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Summary: Serial correlation and overdispersion must be handled properly in analyses of time series of counts, and

parameter-driven models combine an underlying latent process with a conditional log-linear Poisson model (given

the latent process) for that purpose. Regression coefficients have direct interpretations, but likelihood inference is

not straight-forward. We consider a two-step procedure for estimation: First regression parameters are estimated

from the marginal distribution; second parameters concerning the latent process are estimated with composite

likelihood methods, based on low-order simultaneous or conditional distributions. Confidence intervals are computed

by bootstrap. Properties of estimators are examined and compared to other methods in three simulation studies, and

the methods are applied to two data sets from the literature concerning hospital admission related to asthma and

traffic deaths.
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1. Introduction

Occurrences of diseases or other events are often registered over time, for example as daily,

weekly or monthly counts during some period. Apart from bare surveillance it may be of

interest to examine the potential association between occurrence and one or more covariates

measured in the same period, or to study trends and seasonal patterns. Hence, regression

models for counts are needed that take into account the time series structure of the data.

There is a vast literature for Gaussian time series, but Gaussian methods are only ap-

propriate when counts are of reasonable size. For small counts, corresponding to rare events,

the Poisson distribution is a natural starting point, but simple log-linear Poisson regression

models must be accommodated to incorporate serial correlation and overdispersion. In the

following, let x = (x1, . . . , xn) and y = (y1, . . . , yn) denote the time series of covariate vectors

and outcomes. Each yt is thought of as the realization of a random variable Yt, and we are

thus interested in the distribution of Y = (Y1, . . . , Yn) given x.

Two types of models are often distinguished: observation-driven models and parameter-

driven models (Cox, 1981; Zeger, 1988). They differ in their accessibility, both regarding

interpretation and statistical inference. Briefly, observation-driven models introduce correla-

tion over time by specifying the conditional distribution of Yt given past values of Y1, . . . , Yt−1

and covariates. The maximum likelihood principle is directly applicable (Davis et al., 2005;

Fokianos et al., 2009; Davis et al., 2003), but interpretation of regression coefficients is more

subtle. Parameter-driven models, on the other hand, introduce a latent process and use a

conditional log-linear Poisson model for the covariate-response relationship given the latent

process. Interpretation of the regression coefficients from the simple Poisson regression is

thereby maintained, however it comes at the expense of a more difficult estimation problem.

Since our aim is to understand associations between counts and covariates, we prefer

parameter-driven models. More specifically, let α = (α1, . . . , αn) be an unobserved process

and assume that, conditional on α, the random variables Y1, . . . , Yt are independent with Yt

Poisson distributed with mean exp(x′tβ+αt). As an example, y could be the number of cases

of a disease, x could be the usage of antibiotics, and α could represent an underlying and

unobserved risk process incorporating unobserved environmental variables (Hay and Pettitt,

2001). With brief notation, and if γ denotes parameters that determine the distribution of
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α, the likelihood for (β, γ) is given by

L(β, γ) = pβ,γ(y|x) =

∫
pβ,γ(y, α|x) dα =

∫
pβ(y|α, x)pγ(α) dα (1)

where arguments tell whether p denotes a marginal, simultaneous or conditional density.

The integral is n-dimensional and does not have an explicit solution, so maximum likelihood

estimation is not readily possible.

Several estimation approaches have been suggested in the literature, starting from Zeger

(1988) who used an iterative scheme with quasi-likelihood estimation for β (for fixed γ) and

method-of-moment estimation for γ (for fixed β). Later, focus changed to approximations

to the likelihood: Chan and Ledolter (1995) used the EM algorithm and computed the

expectation in the E-step by Markov chain Monte Carlo (MCMC) simulation, Durbin and

Koopman (1997) used MCMC simulation for an approximating linear Gaussian model in a

more general state space setting, and Davis and Rodriguez-Yam (2005) and Jung et al. (2006)

used importance sampling techniques. The papers just mentioned rely on approximations

of the complete likelihood. A simpler alternative is to use composite likelihood methods

(Varin et al., 2011). In particular, Davis and Yau (2011) considered pseudo likelihoods

corresponding to pairs of counts of at most lag k (consecutive pairwise likelihood, CPL,

of order k). Parameter-driven models are hierarchical generalized linear models in the sense

of Lee and Nelder (1996), so h-likelihood methods could be applied; see Lee and Nelder

(2001b) for applications to longitudinal and spatial data. Bayesian analysis was presented

by Hay and Pettitt (2001).

The method in this paper consists of two steps, both relying on composite likelihoods.

First, the marginal density is used to estimate the regression coefficients. This corresponds

to a working assumption of independence and could also be interpreted as CPL of order

zero (if “pairs of lag zero” is interpreted as single observations). It can be carried out with

standard software for generalized linear mixed models. Second, parameters determining the

distribution of α are estimated via another composite likelihood, either derived from the

simultaneous distribution of k successive counts or derived from the conditional distribution

of Yt given the past m observations. The latter corresponds to a working assumption that Y

is Markov of order m. Both pseudo likelihoods are computed by MCMC simulations, but only

require simulation of (α1, . . . , αk) and (α1, . . . , αm+1), respectively. If α is an AR(1) process,
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as it is often assumed, then the pseudo likelihoods corresponding to k = 2 and m = 1 can

be used. The marginal variance of α can be estimated as part of either first or second step.

Step 1 provides consistent estimators for the regression parameters of interest, so at

first sight step 2 with estimation of nuisance parameters seems unnecessary. However, step

1 does not provide valid standard errors or confidence intervals, so they are computed by

parametric bootstrap, for which we need a full data generating model. Since β is estimated

for each bootstrap sample it is of great importance that our routine in step 1 is fast and safe.

An important part of our numerical studies consists of examining whether the bootstrap

confidence intervals have the appropriate coverage, even in cases where the dependence

structure is estimated with large uncertainty.

In summary, the aim of the paper is threefold: (1) Comparison of successive and condi-

tional likelihood estimators for γ; (2) validation of coverage for bootstrap confidence intervals

for regression coefficients; (3) comparison of our estimators, in particular for β, to those from

other methods. Estimation of beta is simple and valid, and our numerical experiments with

an AR(1) model for α show that (1) estimators obtained from successive and conditional

likelihood are almost identical; (2) confidence intervals have acceptable coverage rates—also

for misspecified modes—except when the correlation parameter, denoted φ, in the latent

AR(1) process is close to 1; and (3) successive and conditional likelihood compares well to

other methods for estimation of the regression coefficients, but underestimates φ when φ is

large.

The rest of the paper is organized as follows: Estimation procedures are described in

detail in Section 2 and tested on simulated data in Section 3. In Section 4 the methods are

applied to two datasets known from the literature. Concluding remarks are given in Section 5.

2. Statistical model, estimation and inference

Most of the notation was already introduced in the introduction: y = (y1, . . . , yn) is the

observed time series of counts, and a realization of Y = (Y1, . . . , Yn), and x = (x1, . . . , xn) is

the time series of covariates. Each xt is a vector of length p, most often including 1 corre-

sponding to an intercept. The covariates can be of any type: Observed variables, dummies
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(for weekday effects, say), time itself to allow for a trend (possibly scaled), or sine/cosine

functions to allow for seasonal patterns.

2.1 Conditional Poisson model

Primary interest is in understanding the effect of covariates on the distribution of the

outcome, and we model the conditional distribution of Y given x with a hierarchical log-

linear Poisson model, assuming that an underlying, unobserved process α = (α1, . . . , αn)

drives the dynamics of Y in interplay with the covariates. The latent process introduces

over-dispersion as well as serial correlation into the distribution of Y .

The model consists of two parts. One part concerns the distribution of outcomes

given the latent process and covariates: Conditionally on the complete α series, the random

variables Y1, . . . , Yn are independent and Yt is Poisson distributed with mean

E(Yt|x, α) = exp(x′tβ + αt). (2)

In particular, the conditional distribution of Yt given the complete α series only depends

on the current value, αt, and the marginal distribution of Yt thus only depends on the

distribution of α via its marginal distribution.

The second part concerns the distribution of the latent process: The α series is assumed

to be a second order stationary Gaussian process with zero mean (i.e., mean is incorporated

in the intercept of the regression model). We write τ 2 = Var(αt) for the marginal variance,

φ for the parameters that determine the correlation function ρ(h) = Corr(αt, αt+h), and

collect the parameters in γ = (τ, φ). In our numerical studies we model α as a Gaussian

auto-regressive process of order 1, AR(1). Then φ is one-dimensional, and we let φ = ρ(1)

such that ρ(h) = φh. We denote this model the Poisson auto-regressive model of order one,

PAR(1) for short.

The marginal expectation of Yt is EYt = exp(x′tβ + τ 2/2), so the interpretation of

regression coefficients is the same as in the standard GLM, except for the intercept. Notice

that some papers use a parameterization where Eαt = −τ 2/2; then the intercept parameter

in the conditional model can be interpreted as log-expectation of Yt when all other covariates

are zero.

The unknown parameters in the model are β and γ. The regression coefficients are of

primary interest whereas entries in γ are regarded as nuisance parameters. Nevertheless we
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need estimates for γ in order to generate bootstrap simulations from the estimated model.

We suggest to estimate the parameters in two steps: First, the marginal distribution of Yt is

used to estimate β; next, composite likelihood metods are used to estimate γ.

2.2 Estimation of regression parameters

For fixed xt the marginal density of Yt is given by

pβ,τ (yt|xt) =
∫
pβ(yt|xt, αt) pτ (αt) dαt (3)

where pβ(yt|xt, αt) is the Poisson density with mean exp(x′tβ + αt), evaluated in yt, and pτ (αt)

is the density for the Gaussian distribution with mean zero and variance τ 2, evaluated in

αt. Notice, that we use p·(·|·) generically for densities, let the arguments tell whether it is a

marginal, conditional or simultaneous density, and give parameter(s) as subscripts.

If the outcomes were independent over time, then the log-likelihood would be

logL1(β, τ) =
n∑
t=1

log pβ,τ (yt|xt),

and we will refer to logL1 as the independence log-likelihood. The estimator (β̂, τ̂1) is

obtained by maximization of logL1. The outcomes are not independent, yet the pseudo score

function corresponding to logL1 is an unbiased estimating function, and β̂ is consistent and

asymptotically normal if there is sufficient internal replication, for example as for low-order

auto-regressive models (Varin et al., 2011). Notice that logL1 is not identical to the basic

GLM log-likelihood that completely ignores α. Davis et al. (2000) showed that even the

GLM estimator is consistent, and the estimators are in general close, but since logL1 uses

the correct marginal distribution, we prefer β̂1. The distribution of α only enters into logL1

via its marginal distribution, so serial correlation is not incorporated. Hence logL1 only

depends on τ and cannot be used to estimate the correlation parameters φ.

There is no explicit expression for the integral (3) and thus not for logL1, but the

integrals can be approximated by Laplace or Gauss-Hermite approximations. Such approxi-

mations have been implemented for generalized linear mixed models (GLMMs) in software

programs like R (lme4 package, Bates et al. (2015)), SAS (proc glimmix), and Stata (mepois-

son), which we can thus rely on: Consider for a moment a Poisson GLMM with log-link, fixed

effects of x and random effect of an index variable, e.g., numbered from 1 to n. The log-

likelihood for this model is exactly logL1, so the model fit yields (β̂, τ̂1). The GLMM fit
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also supplies standard errors, confidence intervals and hypothesis tests, but—and this is

important—they cannot be trusted since they are based on the independence assumption.

In the estimation steps below we keep β fixed at β̂ (and possibly also τ fixed at τ̂1),

and let µt = x′tβ̂ be the estimated linear predictor at time t.

2.3 Estimation of parameters for the latent process via successive likelihood

Our first suggestion for estimation of γ takes a composite likelihood approach based on

successive outcomes. Consider µt fixed (t = 1, . . . , n), let k > 2, and consider the density of

tuples (Yt+1, . . . , Yt+k) of length k,

pγ(yt+1, . . . , yt+k|µt+1, . . . , µt+k)

=

∫ k∏
j=1

p(yt+j|µt+j, αt+j) pγ(αt+1, . . . , αt+k) d(αt+1, . . . , αt+k),
(4)

where dependence on the linear predictors µts is emphasized in the notation. There are

n − k + 1 tuples (yt+1, . . . , yt+k) of length k. The successive log-likelihood of order k is

defined as function that adds the log-densities over all those tuples:

logLsucc
k (γ) =

n−k∑
t=0

log pγ(yt+1, . . . , yt+k|µt+1, . . . , µt+k).

This is not the true log-likelihood for any model since each observation is included in k tuples

(except the first and last k − 1 observations). Nevertheless, the corresponding pseudo score

function would be unbiased if the µts were true rather than estimated.

The successive log-likelihood must be computed numerically and for many values of γ.

Each integral in logLsucc
k can be written as an expected value with respect to the distribution

of k successive αts,

logLsucc
k (γ) =

n−k∑
t=0

log Eγ

k∏
j=1

p(yt+j|µt+j,αt+j),

where the expectation is with respect to the distribution of (αt+1, . . . , αt+k) which depends

on γ as emphasized by the subscript. We suggest to calculate the integrals/expectations by

simple MCMC sampling and use the same samples of α tuples for every term in logLsucc
k .

That is, we simulate M independent samples of (α1, . . . , αk) from the distribution of α when

the true parameter is γ. If the MCMC samples are denoted (αm1 , . . . , α
m
k ), m = 1, . . . ,M , we
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then compute an approximation to logLsucc
k (γ) as

logLsucc
k (γ) ≈

n−k∑
t=0

log
1

M

M∑
m=1

k∏
j=1

p(yt+j|µt+j,αmj ).

Finally, this function is maximized with respect to γ providing estimates γ̂succk = (τ̂ succk , φ̂succ
k ).

We stress that the same simulated values (αm1 , . . . , α
m
k ) are used for all t, and in order for

the numerical approximation to logLsucc
k to be continuous we also use the same samples for

every value of γ. Since the regression parameters are held fixed, the optimization problem is

low-dimensional.

Recall that step 1 with estimation of β also provides an estimate of τ denoted τ̂1.

Keeping τ = τ̂1 fixed in logLsucc
k reduces the dimension of the maximization problem by one

and makes it even simpler. The corresponding estimator of φ is denoted φ̃succ
k , and it will be

compared to φ̂succ
k in our simulation studies. If τ̂1 = 0, then φ̃succ

k is left undefined.

Choosing the value of k is a matter of identifiability, efficiency, (numerical) precision,

and computation time. First, k should be large enough for the model to be identified. The

log-likelihood of order k is determined by the distribution of k-tuples of α, so k should be

large enough that all elements in γ can be determined from the k-tuple distribution. For

example, if α is an AR(q) process then k > q + 1 is needed as the complete distribution is

determined by the distribution of (α1, . . . , αq+1). Similar constraints apply to other models

for α. In principle, one would expect the estimators for larger k to be more efficient compared

to smaller k, since more features of the distribution are taken into account. On the other

hand, correlation in α is blurred by the extra Poisson variation, so the gained efficiency is

presumably limited, as was also confirmed by simulation studies in Davis and Yau (2011).

Furthermore, the MCMC computation of the k-dimensional integral/expectation, which must

be carried out for all t and for many values of γ (for maximization) is obviously easier to do

fast and precisely when k is small. Altogether, our suggestion is to use the smallest possible

k such that the model is identified.

When α is modeled as an AR(1) process we thus use k = 2. We then simulate only

pairs (αm1 , α
m
2 ), and the pairwise log-likelihood is computed as

logLsucc
2 (γ) ≈

n−1∑
t=0

log
1

M

M∑
m=1

p(yt+1|µt+1, α
m
1 ) p(yt+2|µt+2,α

m
2 )
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Notice that logLsucc
2 is identical to the consecutive pairwise likelihood of order 2 from Davis

and Yau (2011), except that β is not fixed in their approach.

2.4 Estimation of parameters for the latent process via conditional likelihood

As an alternative to successive likelihood we also consider a conditional likelihood approach

(Azzalini, 1983; Sørensen, 2003). Again we consider µts fixed. First, notice that the true

likelihood function can be factorized as

L(γ) =
n∏
t=1

pγ(yt|µ1, . . . , µt, y1, . . . , yt−1)

where term t is the conditional density of Yt given the complete past (assuming that β and

thus µts are known). The conditional likelihood of order m is the approximation where we

only condition on the recent m observations, i.e.,

Lcond
m (γ) =

n∏
t=m+1

pγ(yt|µt, yt−m, . . . , yt−1) =
n∏

t=m+1

pγ(yt−m, . . . , yt|µt−m, . . . , µt)
pγ(yt−m, . . . , yt−1|µt−m, . . . , µt−1)

where, for simplicity, we have skipped terms corresponding to the first m observations. This

would be the true likelihood if Y was a Markov process of order m; which it is not, but

the corresponding pseudo score function would be unbiased if the µts were true rather

than estimated (Sørensen, 2003). The conditional log-likelihood can be written in terms

of successive log-likelihoods for k equal to m+ 1 and m,

logLcond
m (γ) = logLsucc

m+1(γ)− logLsucc
m (γ)

where, for m = 1, we define logLsucc
1 = logL1 (the independence likelihood). Therefore we

need the same type of computations as for logLsucc, and we use the same MCMC simulations

for αs in both terms.

The estimates are denoted γ̂condm = (τ̂ condm , φ̂cond
m ) if τ is re-estimated using conditional

likelihood and φ̃cond
m if τ = τ̂1 is kept fixed. The arguments for choosing m are similar to

those for choosing k, and we suggest to choose m as small as possible; see also simulations

in Azzalini (1983). For an AR(1) specification of the latent process we thus use m = 1. As

mentioned above

logLcond
1 (γ) = logLcond

1 (τ, φ) = logLsucc
2 (τ, φ)− logL1(τ),

so if we keep τ = τ̂1 fixed, then successive likelihood of order 2 and conditional likelihood of

order 1 leads to same estimate of φ, that is, φ̃succ
2 = φ̃cond

1 .
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2.5 Complete estimation procedure, incl. bootstrap confidence intervals

Recall from Section 2.2 that the regression coefficients are estimated by maximization of the

independence likelihood. This is easy and provides consistent estimators, but the Hessian

matrix cannot be used to compute standard errors since logL1 does not comply with the

correlation structure of the model. Instead we rely on the parametric bootstrap via simula-

tions from the model with parameters equal to their estimates.

Several alternatives were suggested for γ = (τ, φ) in Sections 2.2–2.4: τ could either

be estimated from the independence, successive or conditional likelihood, and φ could either

be estimated from the successive or conditional likelihood (with different values of k or m),

and with or without τ fixed at τ̂1. We compare the different choices for simulated data in

Section 3.

After having decided which estimator to use for γ, the complete estimation procedure

goes as follows.

(1) Maximize logL1 wrt. (β, τ) and obtain an estimate β̂ of the regression coefficients.

(2) Compute the linear predictors µt = x′tβ̂t, consider them fixed, and use the selected

estimation procedure for γ to obtain an estimate γ̂.

(3) Make R simulated trajectories of (α, Y ) from the model with parameters (β, γ) = (β̂, γ̂),

and with covariates x as for the original data. Repeat step (1) for each simulated dataset,

and denote the corresponding estimate by β̂r.

(4) Compute a 95% confidence interval for each βj based on the simulations. As a standard,

since β̂ is consistent and asymptotically normal for low-order auto-regressive models,

we use β̂j ± 1.96 sd(β̂rj ) where sd(β̂rj ) is the standard deviation across the R bootstrap

estimates. This has the advantage that R can be chosen relatively small compared to

confidence intervals relying on quantile computations (Davison and Hinkley, 1997).

Since step (1) is carried out for each bootstrap sample it is a great advantage that

it does not involve time-consuming (and approximate) MCMC simulations. Step (2) is only

carried out for the observed data, except if one is also interested in confidence intervals for the

entries in γ, in which case step (2) should be invoked in step (3) for each bootstrap sample.

Estimation of the auto-correlation parameter φ turns out not to precise in all situations, and
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it is not obvious how much this affects the validity of the bootstrap confidence intervals. We

therefore examine the actual coverage in simulation studies in the next section.

We used R (R Core Team, 2016) for all computations, more specifically the glmer

function (Bates et al., 2015) in step (1) and the optim function with method L-BFGS-B in

step (2). The online supplement shows code used for the analyses. The CPU times reported in

Sections 3.1 and 4.1 are obtained on a MacBook Pro with a 2.3 GHz Intel Core i7 processor

and 8 GB memory. No attempts were made to optimize runtime; in particular bootstrap

computations could easily be run in parallel.

3. Simulation studies

3.1 Comparison of successive and conditional likelihood estimators

The main purpose of our first simulation study is to compare our different strategies for

estimation. The data generating model is the PAR(1) model with true parameters τ = φ =

0.5 for the latent process and a conditional Poisson model of the form

E(Yt|x, α) = exp(β0 + β1xt,1 + β2xt,2 + αt)

where xt,1 = (t − 1)/n corresponds to a trend, and xt,2 is binary with P (xt,2 = 1) =

1− P (xt,2 = 0) = 0.25, independently over time, corresponding to some event that happens

by chance. The length of the time series is n = 200, and the true values of the regression

coefficients are

β0 = 0.5, β1 = 0.6931, β2 = 0.2231.

For the chosen parameter values the marginal mean at the beginning of the time series is

EY1 = exp(β0 + τ 2/2) = 1.87, it doubles over the time range (e0.6931 = 2), and the event

increases expectation by 25% (e0.2231 = 1.25).

We simulated 1000 time series from the data generating model. For each dataset we

computed the estimators β̂j (j = 0, 1, 2) and τ̂1 from the independence likelihood, (τ̂ succ2 , φ̂succ
2 )

from the successive likelihood of order 2, (τ̂ cond1 , φ̂cond
1 ) from the conditional likelihood of order

1, and φ̃succ
2 = φ̃cond

1 by keeping τ̂ = τ̂1 fixed. We used M = 1000 for computation of the log-

likelihoods. We also computed 95% symmetry-based confidence intervals for each regression

parameter and each estimation strategy. We used R = 100 bootstrap samples, which was
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Table 1

Results from 1000 simulated time series from a PAR(1) model. Estimates are computed by maximization of logL1

(independence), logLsucc
2 (successive), logLcond

1 (conditional), and logLsucc
2 or logLcond

1 with τ fixed at τ̂1

(succ./cond., τ = τ̂1).

True Independence Successive Conditional Succ./cond., τ = τ̂1

β0=0.5

Mean 0.507 — — —

SD 0.162 — — —

Coverage — 0.944 0.943 0.945

β1 = 0.6931

Mean 0.677 — — —

SD 0.259 — — —

Coverage — 0.939 0.935 0.939

β2 = 0.2231

Mean 0.220 — — —

SD 0.129 — — —

Coverage — 0.934 0.933 0.931

τ = 0.5
Mean 0.481 0.480 0.481 —

SD 0.064 0.069 0.070 —

φ = 0.5
Mean — 0.478 0.478 0.475

SD — 0.200 0.201 0.200

Average CPU time 15.1 s 16.7 s 13.3 s

deemed large enough since we only need estimated standard deviations of the bootstrap

distributions.

Results regarding mean, standard deviations and coverage are listed in Table 1. All

parameters are estimated with no or small bias in this set-up. Results are very similar for

the different estimators for τ and φ, not only in distribution as indicated by means and

standard deviations, but also for each realization: Pairwise Pearson correlations are above

0.95 for the three estimators of τ and above 0.99 for the three estimators of φ. Hence,

confidence intervals based on different estimators and the corresponding coverage rates are

also almost identical between methods. All coverage rates are above 0.93, but a bit below

the nominal level.

Histograms for β̂0, β̂1, β̂2, τ̂
succ
2 and φ̂succ

2 are shown in Figure 1. Vertical red and

blue lines show true values and means over the 1000 simulated datasets, respectively. Most

importantly, notice that the distribution of each β̂j is symmetric (as expected); hence the

symmetry-based confidence intervals are appropriate.

Average CPU time for analysis (estimation and confidence intervals) is listed in the
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Figure 1. Histograms of estimates from 1000 simulated data sets from the PAR(1) model.

We used τ̂ succ2 and φ̂succ
2 as estimates of parameters in the latent process. Vertical red lines

indicate true values, and vertical blue lines indicate means over the simulated datasets.

last line in Table 1. As expected, successive likelihood is faster than conditional likelihood

(one term instead of two per observation), and it is faster to keep τ fixed than to re-estimate

it. However, the differences are small since the main burden lies in the bootstrap step, i.e.,

step (3) from Section 2.5, which is the same for all methods.

We studied other parameter values and always got almost identical results for successive

and conditional likelihood. In Section 3.2 below we therefore only use one pair of estimators

for the latent process. We have chosen (τ̂ succ2 , φ̂succ
2 ) since it is simpler to compute than

(τ̂ cond2 , φ̂cond
2 ) and since is provides an estimate of φ even when τ̂1 = 0.

3.2 Sensitivity against distribution of latent process

The purpose of the next study is to examine the performance of the estimators for varying de-

grees of overdispersion and correlation in the latent process as well as under misspecification

of the data generating model. In all scenarios we used M = 1000 and R = 100.

First, we used the same data generating process as in Section 3.1, except that we varied

the value of φ between −0.5 and 0.9. Results are presented in Figure 2. Top plots and the
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two leftmost bottom plots show boxplots for estimators with red dashed lines corresponding

to true values. Estimators for regression parameters are unbiased in all scenarios. Standard

deviation increases for β̂0 and β̂1, but not for β̂2, when φ increases. This is not surprising

since there is less information in the time series about level and trend when data are highly

correlated, whereas the effect of the event is less prone to this information loss as it happens

at random. The estimator τ̂ succ2 underestimates τ in all cases, and worst when φ is large. The

median for φ̂cond
2 is close to the true value of φ in all scenarios, but for φ large the distribution

is strongly skewed to the left — as is natural due to the upper bound of φ at 1.

The bottom right plot of Figure 2 shows the coverage rates for the symmetry-based

bootstrap confidence intervals (solid lines) and for the confidence intervals based on the

independence likelihood (dashes lines). As expected, the confidence intervals based on in-

dependence have wrong coverage rates when φ is not close to zero (except for β2). The

bootstrap confidence intervals are of more interest. When φ is 0.5 or smaller, the coverage is

reasonably close to the nominal level of 0.95, albeit always to the lower side. For φ = 0.75

and particularly for φ = 0.9, however, the coverage rates are considerably lower, and the

intervals are thus not valid as 95% confidence intervals. The reason is to be found in the

distribution of the estimators for τ and φ: When too small estimates of τ and φ are used

in the bootstrap simulations, then variation of β̂0 and β̂1 is strongly underestimated, cf. the

two leftmost top plots.

Second, we kept φ = 0.5 fixed and compared results for τ = 0.3, 0.5, 0.7, see Figure 3.

Many results are similar to those for fixed τ : Regression coefficients are estimated without

bias and most precisely when τ is small (also β̂2 in this case, since a large τ implies larger

variation in general). The correlation parameter is estimated with only little bias in all

three scenarios, but the variation is large when τ is small (small overall variability implies

little information about correlation). The standard deviation τ is underestimated in all three

scenarios. Consequently, coverage rates are in most cases too small, yet above 0.93, and in

most cases far better than those from the independence fit.

So far, we used the PAR(1) model as data generating process such that the simulation

model and the estimation model are in accordance. We now consider two scenarios with

misspecification of the latent process distribution. The conditional distribution of Y given
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Figure 2. Boxplots for 1000 estimators in the PAR(1) model (first five plots) and coverage

of the confidence intervals for the regression coefficients (bottom right) for seven different

values of the correlation parameter φ. True values of parameters and the nominal level of

the confidence intervals (95%) are shown with dashed red lines.

(x, α) is unchanged, see (2). In the first scenario we used t-distributed innovations in the

latent AR(1) process instead of Gaussian innovations. More specifically, we generated the

latent process as

αt = φαt−1 + σ̃et

where ets are independent and t-distributed with four degrees of freedom, φ = 0.5 and

σ̃ = 0.3062. Then the innovations have the same variance as in the Gaussian model used so

far (τ = φ = 0.5). In the second scenario we used a moving-average process of order one,

MA(1), for the latent process. The parameters were chosen such that Corr(αt, αt+1) = 0.5

and Var(αt) = 0.25 as in our standard PAR(1) set-up. Table 2 shows results for the regression

coefficients. Estimators are unbiased, and coverage rates are close to the nominal level in both

scenarios.
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Figure 3. Boxplots for 1000 estimators in the PAR(1) model (first five plots) and coverage

of the confidence intervals for the regression coefficients (bottom right) for three different

values of the overdispersion parameter τ . True values of parameters and the nominal level

of the confidence intervals (95%) are shown with dashed red lines.

Table 2

Results from 1000 simulated time series, based on independence/successive likelihood assuming the PAR(1) model.

The latent processes were either generated as auto-regressive processes with t-distributed innovations or as MA(1)

processes.

True t innovations MA(1)

β0=0.5

Mean 0.490 0.502

SD 0.164 0.150

Coverage 0.946 0.954

β1 = 0.6931

Mean 0.693 0.693

SD 0.267 0.238

Coverage 0.932 0.964

β2 = 0.2231

Mean 0.212 0.217

SD 0.132 0.132

Coverage 0.952 0.937
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Table 3

Parameter values for simulations in Section 3.3. Parameters in the latent process are linked by σ2 = (1 − φ2)τ2.

β φ σ τ

Scenario 1 −0.613 −0.5 1.236 1.427

Scenario 2 0.150 0.5 0.619 0.715

Scenario 3 0.373 0.9 0.111 0.255

3.3 Comparison to AIS and CPL

The purpose of our final simulation study is to compare the performance for our estimators

and estimators from the literature. The set-up is equivalent to one in Davis and Yau (2011),

namely a simple PAR(1) model without covariates (except for a constant), i.e.,

E(Yt|αt; β) = exp(β + αt).

Recall that we parameterize the AR(1) process by the marginal standard deviation τ and

the correlation parameter φ. Davis and Yau (2011) used the standard deviation of the

independent innovations in the AR(1) process, denoted σ, instead of τ . The two standard

deviations are linked by the equation σ2 = (1 − φ2)τ 2, and we give the results for both

parameterizations below when possible.

We considered three sets of parameters, see Table 3. The scenarios are identical to

three of the nine scenarios in Table 5 from Davis and Rodriguez-Yam (2005) and Table 3

from Davis and Yau (2011), and the marginal mean of Yt is 1.5 in all three scenarios. We

used n = 500 and generated 500 datasets in each scenario (also as in the above-mentioned

papers).

Bias and standard deviations are reported in Table 4 for several estimators: those

obtained from the independence, successive and conditional likelihoods in this paper as

well as those obtained by AIS (Davis and Rodriguez-Yam, 2005) and CPL1 (Davis and Yau,

2011). Results for AIS and CPL1 are copied from Davis and Yau (2011). Recall that AIS uses

importance sampling approximations to the complete likelihood (1) rather than a lower-order

composite likelihood, whereas CPL1 (consecutive pairwise likelihood of order 1) is equivalent

to our successive likelihood of order 2, except that all parameters are estimated using the

successive likelihood instead of keeping β fixed at the independence-based estimator.

The results regarding the intercept are very similar for β̂ computed from the indepen-
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Table 4

Results from 500 simulated data series. Results regarding AIS and CPL1 are copied from Davis and Yau (2011).

Other estimates are computed by maximization of logL1 (independence), logLsucc
2 (successive), logLcond

1

(conditional), and logLsucc
2 or logLcond

1 with τ fixed at τ̂1 (succ./cond., τ = τ̂1). The bias marked with a star (?) is

different from the similar number in Davis and Rodriguez-Yam (2005), where is was reported as 0.062.

Scenario 1 Scenario 2 Scenario 3

Bias SD Bias SD Bias SD

β

AIS −0.031 0.093 −0.001 0.073 0.003 0.078

CPL1 0.105 0.095 −0.001 0.060 0.146 0.123

Independence −0.020 0.093 −0.006 0.074 −0.008 0.066

τ

Independence −0.006 0.095 −0.003 0.055 −0.004 0.114

Successive 0.066 0.152 −0.0005 0.064 −0.008 0.096

Conditional 0.054 0.151 0.001 0.067 0.003 0.087

φ

AIS 0.022 0.063 0.012 0.091 0.078 0.231

CPL1 −0.005 0.065 −0.003 0.055 0.061 0.032

Successive −0.003 0.151 0.0001 0.117 −0.248 0.427

Conditional 0.0001 0.092 0.0003 0.117 −0.234 0.412

Succ./cond., τ = τ̂1 0.027 0.092 −0.001 0.117 −0.294 0.464

σ

AIS 0.052? 0.100 0.010 0.061 −0.016 0.062

CPL1 −0.148 0.134 −0.001 0.073 −0.102 0.013

Successive 0.043 0.127 −0.003 0.076 0.013 0.129

Conditional 0.036 0.147 −0.007 0.078 0.014 0.129

Succ./cond., τ = τ̂1 −0.001 0.144 −0.009 0.073 0.041 0.137

dence likelihood and the AIS method. Surprisingly, the CPL1 intercept estimator is biased

in scenarios 1 and 3.

The estimator τ̂1 is unbiased in all three scenarios, whereas the estimators based on

successive and conditional likelihoods show a small bias in scenario 1. Moreover, τ̂1 has

smaller standard deviation in scenarios 1 and 2. Due to the different parameterization,

comparison to AIS and CPL1 is not possible for τ using the results from Davis and Yau

(2011). Successive/conditional likelihood and AIS appear to give smaller bias for σ than

CPL1, and AIS has the smallest standard deviation.

AIS and especially CPL1 outperform successive and conditional likelihood when it

comes to estimation of φ; in particular in scenario 3 where φ is large, the successive and
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conditional likelihood estimators are strongly downwards biased. The difference between

successive likelihood and CPL1 consists of whether β is fixed at β̂1 or varies freely during

estimation of (τ, φ), and even though it was already noted by Davis et al. (2000) that the use

of β̂ leads to substantial bias, the large difference is surprising. However, as noted above, the

better estimation of φ by CPL1 comes at the expense of bias for the estimator of β, which

is problematic since β is the parameter of interest.

Coverages rates for 95% bootstrap confidence intervals based on successive/conditional

estimation range from 94% to 97% in scenarios 1 and 2, but are only 89–90% for scenario

3; hardly surprising considering the severe bias for φ and the results from simulations in

Section 3.2. Similar evaluations are not available for AIS and CPL1; however, one could

imagine that bootstrap-based confidence intervals for those methods would have better

coverage properties because φ is not underestimated.

Altogether we conclude that successive/conditional likelihood give competitive estima-

tors for the regression parameter of interest and for the marginal standard deviation in all

scenarios, but not for the correlation parameter when there is strong serial correlation.

4. Data applications

4.1 Sydney asthma data

Our first application considers daily admissions to Cambelltown Hospital in Sydney from

January 1990 to December 1993 with a total of 1461 observations, available in the R package

glarma associated to Dunsmuir and Scott (2015). The counts range from zero to fourteen,

and the mean is 1.94. The time series was previously analyzed by Davis et al. (2000) using an

ordinary GLM in combination with empirical moments of Yt for estimation and correcting

for presence of a latent process, and Jung et al. (2006) using their ML-EIS method.

We use the PAR(1) model and include the following covariates: dummies for Monday

and Sunday, trend, a humidity variable as constructed in Davis et al. (2000), and pairs

cos(2πkt/365) and sin(2πkt/365) for k = 1, 2, 3, 4 in order to correct for seasonal variation.

The model is not completely identical to previous analyses: Davis et al. (2000) included two

more sine/cosine pairs, Jung et al. (2006) did not include the humidity variable, and neither

of them included a trend in their final analysis.
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Table 5

Results from analyses of the asthma data. The AR(1) process is parameterized differently in Jung (2006) and Davis

et al. (2000), so estimates marked with a star (?) are transformations of those listed in the paper.

Indep., succ. Jung (2006) Davis et al. (2000)

Estimate SE Estimate SE Estimate SE

Sunday 0.227 0.058 0.229 0.045 0.230 0.055

Monday 0.237 0.054 0.232 0.047 0.236 0.055

Trend 0.089 0.093 — — — —

Humidity 0.204 0.070 — — 0.210 0.066

τ 0.234 — 0.220? — 0.255? —

φ 0.804 — 0.900 — 0.796? —

Results concerning the covariates of interest and the latent process are listed in Table 5;

estimates of τ and φ are based on successive likelihood of order 2 computed with M = 1000.

Estimates of τ were similar for successive and conditional likelihood, whereas the estimate

φ̃succ
2 = φ̃cond

1 was considerably lower than φ̂succ
2 and φ̂cond

1 (0.718 vs. 0.804 and 0.818). In order

to compare with results from the previous analyses we list bootstrap standard errors rather

than confidence intervals, computed as the standard deviation of estimates over R = 100

bootstrap samples (this took 12 minutes). Estimates as well as standard errors are similar

across methods; in particular all methods find that the number of daily admissions are

significantly larger on Sundays and Mondays compared to other weekdays, and that high

humidity increases the number of admissions. The trend, on the other hand, is not significant

as was also mentioned by Davis et al. (2000).

4.2 Van driver road deaths

The second application uses a dataset consisting of the monthly number of van drivers killed

in Great Britain from January 1969 to December 1984 (a total of 192 observations). The

dataset is available in the R package tscount accompanying Liboschik et al. (2016). Seatbelt

legislation was introduced January 31, 1983, and one aim of the analysis is to see if this had

an effect on road deaths. The time series is shown in Figure 4 with a red dashed line at the

month of the new law.

We consider a PAR(1) model with a dummy for the new law, trend, petrol price, and

dummies for each month to allow for seasonal variation. We get the following estimates for
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Figure 4. Time series consisting of the number of van drivers killed in traffic in Great

Britain each month 1969–1984. The dashed red line indicates introduction of seatbelt

legislation.

the latent process, indicating that there is no need for the latent process:

τ̂1 = 0, τ̂ succ2 = 0.00023, φ̂succ
2 = 0.019, τ̂ cond2 = 0.00039, φ̂cond

2 = 0.019.

In particular, since τ̂1 = 0, the estimates and standard errors from the independence likeli-

hood coincide with those from an ordinary GLM.

In order to check the validity of the results we also fitted an Gaussian model with

log-count as outcome, the same covariates as above, and an AR(1) residual process. Notice

from Figure 4 that counts are not very small (and never zero), so a Gaussian model is

not completely unreasonable. The correlation parameter in the model is estimated to 0.043,

confirming that auto-correlation is weak.

Regarding the effect of seatbelt legislation, the GLM estimate is −0.253 (SE 0.110)

and the estimate from the Gaussian model is −0.244 (SE 0.106), corresponding to an

reduction in the number of killed van drivers of approximately 22%. This compares well to

the estimate −0.276 from Durbin and Koopman (1997) obtained by MCMC approximations

to the likelihood in a slightly different model (no standard error was provided), and to the

estimate −0.218 (SE 0.129) from Lee and Nelder (2001a) from a model with a time-varying

dispersion parameter, but no dependence over time. As opposed to this, the law was estimated

to increase the number of deaths, although not significantly, in an observation-driven model

in Liboschik et al. (2016).
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5. Discussion

We have used composite likelihood techniques for parameter estimation in a class of parameter-

driven models for time series of counts. The models are composed of a latent process and

a conditional log-linear Poisson time series (given the latent process). Parameters were

estimated in two steps: regression coefficients from the marginal density, i.e. under a working

assumption of independence, and parameters for the latent process from likelihoods involving

low-order simultaneous or conditional distributions. Standard errors and/or confidence in-

tervals for regression coefficients were computed by bootstrap, sampling time series from the

estimated model. For our simulations and data applications we modeled the latent process as

an AR(1) process, but the methods applies to all second-order stationary Gaussian processes.

Regression parameters are indeed identifiable from the independence likelihood, esti-

mators are asymptotically well-behaved, and standard software for generalized linear mixed

models can be used. The independence likelihood uses the correct marginal distribution, and

we therefore prefer it to the standard GLM even though the estimates are usually close for

non-constant covariates. Our simulation studies showed that the different estimators for the

parameters in the latent process are in general strongly correlated. Successive likelihood is

simpler to compute, and there is no indication that conditional likelihood is preferable to

successive likelihood, so we recommend the successive likelihood approach. We used MCMC

simulations for computation of the log-likelihoods, but since only low-dimensional integrals

are to be computed this could also be done with Laplace/Gauss-Hermite approximations,

thus avoiding extra variation due to simulation.

As expected, regression parameters were estimated without bias, but in situations with

strong serial correlation estimators based on successive/conditional likelihoods were severely

biased downward, and coverage of bootstrap confidence intervals was too low. The major

difference between successive likelihood of order 2 and CPL1 (consecutive pairwise likelihood

of order 1) is whether the regression parameters are held fixed during the estimation of the

latent process parameters or not. Apparently, keeping them fixed is beneficial for estimation

of serial correlation but introduces bias in the estimators of the regression coefficients. AIS

(approximate likelihood by importance sampling) uses the complete likelihood and appears

to give the best overall results, but as long as serial correlation is not too strong, successive
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likelihood of order 2 and AIS give similar results. This indicates, not surprisingly, that

information regarding lags of order larger than one, is useful when correlation is strong, but

otherwise not.

Although (marginal) overdispersion is the more common phenomenon for time series

of counts, the opposite also occurs. Underdispersion is not accomodated by the PAR models

from this paper, but one could substitute the conditional Poisson distribution by a gen-

eralization allowing for underdispersion (Shmueli et al., 2005; Consul and Famoye, 1992).

The principles for inference, i.e. steps (1)–(4) from Section 2.5, could be carried over to

such models; however, step (1) would consist of estimation in generalized Poisson models

with random effects for which there appears to be no standard software. Observation-driven

models for underdispersed data have been proposed by Zhu (2012a,b).

We did not attempt to prove any theoretical results about asymptotic, but arguments

would be in the following directions: As mentioned in Section 2.2, β̂ is consistent and asymp-

totically normal because the independence likelihood uses the correct marginal distribution;

this follows from the theory for M- and Z-estimators (van der Vaart, 1998, Chapter 5).

Similarly, the successive/conditional likelihood for γ—with β fixed at the true parameter β

rather then β̂—use the correct successive/conditional distributions. Plugging in β̂ requires

extra arguments, see van der Vaart (1998, Section 5.4). The standard proof for consistency

of the bootstrap confidence interval (i.e., asymptotically correct coverage) would require

simultaneous asymptotic normality of (β̂, γ̂), see van der Vaart (1998, Section 23.2).
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