Section 6 contains a surprisingly simple characterization: For Noetherian rings, the
classes of algebraically compact, ℵ0-compact, and nearly compact rings are identical, and
equal to the class of semilocal complete rings; moreover, a ring in this class is complete
with respect to the linear topology defined by any non-discrete Hausdorff filtration. For
1-dimensional Noetherian rings it is proved that this class of compact rings is exactly the
complement to the class of almost slender rings, see Theorem 6.6. The slender Noetherian
rings were characterized by El Bashir and Kepka [EB-K2, Corollary 4.4, p. 2590]. Their
main result is that a nonslender ring without simple ideals is complete with respect to a
linear topology defined by some non-discrete Hausdorff filtration. We recover their result,
and prove in the reduced case that the ideals of the filtration may be taken to be principal
ideals, see Corollary 6.11.

In the terminology below, a ring is not halfslender if there exists a non-zero R-linear
map RN/R(N) → R. The last Section 7 characterizes Noetherian rings R for which there
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exists such a map which in addition is a map of rings.

Setup 1.1. We first fix some notations. All rings will be commutative and unital, and ring
homomorphisms carry 1 to 1. We fix a commutative ringR, assumed to be non-zero so that
1 �= 0. The invertible elements of R will be called units, and non-zero divisors are called
regular elements. We use the notation R[S−1] for the ring of fractions formed with respect
to a given subset S ⊂ R; its elements are formal fractions a/s where a ∈ R and s is a finite
product of elements of S. We denote by N the set of non-negative integers 0, 1, 2, . . . . The
product RN is an R-module, but occasionally we use the coordinatewise multiplication in
RN. For any subset J ⊆ N we denote by 1J the characteristic function of J viewed as a
sequence in RN, and RJ is viewed as the submodule of RN consisting of sequences x with
xi = 0 for i /∈ J . In particular, for a ∈ R the product a1N is the constant sequence with
value a, and the product x1J , for a sequence x ∈ RN, is the sequence whose j ’th coordinate
is xj for j ∈ J and zero otherwise. Note that 1n is the characteristic function of {n}.

A (countable) non-discrete Hausdorff filtration in R is a sequence of ideals,

R ⊇ a1 ⊇ a2 ⊇ · · · , with an �= 0 for all n, and
⋂

an = 0.

The filtration defines a linear topology on R is which the an form a basis for the neigh-
borhoods of 0. The ring is complete with respect to the filtration if every Cauchy se-
quence is convergent, or, equivalently, if the canonical inclusion of R into the completion
R̂ := lim←−R/an is an isomorphism. For a Noetherian local or semilocal ring complete with-
out further specification is always with respect to the filtration of powers of the Jacobson
ideal.

The concepts extend verbatim to filtrations by submodules in an R-modules.

Definition 1.2. For an R-linear map ϕ : RN→ R, the value ϕn := ϕ(1n) is its n’th coordi-
nate. Note that the assignment ϕ → (ϕn), from the map to its sequence of coordinates, is
given by the linear restriction map,

HomR(R
N, R)→ HomR(R

(N), R) = RN. (*)

In general, the map (*) is neither surjective, nor injective.
Our work is centered about the relations between four properties of the ring R, some of

which are most conveniently defined through their negations:
(sl) R is slender if for every linear map ϕ : RN → R there is only a finite number of n

such that ϕn �= 0.
(as) R is almost slender if for every linear map ϕ : RN→ R there is only a finite number

of n such that ϕn is regular in R.
(not nl-c) R is not nearly compact if for every linear map ϕ : RN → R and every regular

element u there is only a finite number of n such that ϕn = u.
(not ℵ0-c) R is not ℵ0-compact if for every linear map ϕ : RN → R there is only a finite

number of n such that ϕn = 1, or, equivalently, such that ϕn is invertible.

It is easy to obtain the following characterizations (see [E–M, chap. 3]):
(not sl) R is nonslender iff there exists a linear map ϕ : RN→ R such that ϕn �= 0 for all n.
(not as) R is not almost slender iff there exists a linear map ϕ : RN → R such that ϕn is

regular for all n.
(nl-c) R is nearly compact iff there exist a regular element u and a linear map ϕ : RN→ R

such that ϕn = u for all n.
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(ℵ0-c) R is ℵ0-compact iff there exists a linear map ϕ : RN → R such that ϕn = 1 for all
n. Clearly, if such a map exists then there exists a linear map ψ : RN → R such
that the sequenceψn has prescribed values. In other words, R is ℵ0-compact iff the
restriction map (*) is surjective.

Let us note in passing that the ring R is called algebraically compact or pure-
injective if the maps obtained from (*) by replacing N by arbitrary sets I are sur-
jective, see [J–L, p. 126].

In addition, by composing ϕ with the automorphism α(x) = (x0, x1− x0, x2 − x1, . . . )

ofRN and its inverse (see [JJT, Remark 1.3, p. 895]), we obtain for any fixed u ∈ R: There
exists a linear map ϕ : RN→with ϕn = u for all n iff there exists a linear mapψ : RN→ R

with ψn = 0 for all n and ψ(1N) = u. As a consequence, two of the characterizations
above can be reformulated:

(nl-c’) R is nearly compact iff there exists a linear map ϕ : RN → R such that ϕn = 0 for
all n and ϕ(1N) is a regular element.

(ℵ0-c’) R is ℵ0-compact iff there exists a linear map ϕ : RN → R such that ϕn = 0 for all
n and ϕ(1N) = 1.

In addition, it follows that Hom(RN/R(N), R) = 0 iff there is no linear map ϕ : RN → R

such that ϕn = u is a non-zero constant for all n. A ring R with this property is called
halfslender, see [EB-K1, p. 1576]. As Hom(RN/R(N), R) is the kernel of the map (*), it
follows thatR is halfslender iff the map (*) is injective. Note finally that an integral domain
R is halfslender iff it is not nearly compact.

Note 1.3. Clearly (sl) ⇒ (as) ⇒ (not nl-c) ⇒ (not ℵ0-c). Moreover, (sl) ⇔ (as) for a
domain, and (as) ⇔ (not nl-c)⇔ (not ℵ0-c) for a ring in which every regular element is
invertible.

None of the three implications is, in general, reversible. For the first implication, (sl)
⇒ (as), a simple counterexample for the reverse is the ring R = Q × Z which is almost
slender and nonslender; see also Examples 5.3 and 5.4 for irreducible rings. For the second
implication, (as)⇒ (not nl-c), a local Noetherian counterexample for the reverse is the ring
Z(p)[[X]] which is not nearly compact and not almost slender, see Example 5.1. The last
implication, (not nl-c)⇒ (not ℵ0-c), or (ℵ0-c)⇒ (nl-c), is an equivalence for Noetherian
rings, see Theorem 6.3. In the non Noetherian case a counterexample to the reverse impli-
cation is given by the subring of power series in Q[[X]] whose constant term belongs to
Z(p), see Example 5.10. Further examples are collected in Section 5.

2. General rings

In this section we recall and comment on the result of Dimitrić on the connection between
slenderness and completeness with respect to a non-discrete Haussdorff filtration. However,
our main focus is on extensions of rings. For instance it is proved that “most” N- and Z-
graded rings are slender (Propositions 2.7 and 2.8). In addition we consider a localization
R[S−1], countably generated over R, and we provide general criteria under which the
localization is slender (Proposition 2.9). Our results imply for instance for a Noetherian
domain R, not a field, that the ring of formal Laurent series R[[X]][X−1] is slender, see
Note 2.10. The question of slenderness for arbitrary localizations R ⊂ R[S−1] is quite
subtle, and we have only partial results. The case when R is a finitely generated algebra
over a field is solved in Section 6 (Theorem 6.4). For a Noetherian domain R it is known
that a proper localization is ℵ0-compact iff the localization is the field of fractions of R,
see [JJT, Theorem 4.2, p. 901], but we have no similar results for general Noetherian rings.
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In the last parts of the section we consider various non-discrete Hausdorff filtrations with
respect to which a nonslender ring is complete.

Lemma 2.1. A field is nonslender. A ring containing a simple ideal is nonslender.

Proof. As is well known it follows by simple vector space theory that a field is even ℵ0-
compact, and in particular nonslender.

A simple ideal (that is, simple as an R-module) in R defines an R-linear embedding
K := R/m ↪→ R where m is the annihilator of a non-zero element u in the simple ideal.
Now K as a residue ring of R is a field, and hence ℵ0-compact. Let ϕ̃ : KN → K be a
K-linear map such that ϕ̃n = 1 for all n. Then ϕ̃ is also R-linear, and for the R-linear
composition,

ϕ : RN→ KN→ K ↪→ R,

we have ϕn = u �= 0 for all n. Hence R is nonslender (in fact, not even halfslender).

Lemma 2.2. The ring R is nonslender iff there exists an R-linear map ϕ : RN → R such
that all the ideals ϕ(R[n,∞)) are non-zero. Moreover, if ϕ is such a map and un ∈ ϕ(R[n,∞))
for n = 0, 1, 2, . . . is any sequence of non-zero elements then there exists an R-linear map
ψ : RN→ R such that ψn = un and ψ(R[n,∞)) ⊆ ϕ(R[n,∞)) for all n.

Proof. “Only if” is obvious. To prove the “if” part, letϕ be such a map, and choose non-zero
elements un ∈ ϕ(R[n,∞)) for n = 0, 1, 2, . . . . Pick for every n a sequence v(n) ∈ R[n,∞)
such that ϕ(v(n)) = un. Then there is a well-defined R-linear map ψ : RN→ R, given by

ψ(x) = ϕ(α(x)), where α(x) :=
∑

xiv
(i).

Obviously ψn = un, and α(R[n,∞)) ⊆ R[n,∞). The existence of ψ is a consequence. The
existence implies in particular that R is nonslender.

Remark 2.3. Assume that R is nonslender, so that there exists an R-linear ϕ as in Lemma
2.2. Set an := ϕ(R[n,∞)) and a := ⋂

an. If the inclusion a ⊆ an is strict for all n, or,
equivalently, if the inclusion an+1 ⊆ an is strict for infinitely many n, then the an/a form
a non-discrete Hausdorff filtration of the residue ring R/a, and, by a well-known argument
of Dimitrić, [D, 2.2 Lemma, p. 378], R/a is complete with respect to this filtration. In
particular, if a = 0, then R is complete with respect to the filtration (an).

If a �= 0, take a non-zero element u ∈ a. It follows from Lemma 2.2 that there exists
an R-linear map ψ : RN→ R with ψn = u for all n. Consequently, as noted in Definition
1.2, R is not halfslender.

Note that these observations are the essentials for the “if” part in the following funda-
mental result of Dimitrić [D, 4.4. Corollary, p. 382]: R is slender iff R is halfslender and
not complete with respect to any non-discrete Hausdorff filtration.

The “only if” part is the first assertion of Proposition 2.11 below.

Proposition 2.4. Assume that a subringR0 ⊆ R is a domain, and thatR is finitely generated
and torsion free as R0-module. Then the following equivalences hold:

(a) R0 is slender⇔ R is almost slender.
(b) R0 is nearly compact⇔ R is nearly compact.

In fact, for the implication “⇐” in (b) it suffices that R0 is a domain and R is torsionless
as an R0-module.

Proof. Recall that R is torsionless over R0 if for any element u �= 0 in R there exists an
R0-linear map λ : R→ R0 such that λ(u) �= 0.
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For the case where R is a domain, a proof of the implications, and of several similar
implications under various hypotheses, may be found in [JJT, Prop. 2.1, p. 897]. The proof
in the case of a domain uses the fraction field K of R as a vector space over the fraction
fieldK0 ofR0. This proof may be transferred verbatim to the general case once the fraction
field K is replaced by the vector space R ⊗R0 K0 over K0.

Proposition 2.5. Assume there is given an increasing sequence of subsets Mn of R, with
unionR, and a decreasing sequence of principal ideals qnR, and anR-linear map ϕ :RN→
R,

M0 ⊆ M1 ⊆ · · · ,
⋃

nMn = R, R = q0R ⊇ q1R ⊇ · · · .
Assume the following inclusions, for all n:

(Mn−Mn) ∩ (qnϕn+qn+1R) ⊆ {0} , (2.5.1)

where the notation M −M for a subset M ⊆ R is used for the set of all differences x − y
for x, y ∈ M; in particular,M −M = M for an additive subgroupM ⊆ R.

Then qnϕn = 0 for n� 0.

Proof. First observe that the relation (2.5.1) for all n is preserved after a restriction to an
infinite subset i0 < i1 < i2 < · · · of indices, since qin+1R ⊆ qin+1R.

Next define the sequence i0 < i1 < · · · as follows: Set i0 = 0 and choose i1 > i0
such that q0ϕ0 ∈ Mi1 . Recursively, if in−1 is determined choose in > in−1 such that
qi0ϕi0 + · · · + qin−1ϕin−1 ∈ Min . Then, rather than restricting to the subsequence (in), we
may assume for all n ≥ 1 that

sn := q0ϕ0 + · · · + qn−1ϕn−1 ∈ Mn. (2.5.2)

Let q ∈ RN be the sequence q = (q0, q1, q2, . . . ), and consider the value ϕ(q). Then, for
any n ≥ 1 we have the equation,

ϕ(q) = ϕ(q1[0,n−1])+ qnϕn + ϕ(q1[n+1,∞)). (2.5.3)

In the sequence q1[n+1,∞) every coordinate is a multiple of qn+1. So, in (2.5.3), the last
term belongs to qn+1R. The first term on the right side is the sum sn defined in (2.5.2).
Hence Equation (2.5.3) implies the relation,

ϕ(q)−sn ∈ qnϕn+qn+1R. (2.5.4)

By choice, sn ∈ Mn. Choose n � 0. Then the difference in (2.5.4) belongs Mn −Mn.
Hence, by (2.5.1), the difference equals 0, that is, ϕ(q) = sn. Replacing n by n + 1 we
obtain ϕ(q) = sn+1. Consequently, sn+1 − sn = 0. As sn+1 − sn = qnϕn we have proved
that qnϕn = 0 for n� 0.

Corollary 2.6. (Key Lemma) Assume there is given an increasing sequence of subsets
Mn ⊆ R with union R, and a decreasing sequence of principal ideals qnR,

M0 ⊆ M1 ⊆ · · · ,
⋃

n
Mn = R, R = q0R ⊇ q1R ⊇ q2R ⊇ · · · ,

satisfying the following conditions, for all n:

(Mn−Mn) ∩ qnR = {0}. (2.6.1)
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Then:
(1) If qn �= 0 for all n, then R is almost slender.
(2) If qn is regular for all n, then R is slender.

Proof. Assume, indirectly, that one of the implications in (1) or (2) is false. Then there
exists an R-linear map ϕ : RN→ R such that qnϕn �= 0 for all n.

Obviously, Condition (2.6.1) implies the Condition (2.5.1). Hence Proposition 2.5 im-
plies that qnϕn = 0 for n� 0, which is the desired contradiction.

Proposition 2.7. (Compare [E–M, III, exc. 4] or [ON, Proposition 2.9, p. 289]) Assume that
R embeds as a subring of an N-graded ring G =⊕

n∈NGn in such a way that a non-zero
element q of R has no constant term in G. Then:

(1) If q is not nilpotent then R is almost slender.
(2) If q is a regular element of R then R is slender.

Moreover, if q is regular inG then the associated series ring
∏
n∈NGn is not almost slender.

In particular, a polynomial ring in any positive number of variables over an arbitrary
ring is slender, and the associated ring of formal power series is not almost slender.

Proof. For the first two assertions, let Mn ⊆ R be the subgroup of elements of degree at
most n− 1. Since q has no constant term, it follows that qn has no homogeneous terms of
degrees less that n. Hence Mn ∩ qnR = 0. Now apply Corollary 2.6 with qn := qn.

Consider the associated series ring Ĝ = ∏
n≥0Gn. It may be defined as the subring

of G[[T ]] consisting of series
∑
snT

n with sn ∈ Gn for all n. Define a Ĝ-linear map
ĜN→ Ĝ by the convergent series, for x ∈ ĜN,

ϕ(x) =
∑

xnq
n.

Since ϕn = qn is regular for all n it follows that Ĝ is not almost slender.

Proposition 2.8. Assume thatR embeds as a subring of a Z-graded ringG =⊕
n∈ZGn in

such a way that a non-zero element q ∈ R is homogeneous of positive degree in G. Then:
(1) If R is reduced, i.e., R has no non-zero nilpotents, then R is almost slender.
(2) If q is regular in R, then R is slender.

Proof. For a non-zero element s ∈ G the order and the degree, ord s and deg s, are, respec-
tively, the smallest and the largest degree of a non-zero homogeneous term in s, and the
width of s is the difference wd s := deg s − ord s.

We let Mn ⊆ R be the subgroup of elements in R of degree at most n− 1 and order at
least −n; then any non-zero element of Mn has width at most 2n− 1. It suffices to prove
with pn := q(1+ qn) that any non-zero element in pnR has width at least n. Indeed, if this
has been proved, then p2nR ∩Mn = 0, and Corollary 2.6 applies with qn := p0 · · ·p2n.

So let r := sq+ sqn+1 be a non-zero element of pnR. Assume indirectly that wd r < n.
Then wd r < deg qn. Hence, by the Sublemma below applied with s := sq and p := −qn,
we have (sq)qnN = 0 for some N ≥ 1. In (2) q is regular, and it follows that s = 0, and
hence r = 0, a contradiction. For (1) we obtain (sq)nN+1 = 0, and sinceR has no non-zero
nilpotents, it follows that sq = 0, and hence r = 0, a contradiction.

Sublemma. Assume in the setup of Proposition 2.8 that p ∈ R is non-zero and homoge-
neous of positive degree d. Assume that r := s − ps is non-zero of width wd r < d. Then
there exists an integer N ≥ 1 such that pNs = 0.
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Proof. The given equation r = s(1− p) implies, for any N ≥ 1, the following:

∑N−1
i=0

rpi = s − spN . (*)

On the left side we have wd(r) < d and p is homogeneous of degree d. Hence there is no
cancellation of homogeneous components of the various terms rpi in the sum. Therefore,
the equations (*) for all N ≥ 1 imply first that rpi = 0 when ord(r) + di > deg(s), and
next that spN = 0 when ord(s)+ dN > deg(s).

Proposition 2.9. Assume that a localization R ⊂ R[S−1] is countably generated over R,
where S ⊂ R is a system of regular elements containing a non-unit. In addition, assume
for some element p ∈ R that the following conditions hold for all non-units s ∈ S:

(1)
⋂

n
snR = 0, (2) p is regular modulo sR, and (3)

⋂
i
pi (R/sR) = 0.

Then R[S−1] is slender.

Proof. Clearly, the conditions (1) and (2) with a regular non-unit s ∈ S imply that p is a
regular non-unit in R, and, in fact, a non-unit in R[S−1]. Replacing S by a smaller subset
if necessary, we may assume that S is countable and that every s �= 1 in S is a non-unit.
Enumerate the elements: S = {1} ∪ { s0, s1, s2, . . . }, and set tn := s0 · · · sn−1 (s0 = 1).
Then tn+1 = tnsn. for n ≥ 0.

Proceed indirectly and assume that R′ := R[S−1] is nonslender. Then there exists an
R′-linear map ϕ : (R′)N → R′ with ϕn �= 0 for all n. After a multiplication in the n’th
coordinate by an element of S and (using (1)) a suitable power of s−1

n we may assume that
ϕn ∈ R \ snR.

Let Mn ⊆ R′ be the R-submodule Mn := R/tn consisting of fractions a/tn for a ∈ R.
Then the Mn form an increasing sequence of additive subgroups, and R′ = ⋃

n Mn. We
prove that there exists a sequence of exponents i0 < i1 < · · · such that, with qn := pin/tn+1,
Condition (2.5.1) holds in the following form:

Mn ∩ (qnϕn + qn+1R
′) = ∅. (†)

As a consequence, by Proposition 2.5, we have qnϕn = 0 for n � 0. This is the desired
contradiction as qn = pin is regular, and we assumed that ϕn �= 0 for all n.

To determine the sequence (in) we note first for any i that (pi/tn+1)ϕn /∈ Mn. Indeed,
multiplication by tn+1 yields the equivalent assertion piϕn /∈ snR which holds since ϕn /∈
snR and p is regular modulo snR.

Now let i0 := 0. Recursively, assume that in is determined. We have just seen that the
residue of pinϕn is non-zero in R/snR. Hence, by (3), we may choose in+1 > in such that
the residue of pinϕn is not in pin+1(R/snR), that is,

pinϕn /∈ pin+1R + snR. (*)

The condition (*) implies the asserted condition (†). Indeed, any element of R′ may be
written in the form b/(tn+1s)with a suitable element s ∈ S. Hence, a non-empty intersection
in (†) will imply an equation of the form:

pinϕn/tn+1 + pin+1b/(tn+1s) = a/tn,
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with a, b ∈ R, and multiplication by tn+1 yields the equation:

pinϕn + pin+1b/s = sna. (‡)

The latter equation implies that pin+1b ∈ sR, and since p is regular modulo sR, it follows
that b ∈ sR. In other words, the fraction b/s is inR. But then (‡) contradicts (*). Therefore,
the intersection in (†) is empty, and the proof is complete.

Note 2.10. Part of the assumption on s and p in (2) is that (s, p) is a regular sequence
(of length 2). In the local Noetherian case, the intersection conditions are automatic, and
(s, p) is a regular sequence iff (p, s) is. It is easy to see in general that if the intersection
conditions in (1) and (2) are satisfied and (s, p) is a regular sequence, then (p, s) is a regular
sequence.

The conditions (1), (2), and (3) are not so rare. Indeed, consider a Noetherian local
domain R. Let p be a prime ideal different from the maximal ideal, and assume that p
contains a non-zero element p such that pR is a prime ideal. Then the conditions hold for
the complement R \ p. But of course, the localization Rp will normally not be countably
generated over R.

In fact, the only natural application of 2.9 we have found is to a localizationR ⊂ R[s−1]
generated by a singleton. A typical example is the following result:

Corollary. Let R0 be a ring such that
⋂
n p

nR0 = 0 for some regular element p ∈ R0.
Then the ring of formal Laurent series R0[[X]][X−1] is slender.

As a further example, consider the local ring R := Z(2), of rational numbers with odd
denominators. It is well-known that R, as a countable domain, not a field, is slender, cf.
3.10. The localizationR[1/2], obtained for the singleton S := {2}, is the field Q, and hence
ℵ0-compact. In particular, the localization is nonslender. Note that (1) is satisfied for R,
but no element p ∈ R satisfies (2) and (3).

See also Examples 5.8 and 5.10.

Proposition 2.11. If R is complete with respect to a filtration as in Setup 1.1,

a• : R ⊇ a1 ⊇ a2 ⊇ · · · , an �= 0 for all n,
⋂

an = 0,

then R is nonslender.
Assume that there is given a non-discrete Hausdorff filtration with finitely generated

ideals,
b• : R ⊇ b1 ⊇ b2 ⊇ · · · , bn �= 0 for all n,

⋂
bn = 0.

Then,
(1) If R is ℵ0-compact, then R is complete with respect to the filtration b•.
(2) IfR is nearly compact, then there exists a regular element u such thatR is complete

with respect to a filtration a• such that ubn ⊆ an ⊆ bn for all n.
(3) If R is not almost slender, then there exists a sequence of regular elements pn with

pn+1 ∈ pnR such that R is complete with respect to the filtration (pnbn).

Proof. The first assertion is well known: RN is complete with respect to the filtration of
“tails”R[n,∞), andR is complete with respect to a•. Choose an �= 0 in an for n = 0, 1, . . . .
Then there is an R-linear map of N-systems,

ϕ(n) : RN/R[n,∞) = 10R⊕ · · ·⊕1n−1R→ R/an,
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under which 1j �→ aj (mod an) for 0 ≤ j < n. Clearly, for the limit, ϕ = lim←−ϕ(n) : RN→
R, we have ϕn = an �= 0 for all n.

For each of the remaining three assertions part of the hypothesis is the existence of an
R-linear map ϕ : RN → R with special properties. The submodule

∏
n≥0 bn ⊆ RN is

complete with respect to the filtration by the “tails”
∏∞
i=n bi . Let an denote the image

of the tail, an := ϕ(
∏∞
i=n bi ). Then, using an observation of Dimitrić [D, 2.2. Lemma,

p. 378], R is is complete with respect to the filtration a•, provided that the latter filtration
is non-discrete Hausdorff.

Clearly, 1nbn ⊆
∏
i≥n bi ⊆

∏
i≥n bn = bnR[n,∞), where the last equation follows from

Lemma 2.12 below. Hence
ϕnbn ⊆ an ⊆ bn. (2.11.1)

In particular, the filtration a• is Hausdorff, and non-discrete if ϕnbn �= 0 for all n.
Consider first Assertion (2). Here we may assume that ϕn = u is a constant regular

element. So ubn �= 0, and (2) has been proved. Moreover, under the hypothesis in (1)
we may assume that ϕn = 1 for all n. that is, u = 1, and hence b• = a•. Thus (1) is a
consequence of (the proof of) (2).

Consider finally (3). There exists an R-linear map ψ : RN → R such that ψn is regular
for all n. Set pn := ψ0 · · ·ψn, and define ϕ : RN→ R, for all x ∈ RN, by

ϕ(x) = ψ(x0, p0x1, p1x2, p2x3, . . . ), (2.11.2)

and, as before, an := ϕ(∏i≥n bi ). It suffices to prove that

an = ϕnbn + ϕ
(∏

i>nbi
) = pnbn, (2.11.3)

since, obviously, the filtration (pnbn) is non-discrete Hausdorff.
The first equality in (2.11.3) follows simply by linearity. As ϕn = pn−1ψn = pn, to

prove the second equality, it suffices to prove for x ∈∏
i>n bi that ϕ(x) ∈ pnbn. For such

a sequence x, the value ϕ(x) is given by the right side of (2.11.2) where every coordinate
belongs to pnbn+1, and hence to pnbn. Again, since bn is finitely generated, it follows that
ϕ(x) ∈ pnbn. Hence also (3) has been proved.

Lemma 2.12. Let ϕ : RN→ R be a linear map, and a ⊆ R a finitely generated ideal. Then
aRN = aN, and, as a consequence, ϕ(aN) ⊆ a andϕ induces a linear map (R/a)N→ R/a.

If R ⊇ a1 ⊇ a2 ⊇ · · · is a descending chain of finitely generated ideals with
⋂

an = 0,
and ϕn = 0 for all n, then ϕ vanishes on the submodule

∏
an ⊆ RN.

Proof. The first assertion is obvious. For the second, note the following inclusions, where
k ≥ 1 is fixed:

∏
n∈N an ⊆

∏
n<k

R ×
∏

n≥k an ⊆
∏

n<k
R ×

∏
n≥k ak.

For the second factor on the right we have
∏
n≥k ak = ak

∏
n≥k R since ak is finitely

generated. So, by linearity, ϕ maps the second factor into ak . Clearly ϕ maps the first factor
to zero. Hence ϕ maps the left side

∏
an into ak . Since k ≥ 1 was arbitrary, it follows that

ϕ vanishes on
∏

an.
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3. “Countability” conditions

Among domains a field is ℵ0-compact. For rings with zero divisors it is a well-known
natural generalization that an Artinian ring is ℵ0-compact. For a countable domain R it
is a classical result, see [E–M, 2.4 Cor., p. 60], that R is slender iff R is a not a field.
A substantial generalization of this result is presented in Theorem 3.10. We weaken the
countability assumption considerably, see the Definition 3.1 of rings of bounded type. We
allow zero divisors, but assume that the nilradical of the ring is finitely generated. Under
these assumptions, the ring is almost slender iff it is not Artinian.

In the last subsections we consider for rings of bounded type the question of slenderness.
It is much more delicate than the question about almost slenderness.

Definition 3.1. In this section we consider various “countability” conditions on the ring R.
We say that R is of bounded type if either

(1) |R| < 2ℵ0 , or if
(2) R is an algebra over a field k and dimk R < |k|ℵ0 , or, more generally, if
(3) R is an algebra over an Artinian ring A and for every maximal ideal m ⊂ A the

dimension of R/mR as vector space over A/m is strictly less than |A/m|ℵ0 .

Note that “bounded type” includes the following conditions: R is a countable ring (|R| ≤
ℵ0), orR is countably generated as algebra over a field k (dimk R ≤ ℵ0), or more generally,
R is countably generated over an Artinian ring.

Lemma 3.2. A ring of bounded type is never complete with respect to a non-discrete Haus-
dorff filtration of ideals R = a0 ⊃ a1 ⊃ · · · with

⋂
an = 0.

Proof. Assume, indirectly, that the canonical map is an isomorphismR ∼−→ lim←−Qn, where
Qn = R/an. Clearly, the transition mapsQn+1 → Qn in theN-system (Qn) are surjective,
and they are non-injective since the inclusions an+1 ⊆ an are strict.

First, for any set T there is an N-system (T n) with the natural projections T n+1 → T n

as transition maps. Take T := {0, 1}. Clearly, since every fiber of a transition map
Qn+1 → Qn contains at least two elements, there is an injection of N-systems of sets,
({0, 1}n) → (Qn), and hence an injection of the limits, {0, 1}N → R. Thus 2ℵ0 ≤ |R|,
which is a contradiction under condition 3.1(1).

Similarly, under condition 3.1(2), a k-linear injection of N-systems (kn) → (Qn) is
obtained inductively as follows: Lift kn → Qn to kn → Qn+1, and extend to a map from
kn+1 = kn⊕k toQn+1 by mapping the last basis vector to a non-zero element in the kernel
ofQn+1 → Qn. The result is an injection of the limits, kN→ R. Thus dimk k

N ≤ dimk R.
This a contradiction under condition 3.1(2), since, by the Erdös–Kaplansky theorem (see
[J, Chapter IX, § 5]), dimk k

N = |k|ℵ0 .
The general case where R is an algebra over an Artinian ring A is easily reduced to the

case where A is local with, say, maximal ideal m. We have to prove, with k := A/m,
that dimk R/mR ≥ dimk k

N. It suffices to show that there exists an ideal J ⊆ R such that
dimk J/mJ ≥ dimk k

N. This reduction is possible because mR is finitely generated and
nilpotent. As we shall show, we may take as J the closure of one of the ideals miR.

Fix i = 0, 1, . . . . The closure of miR is the limit Ji := lim←−nmiQn of the subsystem
(miQn) of (Qn). Clearly, we have an exact sequence of systems:

0→ mi+1Qn → miQn → miQn/m
i+1Qn → 0. (3.2.1)

All the transition maps in the systems are surjective. In particular, so are the maps in the
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left system, and thus the resulting left exact sequence of the limits is exact:

0→ Ji+1 → Ji → lim←−
n

(miQn/m
i+1Qn)→ 0. (3.2.2)

Consider the systems (3.2.1) for i = 0. In the middle system (which is (Qn)) the transition
maps are non-injective for n� 0 (in fact, when n ≥ 0). So, if the transistion maps in right
system are isomorphisms for n � 0 then the transition maps in the left system are non-
injective for n� 0. The left system for i = 0 is the middle system for i = 1. By repeating
this argument, it follows that if the transition maps in the right systems for i = 0, . . . , p
are isomorphisms for n � 0, then the transition maps in the system (mp+1Qn) are non-
injective for n� 0. As this is contradictory when mp+1 = 0, we conclude for some i that
in the right system in (3.2.1) the transition maps are non-injective for n� 0.

The right system in (3.2.1) is a system of vector spaces over k. As above, it follows from
the choice of i that the dimension of the limit is at least dimk k

N. As Ji maps surjectively
onto this limit we conclude that dimk Ji/mJi ≥ dimk k

N. Thus the proof is complete.

Corollary 3.3. A ring of bounded type is slender iff it is halfslender.

Proof. The assertion follows immediately from the result of Dimitrić, see Remark 2.3.

Corollary 3.4. Let R be a ring of bounded type, and let ϕ : RN → R be an R-linear map.
Then the inclusion ϕ(R[n+1,∞)) ⊆ ϕ(R[n,∞)) is an equality for n� 0.

Proof. Indeed, setan := ϕ(R[n,∞)) anda :=⋂
n an. If the inclusionsan+1 ⊆ an were strict

for infinitely many n, then, as noted in Remark 2.3, the residue ringR/awould be complete
with respect to the non-discrete Hausdorff filtration an/a, contradicting Proposition 3.2
since R/a is of bounded type.

Corollary 3.5. Let R be a ring of bounded type, and assume that there exists for every
non-zero ideal a an element t ∈ R such that a ⊃ ta ⊃ 0. Then R is slender.

Proof. Indirectly, assume that R is nonslender. Then, by Corollary 3.4, there exists an
R-linear map ϕ : RN → R such that all the ideals ϕ(R[n,∞)) are non-zero and equal, say
ϕ(R[n,∞)) = a for all n.

Now apply the hypothesis repeatedly to obtain a sequence 1=t0, t1, t2, . . . such that

a ⊃ t1a ⊃ t2a ⊃ · · · , and tn+1 ∈ tnR for all n.

According to the strict inclusions, pick a sequence a0, a1, a2, . . . of elements of a such
that tiai /∈ ti+1a. Then, by Lemma 2.2, there exists an R-linear map ψ : RN → R such
that ψn = an and ψ(R[n,∞)) ⊆ a for all n. Finally, define χ : RN → R as the following
modification of ψ :

χ(x) = ψ(x0, t1x1, t2x2, . . . ). (3.5.1)

Clearly, if x ∈ R[n,∞) then all the arguments on the right side of (3.5.1) belong to tn+1R.
Hence,

χ
(
R[n+1,∞)) ⊆ tn+1ψ

(
R[n+1,∞)) ⊆ tn+1a.

So the choice of an implies that tnan /∈ χ(R[n+1,∞)). However, tnan = χn ∈ χ(R[n,∞)).
Therefore, the inclusion χ

(
R[n+1,∞)) ⊆ χ

(
R[n,∞)) is strict. As this is in conflict with

Corollary 3.4, the desired contradiction has been established.
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Proposition 3.6. Let R be a ring of bounded type. Assume in addition any of the following
three conditions:

(1) R is reduced and without simple ideals,
(2) R is Noetherian and without simple ideals,
(3) There exists a decreasing sequence R = q0R ⊇ q1R ⊇ q2R ⊇ · · · with regular

elements qj and with
⋂
j qjR = 0.

Then R is slender.

Proof. We prove under any of the conditions that the assumption in Corollary 3.5 is satisfied.
So let a be a non-zero ideal.

Case (1): Pick a non-zero element a ∈ a, The ideal aR is not simple. In particular,
we may assume that aR ⊂ a. Then aa ⊆ aR ⊂ a, and aa �= 0 since a2 ∈ aa and R is
reduced.

Case (2): As R is Noetherian, we may first pick aR maximal among the principal ideals
contained in a, and next, since aR is not simple, choose t such aR ⊃ taR ⊃ 0. Then
ta �= 0, since ta �= 0, and a ⊃ ta, since the maximality of aR implies that a /∈ ta.

Case (3): Pick any non-zero a ∈ a, and choose n such that a /∈ qnR. Then qna �= 0
since qn is regular, and the inclusion qna ⊆ a is strict, since a /∈ qna.

Thus R is slender in all three cases.

Remark 3.7. The conclusion under the first condition is the commutative version of a result
of El Bashir and Kepka [EB-K1, Theorem 5.1, p. 1578]. However, their proof requires
certain hypotheses on the minimal primes ofR. The conclusion under the second condition
is an immediate consequence of a strong result of El Bashir and Barka [BK-2, 4.4 Corollary,
p. 2590] that a Noetherian ringR without simple ideals is nonslender iffR is complete with
respect to some non-discrete Hausdorff filtration.

We prove in Lemma 6.7 for an arbitrary Noetherian ring that Condition (3) is a conseqence
of (2), and we use it to derive the result of El Bashir and Barka, see Theorem 6.8.

Definition 3.8. The commutative ring R will be called perfect if there does not exist an
infinite strictly decreasing chain of principal ideals,

R ⊃ c1R ⊃ c2R ⊃ · · · . (3.8.1)

Note that this condition is one of several equivalent conditions formulated for noncommu-
tative rings by Bass [Ba, Theorem P, p. 467].

Lemma 3.9. If R is of bounded type and not perfect, then R is almost slender.

Proof. Assume, indirectly, that there exists an R-linear map ϕ : RN → R such that ϕn is
regular for all n. By hypothesis there exists an infinite chain (3.8.1). We will construct a
modification of ϕ that violates 3.4.

Set pn := ϕ1 · · ·ϕn for n = 1, 2, . . . . As each ϕi is regular, so is their product pn.
Consider the modification,

ψ(x) = ϕ(x0, c1x1, p1c2x2, p2c3x3, . . . ).

If x ∈ R[n+1,∞), then all coordinates on the right side are divisible by pncn+1, and hence

ψ(R[n+1,∞)) ⊆ pncn+1R.

On the other hand, we have ψn = pn−1cnϕn = pncn. Choose y ∈ R such that y ∈ cnR
and y /∈ cn+1R. As pn is regular, it follows that pny ∈ pncnR and pny /∈ pncn+1R. Thus
pny ∈ Rψn belongs to ψ(R[n,∞)), but pny /∈ ψ(R[n+1,∞)).
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Theorem 3.10. Assume that R is of bounded type. Then the following three conditions are
equivalent:

(i) R is ℵ0-compact,
(ii) R is nearly compact,

(iii) R is not almost slender,

and they imply the following condition:

(iv) R is perfect.

If the nilradical n of R is finitely generated, then all four conditions are equivalent, and
they hold iff R is Artinian.

Proof. The implications (i)⇒ (ii)⇒ (iii) (for any ring) are obvious from the definitions.
The implication (iii) ⇒ (iv) follows directly from Lemma 3.9. Moreover, if (iv) holds,
then every regular element is invertible, and hence (iii)⇒ (i). Hence the first part of the
Corollary has been proved.

Assume in addition that n is finitely generated. As is well known (see Theorem 6.3), if
R is Artinian then (i), and hence all the conditions hold. Conversely, we assume that (iv)
holds, and prove that R is Artinian. Again, the assertion results from Bass [Ba, Theorem P,
“(6)⇒(1)”, p. 467]. Indeed, it follows first that R/n is a finite product of fields, and since
the nilradical n is nilpotent, say nN = 0, the ring R has a finite filtration whose residue
modules ni−1/ni for i = 1, . . . , N are finitely generated over R/n. Thus each residue
module has finite length. Hence, so has R.

Proposition 3.11. If R has a field as a direct factor, then R is nonslender. Conversely,
assume that R is of bounded type, reduced, and nonslender. Then R has a field as a direct
factor.

Proof. The final conclusion is the commutative version of a result of El Bashir and Kepka
[EB-K1, Theorem 5.1, p. 1578]. However, their proof requires certain hypotheses on the
minimal primes of R.

The first assertion is obvious; in fact, the conclusion holds if R has a direct factor which
is nonslender.

Conversely, assume that R is of bounded type, reduced, and nonslender. Then, by
Proposition 3.6, R has a simple ideal, That ideal, in a reduced ring, is generated by an
idempotent e ∈ R, corresponding to a factor R/Ann(e) which is a field.

Theorem 3.12. Assume that R is of bounded type, and that the nilradical n of R is finitely
generated. Then the following two conditions are equivalent:

(i) R has a non-zero Artinian ring as direct factor.
(ii) There exists an R-linear map ϕ : RN→ R such that no ϕn is nilpotent.

Proof. Assume (i). As is well known, an Artinian ring is ℵ0-compact, see Theorem 6.3.
Hence, if R = A × S with an Artinian factor A, then there exist an R-linear map ϕ with
ϕn = (1, 0) ∈ A× S for all n. In particular, no ϕn is nilpotent.

Conversely, assume (ii). Let R̄ := R/n be the residue ring. The map ϕ induces, since
n is finitely generated, an R-linear map ϕ̄ : R̄N → R̄, and ϕ̄n �= 0 for all n since ϕn /∈ n.
Hence R̄ is nonslender, and, obviously, reduced.

Therefore, by Proposition 3.6(1), R̄ has a simple ideal, and as R̄ is reduced it follows that
the simple ideal splits off as a field, that is, we have a decomposition R̄ = K×S with a field
K . The hypothesis implies thatn is nilpotent, saynN = 0. Consequently the decomposition
lifts to a decomposition R = A × T such that K = A/n(A) and S = T /n(T ). The
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nilradicals n(A) and n(T ) are the images of n(R) under the two projections. In particular,
n(A) is finitely generated and n(A)N = 0. So we obtain a finite filtration of A whose
residue modules n(A)i−1/n(A)i for i = 1, . . . , N are finite dimensional overK . Hence A
has finite length.

4. Von Neumann regular rings and valuation rings

In this section we use our previous results to study slenderness and compactness for von
Neumann regular rings and valuation rings. Note that, by Proposition 3.6(1), a von Neumann
regular ring R of bounded type is slender iff R contains no simple ideals.

Definition 4.1. In this section we will say that a sequence a = (an) in RN is divisorial
if, among the principal ideals containing an for all n, there is a smallest. In other words,
a = (an) is divisorial if there exists an element d ∈ R such that for all elements c ∈ R
we have an ∈ cR for all n iff dR ⊆ cR. We keep the notion of a nonslender sequence
introduced in Definition 3.11.

Lemma 4.2. Any nonslender sequence e ∈ RN of pairwise orthogonal idempotents is
divisorial.

Proof. As the sequence e is nonslender there is a linear map ϕ : RN→ R such that ϕn = en
for all n. Set

d := ϕ(e). (*)

The entries in e are orthogonal idempotents. Hence, for every n ≥ 0, we have that end =
enϕ(e) = ϕ(e2

n1n) = e3
n = en; in particular, en ∈ dR. Moreover, if en ∈ cR for all n then

e ∈ cRN; hence, by linearity, d = ϕ(e) ∈ cR.

Lemma 4.3. If R is ℵ0-compact, then every sequence of pairwise orthogonal non-zero
idempotents is divisorial.

Proof. Indeed, if R is ℵ0-compact, then any sequence in RN with non-zero entries is non-
slender.

Lemma 4.4. If R is von Neumann regular and some sequence of non-zero orthogonal
idempotents is not divisorial, then R is almost slender.

Proof. Assume, indirectly, that R is not almost slender. In a von Neumann regular ring
every regular element is invertible. Hence, R is ℵ0-compact. By hypothesis there exists
a sequence of non-zero orthogonal idempotents which is not divisorial, in contrast to the
conclusion in Lemma 4.3.

Proposition 4.5. Consider for a von Neumann regular ring k the product ring kN, and view
k(N) as an ideal in kN. Then the residue ring R := kN/k(N) is slender.

Proof. The assertion for a general von Neumann regular ring k rather than a field was
kindly communicated to us by the referee. The proof below is inspired by the remarks of
the referee, see also [EB-K3, Proposition 7.1, p. 284].

Assume, indirectly, thatR is nonslender. Then there exists anR-linear map ϕ : RN→ R

such that ϕn �= 0 for all n. If a �→ ā denotes the residue map kN → R, we have ϕn = ēn
for elements en ∈ kN. As R is von Neumann regular, we may assume that each ēn is
idempotent, and obviously, we may assume that each lifted sequence en ∈ kN is idempotent
too. As ēn �= 0, we have en �≡ 0, where the congruence is modulo k(N).

We will first prove that there exists a sequence of idempotentsfn ∈ kN whose supports are
pairwise disjoint and such that the sequence (f̄n) in RN is nonslender. Indeed, decompose
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N in two disjoint subsets, N = A∪B, such that each ofA and B has an infinite intersection
with the support of e0. Thus e01A �≡ 0 and e01B �≡ 0. As 1A + 1B = 1N we have either
ej1A �≡ 0 for infinitely many j ≥ 1 or ej1B �≡ 0 for infinitely many j ≥ 1. If the last case
does not occur, we interchange A and B. Then, after a restriction to an infinite subset of
indices, we may assume that ej1B �≡ 0 for all j ≥ 1. Now set f0 := e01A and replace ej
by ej1B for j ≥ 1. Apply the same process to e1 and the ej for j > 1 to obtain f1, and
continue. Clearly, we obtain a sequence (fn) as required.

The sequence (f̄n) in RN is a nonslender sequence of pairwise orthogonal idempotents.
We finish the proof by showing that this sequence is not divisorial, in contrast to the con-
clusion in Lemma (4.2).

Assume for some d ∈ kN that f̄i ∈ d̄R for all i. Let T be the support of d, and let Si
be the support of fi . The relation f̄i ∈ d̄R implies that the set Si , except for finitely many
elements, is contained in T . In particular, we may choose an index ui ∈ Si ∩ T . The Si
are pairwise disjoint, so the set U := {u0, u1, . . . } is infinite. Multiply d and the fi by the
characteristic function 1N−U . In the product h := d1N−U the infinitely many coordinates
in U are changed to zeros, so that h̄R ⊂ d̄R, but the multiplication changes in fi only a
single coordinate. Hence the residue f̄i is unchanged, and it follows that f̄i ∈ h̄R for all i.
Thus there is no smallest principal ideal containing the f̄i .

Corollary 4.6. Let R be a ring containing a finitely generated maximal ideal. Then the
residue ring RN/R(N) is not ℵ0-compact.

Proof. Let m ⊂ R be a finitely generated maximal ideal. We will apply Proposition 4.5
to the residue field k := R/m. To simplify the notation, let P := RN be the product ring,
and I := R(N) the ideal in P . Then the ring in question is the residue ringQ := P/I . The
ideal mQ ⊆ Q is finitely generated. Hence, to prove that Q is not ℵ0-compact, it suffices
to prove that Q/mQ is not ℵ0-compact.

Now there is an exact sequence,

0→ I/mI → P/mP → Q/mQ→ 0 .

Indeed, the sequence is right exact, and exactness follows from the equality I ∩mP = mI .
Again, since m ⊂ R is finitely generated we have the equations: I/mI = (R/m)(N) and
P/mP = (R/m)N. Hence the exact sequence identifies Q/mQ with the residue ring
kN/k(N). So, by Proposition 4.5, Q/mQ is slender, and, in particular, not ℵ0-compact.

Setup 4.7. Let V be a DVR (discrete (rank 1) valuation ring), with maximal ideal mV and
parameter p, that is, mV = pV . Let T ⊂ V be a system of representatives for the residue
field V/mV . Clearly for every element x ∈ V there is, for any n ≥ 1 a congruence,

x ≡ t0 + t1p + · · · + tnpn (mod pn+1V ), (4.7.1)

with coefficients tj ∈ T for j = 0, . . . , n. The coefficient tj is uniquely determined, and
independent of n for n ≥ j .

Let V ⊆ V ′ be an inclusion of DVRs such that V ′ is finitely generated as module over
V . The inclusion V ⊆ V ′ is local since, by Nakayama’s Lemma, mV V

′ ⊆ mV ′ . Hence,
if p and p′, respectively, are the parameters for V and V ′, we have pV ′ = (p′)eV ′ where
e = eV ′/V ≥ 1 is the ramification index of V ′/V . Let f = fV ′/V denote the residue degree
of the inclusion, that is, the field degree of V ′/p′V ′ over V/pV . Again, by Nakayama’s
Lemma, we have ef = 1, iff V = V ′. It should be mentioned that the setup here: V ′
is a DVR, and finitely generated as V -module, is natural when V is a complete DVR, and
possibly in no other cases. Anyway, in this setup it follows easily thatV ′ is a freeV -module,
and that its rank is equal to the product eV ′/V fV ′/V .
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Proposition 4.8. Assume that R is the union of a strictly increasing sequence of DVR’s
V0 ⊂ V1 ⊂ · · · such that each Vn+1 is finitely generated over Vn. Then R is slender.

Proof. Assume, indirectly, that there exists an R-linear map ϕ : RN→ R such that ϕn �= 0
for all n. Rather than replacing the sequence (Vn) by a subsequence, we may assume that
ϕn ∈ Vn for all n. Then ϕn is a unit times a power of the parameter pn for Vn. After a
multiplication in each coordinate of ϕ by a unit, we may assume that ϕn = p inn with in ≥ 0.
We will prove that there is, after a restriction to a subsequence of indices, a sequence of
non-zero elements qn such that qn+1 ∈ qnR, and such that the following equations hold:

(qnϕn + qn+1R) ∩ Vn = ∅ for all n. (4.8.1)

From these equations it follows, by Proposition 2.5, that qnϕn = 0 for n� 0, contradicting
that ϕn and qn were assumed to be non-zero for all n.

The proof of Equation (4.8.1) is divided in two cases depending on the sequence en :=
eVn+1/Vn .

Case 1: en = 1 for n � 0: Omitting a finite number of indices, we may assume that
en = 1 for all n. Then the parameter p = p0 for V0 is a parameter for every Vn, and we
may assume that ϕn = pin ; in particular, ϕn ∈ V0.

Clearly, we may choose for every n a system Un ⊂ Vn of representatives for the set of
non-zero elements of the residue field Vn/pVn in such a way thatUn ⊂ Un+1; the inclusion
is strict since f (Vn+1/Vn) > 1. Assume that 1 belongs to U0. Define the sequence qn of
the form qn = unpkn recursively on the pairs un, kn with u0 = 1, k0 = 0, and

un ∈ Un+1 \ Un, kn+1 > in + kn. (4.8.2)

Note that qn+1 ∈ qnR since kn+1 > kn and un+1 is invertible. To verify (4.8.1) let
x ∈ qnϕn + qn+1R, say x = unpin+kn + pkn+1y. Then it follows from the uniqueness in
(4.7.1) and the relations in (4.8.2) that x /∈ Vn. Thus (4.8.1) holds, and the proof in Case 1
is complete.

Case 2: en > 1 for infinitely many n: Restricting to a subsequence of indices we may
assume that en > 1 for all n. We have ϕn = p

in
n . Define the sequence qn of the form

qn = pknn+1 recursively on the exponents kn:

en � | kn and kn+1 ≥ (kn + inen + 1)en+1. (4.8.3)

Note that qn+1 ∈ qnR since kn+1 ≥ knen+1. To verify (4.8.1), fix n, and let x be an element
of the form x = qnϕn + qn+1y, y ∈ R. Set h := kn + inen. As pn is a unit times penn+1 we
get qnϕn = uphn+1 with a unit u ∈ Vn+1. In addition, since kn+1 ≥ (h + 1)en+1 we have

qn+1 = pkn+1
n+2 ∈ ph+1

n+1R. Hence we have

x = uphn+1 + ph+1
n+1s, s ∈ R.

It follows from (4.8.3) that en � | h. Therefore, by the uniqueness in (4.7.1), x /∈ Vn. Thus
(4.8.1) holds, and the proof in Case 2 is complete.

Lemma 4.9. If a valuation ring with countable value group is ℵ0-compact, then it is alge-
braically compact.

Proof. Indeed, such a ring is, in particular, coherent and has at most ℵ0 finitely generated
ideals. Hence the assertion follows from [J–L, Ex. 7.30, p. 145].
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Example 4.10. As a first example, let R be the ring of (integral) Puiseux series over a field
k, defined as the directed union of k[[X1/n]] for integers n ≥ 1. The elements of R, and
of the rings described below, may be viewed as formal power series

∑
α aαX

α , indexed
by non-negative rational numbers α. Such a series belongs to R, if its support, that is, the
set of indices α such that aα �= 0, is contained in (1/n)Z for some n ≥ 1. By Puiseux’s
theorem, if k is algebraically closed of characteristic zero, then the fraction field of R is
algebraically closed.

The ring R is slender by Proposition 4.8, and thus, in particular, cf. Proposition 2.11, R
is not X-adically complete.

The X-adic completion R̂ consists of the formal power series
∑
α aαX

α for which the
support contains only finitely many indices from any bounded interval. The ring R̂ is
a valuation ring; its value group is Q, and its residue field is k. As a completion, R̂ is
nonslender by Proposition 2.11. We will show that R̂ is not ℵ0-compact.

Let S ⊃ R be the ring consisting of the formal series
∑
α aαX

α for which the support
is a well-ordered subset of Q. Again, S is a valuation ring with value group Q and residue
field k. Hence S is a proper immediate extension of R̂, and, as a consequence, R̂ is not
maximally complete. Therefore, by [J–L, Theorem 11.18, p. 289] R̂ is not algebraically
compact. Since the value group Q is countable, it follows from Lemma 4.9 that R̂ is not
ℵ0-compact.

Example 4.11. The integral closure, Zp, of the ring Zp of p-adic integers is slender. This
result follows from 4.8 by using Krasner’s result that the integral closure Zp is a countable
union of finite extensions V/Zp. Note that, by Proposition 2.11, the slenderness of Zp
implies that Zp is not complete in the p-adic topology; the argument given here is an
alternative to the proof in [G, Theorem 5.7.5, p. 165].

For the following we refer to [G, p. 168ff.]. The p-adic completion of Zp, denoted Vp,
is a valuation ring with value group Q; its fraction field, often denoted Cp, is algebraically
closed. As a completion, Vp is nonslender. An argument as in the previous example shows
that Vp is not ℵ0-compact. Indeed, it may be shown that Vp admits a proper immediate
extension, cf. B. Poonen [P, p. 98], and it follows first that Vp is not algebraically compact,
and next by Lemma 4.9 that Vp is not ℵ0-compact.

Setup 4.12. Fix an infinite set J , and let Rα , α ∈ J , be a J -indexed family of algebras over
a ring k such that all the structure maps k → Rα are injective. An obvious example is to
take algebras over a field k.

Consider the product ring
∏
α Rα . A family r = (rα) is called eventually constant if there

exists an element λ ∈ k such that rα = λ except for the indices in a subset of cardinality
strictly smaller than |J |. The constant λ is then unique, denoted r∞. The subring R of
eventually constant families is denoted as follows:

R :=
∏′

α
Rα ⊂

∏
α
Rα.

For any index α ∈ J consider the k-linear embedding δα : Rα ↪→
∏
β Rβ . The image of

w ∈ Rα is the family wδα which is w in coordinate α and 0 at all other coordinates. In
particular, wδα is eventually 0 and hence wδα ∈ R. So, the embeddings δα : Rα → R for
α ∈ J define a (diagonal) embedding,

δ :
∏

α
Rα ↪→ RJ .
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Lemma 4.13. In the notation of 4.12 the ring R :=∏′
α Rα is almost J -slender.

Proof. In other words, there is no R-linear map ϕ : RJ → R such that ϕ(1α) is regular in
R for all α ∈ J .

Assume indirectly that ϕ is such a map. Let J = J ′ ∪ J ′′ be a decomposition such at
J ′ ∩ J ′′ = ∅ and |J ′| = |J ′| = |J |.

Let χ ∈ ∏
α Rα be the family such that χα = 1 for α ∈ J ′ and χα = 0 for α ∈ J ′′.

Form the family χδ ∈ RJ and consider the values,

r := ϕ(χδ) ∈ R and λ := r∞.

Let β ∈ J be an index such that rβ = λ. By the choice of J ′ and J ′′ there is at least one
such β in J ′ and one in J ′′. Let w ∈ Rβ be arbitrary. Then (wδβ) ∈ R, and

(wδβ)ϕ(χδ) = (wδβ)r = (wλ)δβ . (1)

By linearity,
(wδβ)ϕ(χδ) = ϕ(wχβδβ) = (wχβδβ)ϕβ. (2)

The value ϕβ = ϕ(1β) is regular inR. In particular, the β’th coordinate ϕ(1β)β is non-zero
in Rβ .

Equate the two right sides in (1) and (2), and take the coordinate corresponding to β, to
obtain the equations in Rβ ,

wλ = wχβϕ(1β)β, λ = χβϕ(1β)β.

The second equation is obtained from the first by setting w = 1 ∈ Rβ .
Now, if β ∈ J ′′ we have χβ = 0, and we conclude that λ = 0. If β ∈ J ′ we have

χβ = 1, and we conclude that λ �= 0. This is the desired contradiction.

Lemma 4.14. In the notation of 4.12, assume that |J | > ℵ0. Then, if each Rα is ℵ0-
compact, then so is R.

Proof. By assumption there exists for each α ∈ J an Rα-linear map ϕα : RN

α → Rα such
that ϕα(1n) = 1 for all n. Consider the product map,

∏
α
ϕα :

(∏
α
Rα

)
N =

∏
α
RN

α →
∏

α
Rα.

and check that it induces the required R-linear map,

(∏′
α
Rα

)N→
∏′

α
Rα.

Example 4.15. With Rα := k (k a field) and |J | = ℵ1 we obtain a von Neumann regular
ring,

R :=
∏′

α∈J k ⊆ k
J .

The ringR isℵ0-compact by Lemma 4.14; in particular,R is not almost slender. By Lemma
4.13, R is almost ℵ1-slender; in particular, R is not ℵ1-compact.

We know of no example of a domain which is ℵ0-compact but not ℵ1-compact.
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5. Examples and minor results

Example 5.1. Consider the power series ring R := Z(p)[[X]] over the local ring Z(p) of
rationals with denominators not divisible by the prime number p. The ring R is local
Noetherian domain of dimension 2. Moreover R is neither slender, nor nearly compact.
This is a consequence of Propositions 2.4(b) and 2.7. For the details, see [JJT, Example
3.2, p. 900].

Example 5.2. Let V be a vector space over the field k, and let R = k⊕ V be the k-algebra
with multiplication given by V · V = 0. We prove that R is ℵ0-compact. Clearly,

RN = kN ⊕ V N.

Since a field is ℵ0-compact, there exists a k-linear map ϕ : kN→ k such that ϕn = 1 for all
n. The map ϕ is extended to an R linear map ϕ : RN→ R as follows: Assume first that V
is of finite dimension, say V = ke1 ⊕ · · · ⊕ ked . Then clearly,

V N = (ke1)
N ⊕ · · · ⊕ (ked)N,

and any x ∈ V N may be written x = α1e1 + · · · + αded with αi ∈ kN. Accordingly, for
x ∈ V N we let

ϕ(x) = ϕ(α1)e1 + · · · + ϕ(αd)ed .
It is easy to see for any v ∈ V and α ∈ kN that ϕ(αv) = ϕ(α)v. In particular, ϕ : V N→ V

depends only on the given k-linear map ϕ : kN→ k.
If V is of infinite dimension, let L ⊆ V N be the (directed) union of UN over the finite

dimensional subspacesU of V . Then kN⊕L ⊆ kN⊕V N is anR-invariant submodule, and,
by the observations above, the k-linear map kN→ k has a unique extension to an R-linear
map ϕ : kN⊕L→ R. Clearly, a vector space complementK toL inside V N isR-invariant.
Hence, with the value zero on K , the map ϕ extends to an R-linear map RN→ R.

With V of countable dimension, we have an example of a ring of bounded type which is
ℵ0-compact but not Artinian.

Example 5.3. The ring of the previous example in the case of countable dimension may be
given as the algebra R = k[e0, e1, e2, . . . ] (k a field) with the relations eiej = 0 for all i, j ;
in particular e2

i = 0 for all i. It is worthwhile to notice that if we keep the relations for i �= j ,
but require that e2

i �= 0 for all i then the resulting ringR is almost slender, and, in particular,
it is not ℵ0-compact. Indeed, if ϕ : RN → R is any linear map, set e := (e0, e1, . . . ), and
choose the sequence λ ∈ RN as in Lemma 3.6 with ϕ(λe) = 0 and, say, λp = 1. Then
0 = epϕ(λe) = e2

pϕp, and hence ϕp is a zero divisor. With ei nilpotent for all i, for instance
e3
i = 0, the ring R is perfect, and hence nonslender, see Example 5.4.

Example 5.4. A perfect ring is nonslender. Indeed, the assertion is an immediate conse-
quence of Lemma 2.1 since it follows from Definition 3.8 that a perfect ring has simple
ideals.

Example 5.5. Product rings provide obvious examples of rings with zero divisors. For
instance, the ring R := Z×Q is almost slender, because the first factor is slender, but R is
nonslender, because the second factor is nonslender (in fact, ℵ0-compact).

For general results, consider a product of (non-zero) ringsR =∏
i∈I Ri over an arbitrary

index set I . Clearly, maps ϕ : RN → R may be identified with families (ϕi) of maps
ϕi : RN

i → Ri . Accordingly, the following equivalences hold: Let℘ be any of the properties
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“not almost slender”, “nearly compact”, or “ℵ0-compact”. Then R has property ℘ iff every
Ri has property ℘.

For the property “slender” the results are more subtle. If the index set I is finite, then R
is slender iff each Ri is slender. If I is infinite, then the product ring

∏
i Ri is never slender.

To prove the last assertion choose an embedding N ⊆ I . For j ∈ N let ej ∈ R

be the family whose i’th coordinate is 1 for i = j and zero otherwise. Then, clearly,
ϕ(x) := ∑

xjej is a well defined map ϕ : RN → R, and ϕn = en �= 0. Hence R is
nonslender.

Example 5.6. If R = k[x1, . . . , xn] is finitely generated over a field k, and of Krull dimen-
sion d ≥ 1 then R is almost slender. Indeed, by Noether’s Normalization Lemma, R is
finitely generated as module over a subring R0 = k[t1, . . . , td ] which is a polynomial ring
in d variables. The subring is slender by 2.7, and so R is almost slender by 2.4.

This result is improved in Theorem 6.4.

Example 5.7. Let R0 ⊆ R1 ⊆ R2 ⊆ · · · be an increasing sequence of subrings and
inclusions and let R = ⋃

Ri be the union. Assume that there exist non-zero elements
ti ∈ Ri , i ≥ 1, such that tiR ∩ Ri−1 = 0. Then R is almost slender, as it follows from the
Key Lemma 2.6(1).

For instance, over a field k, let R0 := k and define Ri , i ≥ 1 as the power series ring
Ri−1[[Ti]]. Then each Ri is ℵ0-compact, but the union R, the ring of “finitistic” power
series in X1, X2, . . . , is slender.

A second example is the union whereRi, depending on the parity of i, is equal toRi−1[Ti]
or = Ri−1[[Ti]].

Example 5.8. Consider the ring R of formal Laurent series over a ring R0, that is, R :=
R0[[X]][X−1]. The ring R is slender if there exists in R0 a regular element p such that⋂
pnR0 = 0. This is the result in the Corollary in Note 2.10; in particular, R is slender if

R0 is a Noetherian ring without simple ideals, see Lemma 6.7.
On the contrary, R is nonslender if R0 contains a simple ideal. Indeed, assume that R0

contains a simple ideal, that is, an ideal rR0 such that the annihilator m0 := AnnR0(r)

is a maximal ideal of R0. As observed in Lemma 2.1, a ring containing a simple ideal is
nonslender. Hence it suffices to prove that R contains a simple ideal. But clearly, AnnR(r)
is the ideal m := m0[[X]][X−1] of series with coefficients in m0, and it is maximal since
R/m is the field (R/m0)[[X]][X−1].

Let us finally note that R is also slender if R0 slender. This assertion is a special case
(obtained with τ(f ) := constant term in f ) of a more general result:

Assume thatR0 is a subring of a ringR such that there exists anR0-linear map τ : R→ R0
for which the pairing R ⊗R0 R → R0 determined by s ⊗ t �→ τ(st) is non-degenerate.
Then, if R0 is slender then so is R.

Indeed, assume indirectly that there exists an R-linear map ϕ : RN → R such that
un := ϕ(1n) is non-zero for all n. Then, by hypothesis, there exists for every n an element
vn ∈ R with τ(unvn) �= 0. Let v ∈ RN be the sequence v = (vn). Then, for the R0-linear
map ϕ0 : RN

0 → R0 defined as the composition,

ϕ0 : RN

0 ↪→ RN v−→ RN
ϕ−→ R

τ−→ R0,

we have ϕ0(1n) = τ(unvn) �= 0, contradicting that R0 is slender by hypothesis.
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Example 5.9. Consider for a field k the subringR ⊆ kN of eventually constant sequences. It
is a consequence of Lemma 4.13 that R is almost slender. The result is also a consequence
of Theorem 3.10: R is not perfect since the idempotent ideals 1[n,∞)R form a strictly
decreasing chain, and R is countably generated over k, for instance by the idempotent
sequences δn, equal to 1 at the n’th coordinate and 0 elsewhere.

For a more general result, see Example 5.12.

Example 5.10. Let R be a Noetherian domain. Then the implication (ℵ0-c)⇒ (nl-c) is a
biimplication, and these (equivalent) conditions hold iff R is a local complete domain (see
Theorem 6.3); in particular, R is half slender iff R is not a local complete domain.

The implication (ℵ0-c)⇒ (nl-c) is not reversible for general domains. Indeed, to construct
a domain S which is nearly compact, but not ℵ0-compact, consider the power series ring
R := Q[[X]]. Let S ⊆ R be the subring of series whose constant term belongs to Z(p), and
let S0 = Z(p) be the subring of constants in S. Note that S0 is a countable domain and not
a field, and hence slender.

The ring R is a local complete Noetherian domain, and hence, by Theorem 6.3, ℵ0-
compact. In particular, R is nearly compact. Multiplication by X defines an S-linear
injection R → S. As a consequence, R is torsionless over S, and hence, by Proposition
2.4(b), S is nearly compact.

However, S is not ℵ0-compact. Indeed, the maximal ideal XR of R is an ideal of S, and
S/XR = S0. Thus the inclusion S0 ↪→ S is split. So by a result similar to the results in 2.4
(more precisely, see [JJT, Proposition 2.1(c”), p. 897]), if S were ℵ0-compact, the subring
S0 would be ℵ0-compact as well, a contradiction since S0 was slender.

Note that the localization S[1/p] = Q[[X]] is ℵ0-compact. Hence, in addition, S is an
example of a (non-Noetherian) domain with a proper localization which is ℵ0-compact, but
not a field, cf. Proposition 2.9 and Example 5.6.

Example 5.11. Let R be a reduced ring of bounded type, and not a finite product of fields.
It follows from Theorem 3.10 that R is almost slender. We show by an example that such
a ring, even in the class of von Neumann regular rings, can be nonslender, and, with a
more delicate example, it can be slender. For a nonslender example, let k be a field, and let
R ⊂ kN be the subring of eventually constant sequences. Clearly, the ideal 10R is a simple
ideal. Hence, as observed in Example 5.4, R is nonslender,

To obtain a slender example we note that for R to be slender, it suffices, by Proposition
3.11, to show that R has no simple ideal. For the example let V be the full infinite binary
rooted tree. So V has a root, and every node has a pair of children as the immediate
successors. The set Vn of nodes of depth n has 2n elements; the set V0 contains only the
root. The map Vn+1 → Vn, mapping a node of positive depth to its parent, is a surjective
2-1-map, and the system of these maps defines a cosystem of finite dimensional k-algebras
and injections,

kV0 → kV1 → kV2 → · · · .
LetR be the colimitR := lim−→ kVn . Clearly,R is von Neumann regular of bounded type. For
a given node e ∈ Vn let 1e denote the characteristic function of e viewed as an idempotent in
kVn . If e′ and e′′ denote, respectively, the left and right child of e, then under the inclusion
kVn → kVn+1 we have 1e = 1e′ + 1e′′ and 1e′1e′′ = 0. Consider a non-zero element
of R, represented by a non-zero vector x ∈ kVn . Let e ∈ Vn be a node such that the
coordinate xe is non-zero. Then, clearly, we have 1e ∈ xR. Moreover, since 1e′1e′′ = 0
we have 1e′ = 1e1e′ , and hence 1e′ ∈ 1eR; in fact it is a strict inclusion 1e′R ⊂ 1eR since
1e′′ /∈ 1e′R. Thus xR ⊇ 1eR ⊃ 1e′R. Therefore, the ideal xR is not simple.
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Note in passing that the limit P := lim←−Vn is the set of infinite paths from the root, and
that the natural map is an embedding R ⊂ kP .

Example 5.12. The product ring kN, where k is a field, is ℵ0-compact, see for instance
Example 5.5. Let R ⊂ kN be a proper subring containing k(N). Then R is almost slender
but not slender.

Indeed, denote by δn ∈ R ⊆ kN the sequence whose only non-zero coordinate is the
n’th, equal to 1 ∈ k. Clearly each δn generates a simple ideal of R. In particular, R is
nonslender by Example 5.4.

To prove that R is almost slender we assume, indirectly, that there exists an R-linear
map ϕ : RN → R such that each ϕn is regular in R. Denote by rn ∈ k the n’th coordinate
of ϕn. It is given by the equation rnδn = ϕnδn. As ϕn is regular in R and R contains δn it
follows that rn �= 0. In particular, rn is invertible in k.

Let a ∈ kN be any sequence, and consider the value

h := ϕ(a0r
−1
0 δ0, a1r

−1
1 δ1, . . . ).

The elements δi are orthogonal idempotents of R. Hence multiplication by δn yields the
equation,

hδn = ϕ(0, . . . , 0, anr−1
n δn, 0, . . . ) = anr−1

n ϕnδn = anδn.
The equations hδn = anδn for all n show that h = (a0, a1, . . . ). As h ∈ R, this is a
contradiction when the sequence a is chosen outside R.

Example 5.13. The result in the previous example has a powerful extension:
Let T be a set, and consider the k-algebra kT of functions f : T → k. LetU0, U1, . . . be

a sequence of pairwise disjoint subsets of T and let δ0, δ1, δ2, . . . be a sequence of non-zero
functions in kT such that Supp(δn) ⊆ Un for all n. Finally, let R ⊆ kT be a subalgebra.
Assume that R contains all the functions δn, and assume for every sequence t ∈ ∏

n Un
(that is, tn ∈ Un for all n) that the evaluation map Evt : R→ kN, given by f �→ (f (tn)), is
not surjective. Then R is almost slender.

The argument is essentially as in the previous example: Assume for ϕ : RN → R that
ϕn is regular in R. As δn �= 0 it follows that ϕnδn �= 0, that is, there exists an element tn
such the (ϕnδn)(tn) �= 0. After a multiplication of δn by a constant, we may assume that
(ϕnδn)(tn) = 1. As δn(tn) �= 0 we have tn ∈ Un.

Let a = (a0, a1, . . . ) be any sequence in kN, and consider the function,

h := ϕ(a0δ0, a1δ1, . . . ).

Multiply by δn. As the functions δn are orthogonal, it follows that

hδn = ϕ(0, . . . , 0, anδ2
n, 0, . . . ) = anϕnδ2

n.

Evaluate at tn and divide by δn(tn) to obtain

h(tn) = anϕn(tn)δn(tn) = an.
Hence, under the evaluation map, we have Evt (h) = a, a contradiction when a is chosen
outside the image of the evaluation map.

Clearly, the expression
∑
rnδn for r ∈ RN defines an R-linear map RN→ kT , and R is

nonslender it this map has image contained in R. This observation may be applied to some
of the rings in the next example.
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Example 5.14. Let T be a “nice” topological space, say a “Tychonoff space” (i.e., infinite,
Hausdorff, and closed subset may be separated from a point in the complement by a con-
tinuous real function). It follows from the Hausdorff property that there exists a sequence
U0, U1, . . . of non-empty open pairwise disjoint subsets Un ⊆ T . By the separation prop-
erty there exists for each n a non-zero continuous function δn with Supp(δn) ⊆ Un. Hence
it follows from the previous result that any subalgebra of RT containing the functions δn
and having the “evaluation property” is almost slender.

For instance, the algebra of all bounded functions f : T → R is almost slender. If T
is compact, then the algebra of all continuous functions T → R is almost slender (and
nonslender).

Assume in addition that there exists in T a non-isolated point u having a countable basis
for its open neighborhoods. Then the sequence of open sets Un as above may be chosen in
such a way the any point sequence t ∈∏

Un converges to u. Hence, again by the result in
Example 5.13, if R ⊆ RT is any subalgebra containing the δn and consisting of functions
that are continuous at u, thenR is almost slender. For instance, the algebra of all continuous
real functions on T is almost slender (and nonslender).

Note that the results may be applied to rings of real sequences: The ring of all bounded
sequences and the ring of all convergent sequences are almost slender.

6. Noetherian rings

Lemma 6.1. Assume that R is Noetherian, and let p ⊆ R be a minimal prime. If the
residue ring R/p is slender, then R is almost slender. Conversely, if R is slender, then R/p
is slender.

Proof. In the proof we use that a minimal primep is an associated prime, that is, p = Ann(a)
is the annihilator of an element a ∈ R. In fact, the lemma and the following proof hold for
any associated prime.

The proof of the first assertion is indirect. Assume that R is not almost slender, that
is, assume there exists an R-linear map ϕ : RN → R such that an = ϕn is regular for all
n. By Lemma 2.12, ϕ induces a linear map ϕ̄ : (R/p)N → R/p. Since p is an associated
prime, it contains no regular elements. Hence ϕ̄n = (an mod p) is non-zero for all n, a
contradiction since R/p is slender.

Conversely, assume that R̄ := R/p is nonslender, that is, assume there exists an R̄-linear
map ϕ̄ : (R/p)N → R̄ such the ϕ̄n �= 0 for all n. Since p = Ann(a) the R-linear map
r → ra induces an R-linear injection R̄ ↪→ R. So the natural composition,

ϕ : RN→ (R/p)N
ϕ̄−→ R/p ↪→ R,

has ϕn �= 0 for all n.

Lemma 6.2. Assume that R is Noetherian and nearly compact. If R is an integral domain
then R is local. In general, R is semilocal.

Proof. The case of an integral domain is Proposition [JJT, Lemma 4.1, p.901]. Consider
the general case. Let p be a minimal prime of R. Then, as in the proof of the previous
lemma, the residue ring R/p is nearly compact since R is nearly compact. Hence, by the
integral case, R/p is local. In other words, there is only one maximal ideal containing
p. Consequently, since there are only finitely many minimal prime ideals, there are only
finitely many maximal ideals.
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Theorem 6.3. For a Noetherian ring R the following four conditions are equivalent:
(i) R is a finite product of local complete rings,

(ii) R is algebraically compact,
(iii) R is ℵ0-compact,
(iv) R is nearly compact.

In particular, an Artinian ring is ℵ0-compact.
Moreover, if the conditions hold, then R is complete with respect to any non-discrete

Hausdorff filtration.

Proof. For a local Noetherian ring with maximal idealm completeness without further qual-
ification refers to the m-adic filtration. It is Hausdorff (by Krull’s Intersection Theorem),
and it is discrete only for Artinian rings.

The equivalence (i)⇔ (ii) is proved in [J–L, Theorem 11.3, p. 283]. The implications
(ii)⇒ (iii) and (iii)⇒ (iv) follow from the definitions. Finally, to prove the equivalence of
the four conditions we prove the implication (iv)⇒ (i). As a consequence we then have a
proof of the implication (iii)⇒ (ii) stated in [G–J, Theorème 9.1, p. 282].

Assume (iv). It is well known that (i) holds iff R is semilocal and complete with respect
to the r-adic filtration (rn), where r is the Jacobson radical of R. We verify the latter
property. By Lemma 6.2, R is semilocal, so it remains to verify that R is complete. The
proof in the case of an integral domain is given in [JJT, Theorem 4.2, p. 901]. We give here
the more involved proof for the general case.

SinceR is nearly compact there is, by Proposition 2.11(2), a regular element u ∈ R such
that R is complete with respect to a filtration (an) such that

u rn ⊆ an ⊆ rn.

Let R̂ := lim←−R/rn be the r-adic completion. As R is complete with respect to the filtration
(an), we have R = lim←−R/an, and the inclusion R ↪→ R̂ is the limit of the surjective map
of N-systems R/an → R/rn. It follows from the inclusions u rn ⊆ an that multiplication
by u in R̂ factors through R. In other words, uR̂ ⊆ R.

As is well known, R̂ is R-flat [Bo, Theoreme 3, III.3.4, p. 68]. In particular, u is not a
zero divisor on R̂. Therefore, the multiplication u : R̂ → R is injective. Consequently, as
an R-module, R̂ is isomorphic to an ideal of R. In particular, R̂ is finitely generated over
R. Therefore, by a result of Frankild and Sather-Wagstaff [F–SW, Theorem B, p. 2304], R
is r-adically complete. Hence the equivalence of the conditions has been proved.

An Artinian ring is a finite product of local Artinian rings, and here each factor is discrete
and hence complete. Thus an Artinian ring satisfies (i). Therefore, as a consequence of (i)
⇒ (iii), an Artinian ring is ℵ0-compact.

The final assertion is a consequence of (iii) and Proposition 2.11(1).

Theorem 6.4. Assume that R is a localization of a finitely generated k-algebra R0 =
k[x1, . . . , xr ] (k a field). Then R is either Artinian or almost slender.

Proof. Assume thatR is not Artinian. We have to prove thatR is almost slender. The proof
in the case where R0 is an integral domain is given in [JJT, Corollary 4.7, p. 902]. The
general case is reduced to the integral case as follows.

As R is not Artinian, there exists prime ideal p ⊂ R which is minimal prime and not a
maximal ideal. Then the residue ring R/p is not a field. Moreover, if p0 = p ∩ R0 is the
contraction, then R0/p0 is a finitely generated integral domain, and, by standard results on
localization, p = p0R andR/p is a localization ofR0/p0. Hence, by the integral case,R/p
is slender. Therefore, by Lemma 6.1, R is almost slender.
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Lemma 6.5. Let R be a Noetherian 1-dimensional integral domain, and assume that R is
nonslender. Then R is local.

Proof. This is [JJT, Lemma 5.3, p. 903], recalled for the convenience of the reader.

Theorem 6.6. Let R be a Noetherian ring of dimension 1. Then R is not almost slender if
and only if the equivalent conditions of Theorem 6.3 hold.

In particular,R is almost slender if and only ifR is not semilocal and complete. Moreover,
if R is an integral domain then R is slender if and only if R is not local and complete.

Proof. If the equivalent conditions hold then, in particular, R is ℵ0-compact, and hence not
almost slender.

Assume conversely that R is not almost slender. Let p be a minimal prime of R. If p is
not a maximal ideal, then dimR/p = 1, and R/p is nonslender by Lemma 6.1; hence R/p
is local by the previous lemma. If p is a maximal ideal, then R/p is trivially local. Thus
R/p is local for any minimal prime p. As there are only finitely many minimal primes,
there are the same finite number of maximal ideals. Hence R is semilocal.

Let r be the Jacobson radical. Then
⋂

rn = 0 by Krull’s Intersection Theorem, and
rn �= 0 for all n since R is not Artinian. Therefore, by Proposition 2.11(3), R is complete
with respect to a filtration the form

R ⊇ p1r ⊇ p2r
2 ⊇ · · · , (†)

with regular elements pn. Consider a prime ideal p containing pnrn. Either p contains pn;
since pn is a regular element and dimR = 1 it follows that p is a maximal ideal. Or, p
contains r, in which case p is also a maximal ideal. Therefore, the residue ring R/pnrn

is Artinian, and, consequently, some power rN is contained in pnrn. In other words, the
topology defined by (†) is equal to the r-adic topology. ThusR is complete in this topology,
and condition (i) of Theorem 6.3 has been verified.

Lemma 6.7. Let R be a Noetherian ring without simple ideals. Then there exists a regular
element t ∈ R such that

⋂
tnR = 0.

Proof. Let p1, . . . , pr be the associated prime ideals of R. Then the union of the pi is the
set of zero divisors. Choose for every j a maximal ideal mj ⊇ pj . By hypothesis, no
pi is maximal. Hence, by prime avoidance, mj is not contained in the union of the pi .
Accordingly, we may choose a regular element tj ∈ mj . Let t be the product of the tj . Then
t is a regular element contained in the intersection

⋂
mi . We claim that

⋂
tnR = 0.

Let S ⊆ R be the complement of the union m1 ∪ · · · ∪mr , and consider the localization
S−1R. By the choice of the mi , the set S consists of regular elements. Hence the canonical
map R → S−1R is injective. As is well known, the ring S−1R is semi-local, with the
maximal ideals S−1m1, . . . , S

−1mr . Their intersection is the Jacobson radical,

r = S−1m1 ∩ · · · ∩ S−1mr ,

and, by choice, t ∈ r. By Krull’s Intersection Theorem, we have
⋂

rn = 0. Consequently⋂
tnR = 0.

Theorem 6.8 (see El Bashir and Barka [BK-2, 4.4 Corollary, p. 2590]). Let R be a Noe-
therian ring without simple ideals. If R is nonslender, then R is complete with respect to
some non-discrete Hausdorff filtration: R ⊇ a1 ⊇ a2 ⊇ · · · , with an �= 0 and

⋂
an = 0.
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Proof. Assume that R is nonslender so that there exists an R-linear map ψ : RN→ R with
ψn �= 0 for all n. By Lemma 6.7 we may choose a regular element t ∈ R with

⋂
tnR = 0.

Define ϕ : RN→ R by the equation, for x ∈ RN,

ϕ(x0, x1, x2, . . . ) = ψ(x0, tx1, t
2x2, . . . ). (6.8.1)

Then ϕn = tnψn �= 0 for all n. Hence the image ideal an := ϕ(R[n,∞)) is non-zero.
Moreover, for x ∈ R[n,∞) all the coordinates on the right side of (6.8.1) are divisible by tn.
Hence ϕ(R[n,∞)) ⊆ tnR. Consequently,

⋂
an = 0. Therefore, by the result of Dimitrić,

see Remark 2.3, R is complete with respect to filtration (an).

Remark 6.9. The result in Theorem 6.8 is due to El Bashir and Barka; it is presented here
with an alternative proof. Corollary 6.11 below for the reduced Noetherian case contains
the extra information that the ideals of the filtration may be taken to be principal ideals. We
have not been able to verify such a possibility in the general Noetherian case.

Lemma 6.10. Let R be a Noetherian ring without simple ideals. Assume that there exists
an R-linear map ϕ : RN→ R such that no ϕn is nilpotent. Then R is complete with respect
to a filtration with non-zero principal idealsR ⊇ a1R ⊇ a2R ⊇ · · · such that

⋂
anR = 0.

Proof. The nilradicaln = n(R) is the intersection of the finitely many minimal prime ideals.
Hence, for some minimal prime p we have that ϕn /∈ p for infinitely many n. Restricting ϕ
if necessary, we may assume that ϕn /∈ p for all n.

By Lemma 6.7, there exists a regular element t ∈ R such that
⋂
tnR = 0. Define a

modification ψ by the formula, for x = (x0, x1, x2, . . . ),

ψ(x) := ϕ(q0x0, q1x1, q2x2, . . . ), where qn := tnϕ0 · · ·ϕn−1 (q0 = 1).

Note thatψn = qnϕn = tnϕ0 · · ·ϕn is non-zero because p is a prime ideal, and qn+1 = tψn.
Clearly,

ψ(R[n,∞)) = ψnR + ψ(R[n+1,∞)). (6.10.1)

On the right side of (6.10.1), the second ideal is contained in qn+1R, and qn+1 = tψn.
So the second ideal is contained in the first, and we conclude the ψ(R[n,∞)) = ψnR. As
ψn ∈ tnR, it follows that

⋂
ψ(R[n,∞)) = 0. Therefore, with an := ψn, it follows from the

result of Dimitrić, see Remark 2.3, thatR is complete with respect to the filtration (anR).

Corollary 6.11. A reduced Noetherian ring R without simple ideals is slender iff R is not
complete with respect to any filtration of non-zero principal ideals R ⊇ a1R ⊇ a2R ⊇ · · ·
such that

⋂
anR = 0.

7. Augmenting the product algebra

7.1. For an ℵ0-compact ring R the characterization (ℵ0-c’) in Definition 1.2 yields an
R-linear map RN → R vanishing on R(N), and mapping 1N ∈ RN to 1 ∈ R. The source
RN, as a product of copies of R, is an R-algebra with 1N as the unity, and R(N) is an ideal.
It is tempting to ask if there exists such anR-linear map which in addition is a map of rings,
or, equivalently, if there exists an augmentation on the residue algebra RN/R(N).

Theorem 7.2. For a Noetherian ring R the following conditions are equivalent:
(i) There exists a map of R-algebras ϕ : RN→ R vanishing on R(N).

(ii) R is a finite product of local, complete rings with finite residue fields.
(iii) R is nearly compact and the residue ring of R modulo the Jacobson radical is a

finite ring.
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Proof. The equivalence of (ii) and (iii) is immediate from Theorem 6.3.
If ϕ : RN → R is a map as in (i) then R is ℵ0-compact, and hence R is a finite product

of local complete rings. Accordingly, ϕ is the finite product of algebra homomorphisms
corresponding to the factors of R. Therefore, to prove the equivalence of (i) and (ii) we
may assume that R is local. Let m be the maximal ideal of R.

Assume first (i). Since m is finitely generated we have mRN = mN. Hence reduction
modulo m of ϕ is a map of R/m-algebras ϕ̄ : (R/m)N→ R/m vanishing on (R/m)(N). In
particular, the kernel of ϕ̄ is a maximal ideal in (R/m)N.

Now, as is well known, if k is any commutative ring and F is a filter on N there is
an associated ideal z(k,F) ⊂ kN: a sequence x ∈ kN belongs to z(k,F) iff its zero
set {n | xn = 0} belongs to F . If F is an ultrafilter then the ideal z(k,F) contains
k(N) iff F is non-principal. Moreover, for a non-principal ultrafilter F the composition
k → kN → kN/z(k,F) is an isomorphism if and only if the ring k is finite. Indeed, if k
is finite, then for any sequence x ∈ kN the set N is the disjoint union of the finitely many
subsets {n | xn = a} for a ∈ k; hence for exactly one a the corresponding subset belongs
to F , and modulo z(k,F) the residue class of x equals the residue class of the constant
sequence a. Conversely, if k is infinite there is a sequence x with xn �= xm for n �= m, and
then the residue of x modulo z(k,F) is not equal to the residue of a constant sequence.

If k is a field then the maximal ideals of kN are exactly the ideals of the form z(k,F)
associated to ultrafilters F .

Applied with k := R/m to the kernel of ϕ̄ : (R/m)N → R/m, it follows that R/m is
finite. Thus (ii) holds.

Conversely, assume Condition (ii). Fix a non-principal ultrafilter F on N. Consider for
n ≥ 1 the ideal zn = z(R/mn,F). The ring R/mn is finite, since R/m is finite. Hence the
composition R/mn → (R/mn)N → (R/mn)N/zn is an isomorphism. Thus we obtain an
exact sequence,

0→ zn→ (R/mn)N → R/mn→ 0. (*)

Consider the surjection R/mn → R/ml for n ≥ l. Clearly, under the induced map
(R/mn)N → (R/ml )N, the zero set of a sequence x ∈ (R/mn)N contains the zero set of
the image of x. Hence, under the induced map zn is mapped into zl . Thus the entries in (*)
form a short exact sequence of inverse systems.

Pass to the limits. As R is complete we have lim←−R/mn = R, and, as a consequence,
lim←−

(
(R/mn)N

) = RN. So the result is an exact sequence,

0→ lim←−
n

zn→ RN→ R. (**)

The limit of the zn is an ideal, and it contains z(R,F); in particular, the kernel of RN→ R

containsR(N). The mapRN→ R is clearly a homomorphism of rings, andR-linear. Hence
it satisfies the conditions in (i).
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