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Darkness in the Human Gene and Protein Function Space:
Widely Modest or Absent Illumination by the Life Science
Literature and the Trend for Fewer Protein Function
Discoveries Since 2000
Swati Sinha, Birgit Eisenhaber, Lars Juhl Jensen, Bharata Kalbuaji, and Frank Eisenhaber*

The mentioning of gene names in the body of the scientific literature
1901–2017 and their fractional counting is used as a proxy to assess the level
of biological function discovery. A literature score of one has been defined as
full publication equivalent (FPE), the amount of literature necessary to achieve
one publication solely dedicated to a gene. It has been found that less than
5000 human genes have each at least 100 FPEs in the available literature
corpus. This group of elite genes (4817 protein-coding genes, 119 non-coding
RNAs) attracts the overwhelming majority of the scientific literature about
genes. Yet, thousands of proteins have never been mentioned at all, �2000
further proteins have not even one FPE of literature and, for �4600 additional
proteins, the FPE count is below 10. The protein function discovery rate
measured as numbers of proteins first mentioned or crossing a threshold of
accumulated FPEs in a given year has grown until 2000 but is in decline
thereafter. This drop is partially offset by function discoveries for non-coding
RNAs. The full human genome sequencing does not boost the function
discovery rate. Since 2000, the fastest growing group in the literature is that
with at least 500 FPEs per gene.
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1. Introduction

The biomolecular mechanisms are
the holy grail of modern biology and
medicine. It is the mechanistic under-
standing that opens a rational way to
influence processes in living systems
with predictable outcomes.[1] A complete
catalogue of functions associated with
genes and other genomic regions is
a necessary first step toward mecha-
nistic insight into biological systems.
As researchers involved in the inter-
pretation of omics data from various
screens in terms of biological and
medical implications on a daily basis
and over many years, we know that,
regularly, functionally uncharacterized
genes pop up in those studies and
the status of many of those genes has
remained unchanged ever since.[2,3]

Notably, the biological function
of a gene, protein or non-coding

RNA is a hierarchical concept including aspects of molec-
ular, cellular, and phenotypic function.[4] Therefore, many
scientific efforts (and subsequent scientific publications) are
necessary to explore and to report all those features. An in-
complete list involves genetic screens, analysis of mutations
in suitable model organisms, omics studies, cell biology
work, structural biology research, sequence-analytic compar-
isons (for example, as in ref. 5), clinical applications, etc.
The critical point is usually the discovery of biomolecular
mechanisms, of enzymatic and binding activities, of critical
conformational changes as well as of interactions with other
biomacromolecules and small compounds. Beyond qualitatively
establishing relationships, the quantification of turnover rates,
binding affinities, fluxes, etc. represents another formidable
challenge.
With this publication, we wish to provide quantitative assess-

ments of discovery rates of genomically encoded biological func-
tions in various historical periods of time. As lots of the scientific
literature—abstracts and full-text versions of academic papers,
patents, and other related documents—are publicly available, it is
possible to assess first and repeated occurrences of gene, protein,
and non-coding RNA names in the literature corpus as a func-
tion of publication date and, thus, indirectly evaluate the level of
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functional insight for those genomically defined entities and
changing trends of annual function discovery rates. About 17
years have gone since the presentation of the draft of the human
genome[6,7]; so, it would also be interesting to see whether the
availability of the full human genome sequence could be corre-
lated with some changes (expectedly, an increase) in the annual
rate of discovery of functions associated with certain genomic
regions.

2. Experimental Section

For the goal of this work, it was necessary to associate names of
human genes, proteins, and non-coding RNAs (“genomically de-
termined named entities”), with identifiers (“publication IDs”) of
papers among the published scientific literature, patents, etc. For
this purpose, previously applied approaches were reused.[8,9] The
text mining technology aimed at fractional counting of genomic
entities’ mentions required (i) a list of entity names and their syn-
onyms as well as (ii) the body of the available, published life sci-
ence literature. In both cases, the data was desirably as complete
as possible.

2.1. Named Entity Recognition and Text Corpus Construction

The recognition of protein and gene names (abbreviated as NER,
named entity recognition below) in scientific texts built upon
the text-mining pipeline applied for generating the STRING
database.[9] This highly efficient and flexible NER engine was
implemented in C++ and had been described in full detail
elsewhere.[10] Briefly, the updated entity name dictionaries and
the underlying human genome annotation from STRING ver-
sion v10.5[11,12] and, additionally for non-coding RNAs, from
RAINwere used.[13] The dictionarymerges synonym information
frommultiple sources, including the Ensembl[14] and UniProt[15]

databases. An explicit rule system described in ref. 16, which
combines sets of regular expressions and a list of blocked names,
was applied to suppress the recognition of entity names in target
texts when the respective words were frequently used to mean
something else, for example, in the case of certain acronyms and
common English words.
To construct a literature corpus, all articles were first down-
loaded from the PubMed Central (PMC) Open Access Sub-
set (http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). Next,
PubMed was queried for additional articles for which full-text
was freely available online and automatically downloaded these
in PDF format from the publisher’s website when possible. Abi-
Word (http://www.abiword.org/) was used to convert them to
HTML format. Because the text was usually extracted from PDF
files, the text might be subjected to formatting artifacts. The re-
sulting combined corpus consisted of >2 million full-text arti-
cles. All text sources were subsequently converted to the format
required by the NER software. Despite this effort, presently there
was no access so that the full-text articles could be mined for the
majority of Medline entries.
Thus, the literature corpus was extended with these ab-

stracts, which were extracted from a local copy of Medline
(http://www.nlm.nih.gov/databases/journal.html) and con-
verted to the same format as the full-text articles. It needs to

Significance Statement

It is generally believed that full humangenomesequencingwas
awatershed event in humanhistory that boostedbiomedical
research, biomolecularmechanismdiscovery, and life sci-
ence applications. At the same time, researchers in the field of
genomeannotation see that there is a persisting, substantial
body of functionally insufficiently or completely not charac-
terized genes (for example,�10000protein-coding genes in
thehumangenome)despite the availability of full genomese-
quences. A survey of the biomedical literature shows that the
number of reportednewprotein functionshadbeen steadily
growinguntil 2000but the trend reversed to adramatic decline
thereafter. The fastest growing set of genes in the last decade
is thatwith 500ormore full publication equivalents, i.e., the
genes that arewell characterized anyhow.At the same time, the
annual amount of life sciencepublicationsdoubledbetween
2000 and2017. There are no apparent scientific or financial
reasons for thedecline in biomolecularmechanismdiscov-
ery; probably, current instruments of science fundingdonot
direct or evendiscourage researchers to go after the difficult
problemsof gene functiondiscovery.

be emphasized that named entity recognition delivered richer
results from full-text sources than from abstracts only and this
has implications for finding literature evidence about genes, for
example, for protein–protein and protein–cellular compartment
associations but especially for links between diseases and
genes.[17]

The literature corpus was complemented with a second cor-
pus of USPTO patent texts, which were downloaded from
Google Books (http://www.google.com/googlebooks/uspto-pate
nts-grants-text.html). As the file format of these had changed over
the years, several parsers were developed to convert them all into
the same unified format as the literature corpus. Most notably,
all patents prior to 2002 were scanned and converted to plain text
through optical character recognition (OCR); these were, thus,
also could be subject to OCR errors.
Thus, the whole procedure compounds PDF and OCR trans-

formation errors with those of natural language processing for
named entity recognition (see ref. 17 for extensive discussion).
For example, entity names absent in the list would not be rec-
ognized in the search. Literature documents absent in the study
of the literature corpus would reduce the possible counts for
some named genomic entities. Most likely, not all genomic en-
tity names would be found (though the number of false negatives
was difficult to estimate). Also, certain false positive assignments
would bemade. Thus, the data was not useful tomake judgments
for a specific gene (such as date of first publication or the exact to-
tal number of publications about it). Yet, the data should be good
enough to assess statistical trendswith regard to publication rates
about gene functions as the error rate was to be expected roughly
the same for every year. Of course, the equal probability of false-
positive/false-negative errors over the years was just an assump-
tion that was reasonable although axiomatic.
The named entity recognition within the natural language pro-

cessing approach, as applied in this work, would recognize the
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mentioning of the human gene (or protein, ncRNA, etc.) but it
would also hit cases when the text was about a gene with the same
name in mouse, rat, etc. It was assumed in this work that the
article reported about the function of an orthologous (or closely
homologous) gene in another model organisms, it was relevant
for the function of the human gene and this publication should
be counted for this purpose even if the human ortholog was not
mentioned at all.
At the same time, the coarseness of the synonym lists that were

at the disposal did not allow to systematically track individual
splicing variants or protein isoforms. So, they were all lumped
together under a single gene name.
There were also trends of name agglomeration that mention-

ing one gene was typically followed by naming other interacting
genes in the same text such as co-expressed transcripts or
subunits in protein complexes. In the concept of fractional
counting, these groups of genes were thus assigned coher-
ently growing score with each additional publication of this
kind.

2.2. Fractional Counting of Entity Names and Determination of
Full Publication Equivalents

A document could mentionmultiple proteins without pertaining
equally much to all of them. To address this, a fractional counting
scheme[8] was used in which each paper that mentioned at least
one protein contributed a total count of 1, which was distributed
across the mentioned proteins relative to how many times each
of them was mentioned. The total fractional count fi for protein
or gene i was thus:

f i =
∑

j∈D

nij
n·j

where D is the document set, ni j is the number of times protein
or gene i as mentioned in document j, and ni j is total number of
mentions of any protein or gene in document j.
A master file was generated where each line contained a ge-

nomic entity name, a publication identifier, the publication date,
and the fractional count associated with that genomic entity
name. From this source, it was possible to assess the amount
of literature published about a given genomic entity (the liter-
ature score) in periods of time by summing up the respective
fractional counts for publications in the years considered. A lit-
erature score of one was defined as full publication equivalent
(FPE), the amount of literature necessary to achieve one pub-
lication solely dedicated to a single genomic entity (gene, pro-
tein, or non-coding RNA). As shown in ref. 8, more publica-
tions per named genomic entity strongly correlated with more
complete insight into its functional aspects. Thus, further in
the text, the number of FPEs per named genomic entity was
used as proxy for the level of knowledge about its biological
function.
For standard statistical tests, the software “R” and Microsoft

Excel were used.

3. Results

3.1. Mapping of Life Science Literature onto Human Genomic
Regions: Status End of 2017

Here, we report our results of mapping the life science literature
from its early beginning until the end of 2017 (the last completed
year as of the day of writing this article) onto the human genome
by computing the number of historically accumulated FPEs per
named entity. This literature score (the number of FPEs) is then
used to deduce insights about the level of functional description
and involvement in biomolecular mechanisms for those genes,
proteins, and non-coding RNAs.
It is difficult to assess how many FPEs are necessary until

all critical aspects of biological function of a genomically deter-
mined named entity are fully described. For example in the case
of PIG-K (gpi8), it took less than 3 years and only five papers
for the discovery of the protein, its location in the endoplasmic
reticulum and its role as protease subunit in the transamidase
complex responsible for attaching GPI lipid anchors to substrate
proteins.[4,18–21] One of its most tightly bound protein partners,
the subunit GAA1/GpAA1 was discovered also in 1995.[22] But
its function as synthetase of the peptide bond linking the GPI
lipid anchor and the C-terminus of the substrate protein became
clear only �20 years later (in 2014[23]) and, in between, there
were about another 15 papers dealing with various aspects of
GAA1/GpAA1’s functional significance.
Therefore, we explore different FPE ranges for the literature

score S of a named genomic entity (the ranges are 0 < S < 1,
1 � S < 10, 10 � S < 20, . . . , 100 � S < 500, 500 � S; see
Table 1 for protein-coding genes and Table 2 for other genes
and non-coding RNAs). The trends among them allow us to
better understand how the body of literature covers all aspects of
function including the biomolecular mechanisms involving the
genes and proteins.
The literature body accumulated from 1901 until 2017 stud-

ied in this work contains references to 17 824 proteins and 2641
non-coding RNAs (with�4.6 million FPEs in total). In pie charts
of Figure 1, we show how the numbers of named entities and
their associated literature scores are spread among FPE ranges.
We find that the scientific literature is distributed extremely
unevenly for protein-coding and even more so for non-coding
genes.
The most mentioned 9% of all proteins (1610 entities,

Figure 1A and Table 1) each attracted >500 FPEs and, to-
gether, this forms 78% of the total body of the literature
(Figure 1C). Among the most studied proteins each with 32 000–
145 000 FPEs, we find insulin, serum albumin, p53, tumor
necrosis factor (TNF), CD40, pro-opiomelanocortin (the precur-
sor of several peptide hormones such as melanin, endorphin,
encephalin, ACTH, etc.), C-reactive protein, renin, and maltase-
glucoamylase. These ten proteins alone have �450 000 FPEs
taken together.
Notably, some items (p53 and TNF) overlap with the list of ten

most heavily researched proteins as reported by Dolgin.[24] Other
proteins mentioned in ref. 24 also occupy high ranks in our list:
IL6 (rank 11), AKT1 (21), VEGFA (23), APOE (28), EGFR (51),
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Table 1. Status of mapping the life science literature between 1900 and 2017 onto protein-coding genes. The total number of protein targets, their
percentage among the total 17824 mentioned in the literature, their accumulated literature score S measured in FPEs, and their share among the total
amount of FPEs for all protein-coding genes are listed for different ranges of FPEs per target. The ranges for the literature score are 0< S< 1, 1� S< 10,
10 � S < 20, . . . , 100 � S < 500, and 500 � S.

Range for S Number of proteins Percentage of 17 824 proteins Total literature score for all targets Percentage of total score

0–1 1997 11.2 836.2 0.02

1–10 4571 25.6 20 379.0 0.44

10–20 1935 10.8 27 957.7 0.60

20–30 1175 6.6 28 863.9 0.62

30–40 857 4.8 29 730.9 0.64

40–50 638 3.6 28 597.8 0.61

50–60 531 3.0 29 090.5 0.62

60–70 352 2.0 22 808.3 0.49

70–80 357 2.0 26 759.0 0.57

80–90 312 1.8 26 456.9 0.57

90–100 282 1.6 26 779.5 0.57

100–500 3207 18.0 73 6109.8 15.75

>500 1610 9.0 3 666 853.2 78.50

Table 2. Status of mapping the life science literature between 1900 and 2017 onto non-protein-coding genes. The total number of protein targets, their
percentage among the total 2641 mentioned in the literature, their accumulated literature score S measured in FPEs, and their share among the total
amount of FPEs for all protein-coding genes are listed for different ranges of FPEs per target. The ranges for the literature score are 0< S< 1, 1� S< 10,
10 � S < 20, . . . , 100 � S < 500, and 500 � S.

Range for S Number of genes Percentage of genes Total literature score for all targets Percentage of total score

0–1 1357 51.38 520.0 0.81

1–10 816 30.90 2818.3 4.37

10–20 139 5.26 2035.2 3.16

20–30 60 2.27 1511.7 2.34

30–40 42 1.59 1488.9 2.31

40–50 24 0.91 1070.2 1.66

50–60 25 0.95 1380.9 2.14

60–70 16 0.61 1024.8 1.59

70–80 15 0.57 1125.0 1.74

80–90 16 0.61 1377.9 2.13

90–100 12 0.45 1147.4 1.78

100–500 102 3.86 19 459.7 30.17

>500 17 0.64 29 533.2 45.80

ESR1 (72), TGFB1 (119), and MTHFR (129). Each of these tar-
gets is described with 5000–31 000 FPEs. The differences in the
rankings can be associated with specifics of the selectionmethod-
ology. In that work, a much smaller body of literature was stud-
ied and the association of publications with genes was based on
counting at least a single mentioning of their names in the text
as full FPE.
Further 18% of all proteins listed (3207) have a literature score

S between 100 and 500 FPEs that, taken together, represent an-
other 16% of the literature. Thus, an elite group of slightly less
than 5000 especially well-studied proteins (4817 or 27% of all
proteins studied during all history of science) attracted 94.2% of
all life science publications about proteins and genes encoding
them.

At the same time, only 6% of the FPEs cover the known as-
pects of function for further �13 000 entities. For 6439 protein-
coding genes and derived proteins (36% of all proteins ever men-
tioned), there is between 10 and 100 FPEs in the literature.
Taken together, this comprises 4.5% of the total publication cor-
pus. Presumably, 10–100 FPEs correspond to some basic level of
functional insight reported. For another subset of 1997 proteins
(11%), there is not even one full FPE in the literature. For addi-
tional 26% of protein entries (4571), the number of FPEs counted
is below ten (in average, around five). Thus, the functions of
these latter two groups, 37% of all proteins ever mentioned in the
literature (in just 0.5% of the literature corpus), are barely known.
This is on top of thousands of additional proteins, the se-
quences of which are known as a result of the human genome
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Figure 1. Status of the mapping of life science literature accumulated until 2017 onto the human genome. For various FPE ranges (0 < FPE < 1,
1 � FPE < 10, 10 � FPE < 20, 20 � FPE < 30, 30 � FPE < 40, 40 � FPE < 50, 50 � FPE < 60, 60 � FPE < 70, 70 � FPE < 80, 80 � FPE < 90,
90 � FPE < 100, 100 � FPE < 500, 500 � FPE), the distribution of (A) the number of proteins and (B) the number of non-coding RNAs is shown as
pie chart. The accumulated FPEs (the total literature score) of the named entities within those FPE brackets is presented in (C) for protein-coding genes
and (D) for non-protein-coding genes.

project,[6,7,25] that have never received any attention in a functional
study.
Among non-coding genes and RNAs, the situation is even

more exaggerated (Figure 1B and D, Table 2). Only 1% of the
2641 non-coding RNAs (17 entities) have more than 500 FPEs,
4% (additional 102) score between 100 and 500 FPEs. Together,
these 5% non-coding RNAs (119 entities, usually miRNAs im-
plicated in cancer) harbor 76% of all literature on the topic of
non-coding RNA structure and function. At the same time, 51%
(1357) of all non-coding RNAs mentioned in the literature have
not even one full FPE dedicated to their functional description.
The total number of non-coding RNAs with physiological rele-
vance has not even been estimated but, most likely, will exceed
the number of protein-coding genes. Thus, the knowledge gap is
much larger here.

3.2. Trends in the Discovery of New Protein-Coding Gene and
Protein Functions

Obviously, the current level of functional insight about many
named genomic entities is not satisfactory, especially since most
of the efforts of the scientific community have been directed on
studying targets that have received disproportional attention any-
how. Although the actual situation is not desirable, maybe, the
trends in function discovery are encouraging with lots of recent
progress?

We studied the rate that new genomic entities appeared in
the literature at the first time and in which year they crossed
certain thresholds of their accumulated FPEs. In the following
text, the notion “Tx” (“Threshold x”, where “x” is a natural num-
ber) is used to describe thresholds for a given named entity to
cross the literature score threshold with “x” FPEs. So, “T0” de-
notes at least a single occurrence (score>0) in the scientific lit-
erature. “T1” requires at least one full FPE to be accumulated.
Accordingly, other thresholds such as T5, T10, T15, T20, T25,
T30, T35, T40, T45, T50, T75, T100 and T500 are to be similarly
understood.
In Figure 2, we illustrate the data about how many protein-

coding genes reach a certain level of literature representation in
a given year for the first time. Without any rigorous statistical
methodology, certain periods are clearly delineated. Between
1900 and 1945, there was almost no function discovery effort
reflected in the literature. Although the concept of gene was just
in the process of emerging, occasional but important protein
function and pathway discoveries such as glycolysis,[26] the
tricarboxylic acid cycle[27] or the ATPase activity of myosin[28]

have been made.
But thereafter until �1975, insight into biomolecular mecha-

nisms improved dramatically with increasing increments of new
knowledge essentially every year. This process culminated into
a spike of gene function discovery around 1975 with 667 genes
mentioned in scientific articles for the first time and 134 genes
having accumulated �10 FPEs in that year alone.
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Figure 2. The number of new protein-coding genes in a given year with accumulated FPE score crossing different thresholds the first time. The notion
“Tx” (where “x” is a natural number) is used to describe thresholds for a given named entity to cross the literature score threshold with at least “x”
FPEs. So, “T0” denotes at least a single occurrence of the gene name (score > 0) in the scientific literature. “T1” requires at least one full FPE to be
accumulated. Accordingly, other thresholds such as T5, T10, T15, T20, T25, T30, T35, T40, T45, T50, T75, T100, and T500 are defined respectively. See
Supporting Information file 1 for the exact protein-coding gene numbers. The graph from 1990–2017 is zoomed on the left and shown in box.

Despite a�50% drop in the annual function discovery rate im-
mediately after the 1975 pulse, the period 1980–2000 saw a steady
increase of the protein function discovery rate as evidenced by
ever larger numbers of genes crossing all studied literature score
thresholds, especially visible from curves showing T0, T1 and T5.
At around 2000, about 500 protein names per year appeared in the
scientific literature for the first time. And about 300 new proteins
crossed the threshold T10 every year.
The outcome for the years after 2000 is nothing but surprising.

As a draft of the full human genome sequence was presented
to the community in 2001[6,7] and a completed version became
available in 2004,[25] the full sequences of essentially all genes be-
came publicly available and amajor hurdle towards studying new
genomic entities was thought to be removed. Nevertheless, we
observe a sharp drop and continuous decrease of the rate that
new proteins appear in the literature (curve for T0, 186 new en-
tries in 2017 compared with 526 in 2000) or cross certain FPE
thresholds (curves for T1, T5, T10, T15). The rates for medium
thresholds (T20-T100) tend to stabilize at a constant (between 200
and 250 new entries). At the same time, the rate for new proteins
to cross T500 increases drastically.
This visual impression is confirmed by a rigorous statistical

analysis of growth per year in various eras (1945-1974, 1980–
1999, and 2000–2017; see Table 3). We studied the regression
lines approximating the curves in Figure 2. The slope of the re-
gression corresponds to the additional number of proteins that
crossed a FPE threshold compared with the previous year; i.e.,
the slope approximates the average annual change in the discov-
ery rate in the respective era.

During the first time period 1945–1974, there is strong growth
for new proteins appearing in the literature for the first time
(6.4 additional new items per year compared with the rate in
the previous year) and for crossing thresholds T1, T5, T10 and
T15. The trend for robust growth is further enhanced during
1980–1999 when there are eight to ten additional new proteins
in addition to the rate of the previous year that crosses any of
the thresholds T0, T1, T5, . . . , T50, and T75. The growth rate is
smaller for T100 (�6 additional new proteins per year) and very
low for T500 (1-2 additional new proteins per year). In all cases,
the P-value of the F-test is highly significant and supporting
the growth trend (P-value < 1.e-7 for all entries 1980–1999 and
<1.e-4 for all entries 1945–1974 except for T500, see Table 3).
The regression data emphasizes the qualitative change in the

time period after 2000. Statistically significant growth rates be-
come largely negative for T0 and T1 but they are negative for T5,
T10, and T15, too. P-values for the F-test indicate that, for T15,
T20, . . . , T45, and T50, the discovery rate as measured by the
number of genes crossing FPE thresholds in the given year is
essentially constant. Some growth is observed for T75 and T100
(2.3–2.5 new proteins per year) and strong, statistically significant
growth is only seen for new proteins crossing the T500 threshold
(3.7 new proteins per year). By the way, this is the only slope that
has increased (from 1.7) compared with the previous era 1980–
2000.
It should be noted that time intervals selected (1945–1974,

1980–1999, and 2000–2017) correspond to what we visually per-
ceived as periods with differing dynamics of function discovery.
Some variation of boundary years as suggested by a reviewer will
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Table 3. Changes in numbers of newly functionally characterized protein-coding genes in three different time periods. The protein-coding gene is consid-
ered functionally characterized if its literature score has crossed a minimal “literature score threshold” Tx in a given year the first time (see main text for
Tx definitions and also Figure 2 for illustration). For three time periods (1945–1974, 1980–1999, and 2000–2017), we approximate the curves in Figure 3
with regression lines to estimate trends for function discovery. The regressions are characterized by “slope” (change of number of new protein-coding
genes per year), R2 (residual), ρ (correlation coefficient), and its p-value by an F-test.

1945–1974 1980–1999 2000-2017

Tx Slope R2 ρ p-Value Slope R2 ρ p-Value Slope R2 ρ P-value

0 6.4 0.8495 0.922 4.91e-13 9.5 0.8078 0.899 7.28e-08 −17.97 0.9026 −0.950 1.67e-09

1 5.6 0.8602 0.927 1.74e-13 8.0 0.7779 0.882 2.73e-07 −11.1 0.8515 −0.923 4.98e-08

5 2.3 0.7811 0.8838 9.72e-11 9.97 0.9028 0.950 1.51e-10 −5.1 0.6523 −0.807 5.06e-05

10 1.3 0.7499 0.866 6.41e-10 9.6 0.9601 0.980 4.8e-14 −2.6 0.3582 −0.598 0.008687

15 0.98 0.6756 0.822 2.56e-08 8.4 0.8814 0.939 9.12e-10 −1.5 0.1637 −0.404 0.0958

20 0.8 0.6705 0.819 3.19e-08 9.4 0.9439 0.972 1.05e-12 0.9 0.0561 0.236 0.3441

25 0.6 0.6776 0.823 2.34e-08 9.3 0.9461 0.973 7.26e-13 0.5 0.0137 0.116 0.644

30 0.5 0.6230 0.789 2.17e-07 9.3 0.9409 0.970 1.67e-12 1.7 0.2719 0.521 0.02647

35 0.5 0.5395 0.735 3.82e-06 9.7 0.9644 0.982 1.7e-14 2.1 0.3438 0.586 0.01054

40 0.4 0.5399 0.735 3.77e-06 9.2 0.9733 0.987 1.31e-15 1.4 0.3268 0.571 0.01319

45 0.4 0.4743 0.689 2.58e-05 8.9 0.9459 0.973 7.55e-13 1.3 0.2801 0.529 0.0239

50 0.3 0.5031 0.709 1.14e-05 8.7 0.9741 0.987 9.8e-16 1.1 0.1087 0.329 0.1815

75 0.3 0.6105 0.781 3.46e-07 7.3 0.9618 0.981 3.29e-14 2.3 0.3994 0.631 0.0049

100 0.2 0.4628 0.680 3.53e-05 6.2 0.9187 0.958 3.0e-11 2.5 0.4842 0.695 0.00134

500 0.1 0.2538 0.504 0.004537 1.7 0.8232 0.9073 3.41e-08 3.7 0.9029 0.950 1.61e-09

deliver somewhat changed slopes compared to those in Table 3
but the message will remain the same: there was a substantial,
positive dynamics of the discovery rate before 2000 that disap-
peared after the beginning of the new millennium.
It was already known[17] that, in average, the number of men-

tioning of gene names (not just new ones) in the literature had
a trend towards moderate growth from the early beginnings un-
til �1975 (from a low number 1–3 to about �9 per year and per
gene name). This number remained about constant until �2000
and, then, it increased drastically towards about 22 in 2017 (see
Figure S4, Supporting Information in,[17] graph at the bottom). It
is notable that the time sections clearly distinguishable in Figure
S4 coincide with the periods determined in this work.
Two factors influence the average number of genementioning:

(i) the total number of publications with gene names (that is gen-
erally increasing and driving up the average) and (ii) the rate of
introducing new gene names in the literature (that, if increasing,
will tend to reduce the average). The slow or zero growth of the
average gene mentioning until 2000 indicates that much of the
expansion of the scientific literature was about describing new
biomolecular entities and their functions and not about report-
ing news about previously mentioned genes. Yet, it appears that,
after 2000, the averagementioning of gene names amplified dras-
tically because of the combination of exponential growth of the
scientific article number (see Figure S2, Supporting Information
in[17]) and of zero or negative growth of the rate of introducing
new gene names into the literature.
Thus, the data unequivocally supports the conclusion that,

when the newly published scientific literature increasingly
covered new proteins and their functions after 1945, this
trend stopped at around 2000. A major growth of new lit-
erature thereafter is only detectable for proteins that are

anyhow well studied (proteins with the T100 status moving
into the T500 group) when, at the same time, research on
non- or weakly studied protein-coding genes is increasingly
abandoned.

3.3. Trends in the Discovery of New Non-Protein-Coding Gene
and Non-Coding RNA Functions

From the viewpoint of the amount of available literature and
new genomic items added per year, the research on non-
protein-coding genes and non-coding RNAs is in its infancy (see
Figure 3). A comparison with Figure 2 would place the non-
coding RNA function discovery rates during the last two decades
into similarity to the period before 1975 for the protein-coding
genes. Until about 2000, the accumulation of literature per year
for new non-coding RNAs previously not described was about
constant at low values. Approximately ten new named entities
were first mentioned every year (curve T0). For about a hand-
ful of new non-coding RNAs per year, sufficient FPEs were ac-
cumulated to cross the critical thresholds T1, T5, . . . , T20, and
T25.
Only after 2000, the function discovery rates for non-coding

RNAs started to develop some dynamism and strong growth. The
mentioning of new non-coding RNA entities in the literature was
at the level of 22 (T0), 9 (T1) and 7 (T5) in 2000. But it increased
continuously to 386 (T0), 182 (T1) and 74 (T5) in 2017. For the
medium thresholds (T10-T100), the values for 2017were between
52 and 18 (with little changes during the last 3–5 years) when
they were essentially zero (and always below 5) around 2000. Just
singular cases of new non-coding RNAsmake it above T500 every
year even now.
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Figure 3. The number of new non-protein-coding genes in a given year with accumulated FPE score crossing different thresholds the first time. The
notion “Tx” (where “x” is a natural number) is used to describe thresholds for a given named entity to cross the literature score threshold with at least
“x” FPEs. So, “T0” denotes at least a single occurrence of the gene name (score>0) in the scientific literature. “T1” requires at least one full FPE to be
accumulated. Accordingly, other thresholds such as T5, T10, T15, T20, T25, T30, T35, T40, T45, T50, T75, T100, and T500 are defined respectively. See
Supporting Information file 2 for the exact gene numbers. The graph from 1990–2017 is zoomed on the left and shown in box.

One argument explaining the drop of attention in the litera-
ture towards new and scarcely studied protein entities might be
the shifting towards research on functions of non-coding RNAs.
To some extent, this is certainly the case as the magnitudes
of change between 2000 and 2017 indicate. The values �Tx =
Tx(2017)-Tx(2000) for protein coding genes are -340 (T0), -181
(T1), -83 (T5), -76 (T10), -29 (T15), 24 (T20), -40 (T25), 5 (T30),
43 (T35), -1 (T40), 11 (T45), 21 (T50), 28 (T75), 31 (T100), and 57
(T500). The respective data for non-protein-coding genes is 364
(T0), 173 (T1), 67 (T5), 48 (T10), 48 (T15), 31 (T20), 24 (T25), 23
(T30), 28 (T35), 23 (T40), 15 (T45), 25 (T50), 20 (T75), 17 (T100),
and 2 (T500). Thus, the losses in protein function discovery for
low thresholds (T0-T25) compare well with the gains in function
discovery for non-coding RNAs in the same Tx range.
We illustrate the total function discovery dynamics from 1990

until 2017 in Figure 4 (proteins and non-coding RNAs combined)
and, for this data, we carried out a similar regression analysis
as presented in Table 3. We find that the F-test supports a pos-
itive slope different from zero (i.e., significant growth with P-
value<1%) only for T20 (3.0 additional function discoveries per
year), T30 (3.6), T35 (3.8), T40 (3.0), T45 (2.8), T50 (2.6), T75 (3.5),
T100 (3.4) and T500 (3.8). The P-value is > 0.22 for T0, T1, T5,
T10 and T15 indicating a stagnate trend (with small slopes be-
tween -1.3 and 1.1 and the exception 2.3 for T0). Thus, annual
combined protein and non-coding RNA function discovery rates
taken together produce about a flat line over the years. Some
growth can be seen in the categories T20-T50 and especially for
T75, T100 and T500; thus, the well-studied targets receive even
more attention. There is no sign of an overall function discovery
rate boost after 2000. This is in strong contrast to the dynamics
before the beginning of the new millennium.

4. Discussion

4.1. About the Levels of Darkness and Illumination in the Gene
and Protein Function Space

Themodern, scientifically based worldview requires understand-
ing of structure and ofmechanisms inherent to thematter so that
rationally designed interventions produce predicted results. For
biological systems, understanding of biomolecular mechanisms
is critical before applications inmedicine, biotechnology, agricul-
ture and ecology will deliver.[1] For example, not surprisingly, can-
cers with known signaling pathways driving their growth can in-
creasingly be well treated similar to infections whereas progress
for those whose mechanism remain in the dark have not seen
and will not get improvement in treatment success for years and
decades to come.[29]

The first step towards understanding of biomolecular mech-
anisms is a full list of functions associated with every genomic
region and gene.[2,3] Given the scale of world-wide life science re-
search, it is surprising that, even for extensively studied simple
model organisms at low evolutionary levels such as Escherichia
coli[30,31] and Saccharomyces cerevisiae,[32] there are still lots of
genes with unknown function.
To assess the completeness of discovery of functions encoded

in the human genome, there should be first an agreement about
how many functions are there in the code. The number of
protein-coding genes in the human genome is an important as-
pect of this question; yet, despite of availability of its full DNA
sequence (which should provide an upper threshold for the total
number of encoded functions), the matter continues to be pas-
sionately discussed in the literature.[33,34] The number of protein–
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Figure 4. The number of any new genes in a given year with accumulated FPE score crossing different thresholds the first time for the period 1990–2017.
Here, we show the total gene function discovery rate (combining the data for protein-coding genes and non-coding RNA) for the years 1990–2020. The
notion “Tx” (where “x” is a natural number) is used to describe thresholds for a given named entity to cross the literature score threshold with at least
“x” FPEs. So, “T0” denotes at least a single occurrence of the gene name (score > 0) in the scientific literature. “T1” requires at least one full FPE to be
accumulated. Accordingly, other thresholds such as T5, T10, T15, T20, T25, T30, T35, T40, T45, T50, T75, T100, and T500 are defined respectively. See
Supporting Information file 2 for the exact gene numbers.

coding genes changes with every genome release[35] and, espe-
cially from the side of small proteins, additions to the canonical
human proteome have to be expected.[36–38] Besides small pro-
teins, determining genes of rarely expressed proteins represents
a formidable scientific challenge.
The estimated number of protein-coding genes in the litera-

ture is stated to be between 20 000 and 23 000.[25,36–38] Out of
these, only 17 824 have ever been the target of a functional study
as reported in the scientific literature until the end of 2017.
And a much smaller subgroup of elite 4817 proteins are quite

well studied. Each of these targets has attracted �100 FPEs and,
taken together, they represent 94.2% of all life science literature
about genes and their functions (more than 4.2 million papers,
patents, etc.). Thus, these targets exemplify the well illuminated
part of the gene function space, typically with many aspects of
their biological mechanism of action described. They are essen-
tially the group of genes with target development levels Tclin (with
known approved drugs) and Tchem (with known small molecular
binders) as classified in.[8] It should be noted that, apparently, the
event of full human genome sequencing in 2001 had negligible
influence on function discovery among this group of elite genes.
All of them had publications associated with them before the
year of publishing the full human genome sequence (T0). Fur-
ther, 4755 out of these 4817 genes (98.7%) have crossed their T10
threshold before 2001. About 2000 elite genes already had T500
status at 2001. So, these genes have typically been well known for
a decade or longer at this time.
How many protein-coding genes remain in the dark? First,

there is a group of 2200–5200 genes presumably encoded in the

human genome that have never been studied functionally and
not been mentioned in any paper (depending on the total esti-
mate of proteins in the genome). We have to add those proteins
whose functions are scarcely known. This is 1997 targets which
did not even manage to cross T1 in 2017 and another 4571 be-
low T10 (but above T1) in 2017. Together, this is easily a group of
10 000 protein-coding genes lost in the darkness of the function
space with almost no illumination by any life science literature.
There is yet another group of 6439 proteins in the limelight with
10–100 FPEs. To note, thematter of isoforms is not even included
in this assessment.
To our knowledge, there has not been any estimate of the size

of the function space for regions in the human genome for non-
coding RNAs. So far, �120 non-coding RNAs attracted �100
FPEs and their functions can be considered well understood. An-
other �2500 named entities have been mentioned in the life sci-
ence literature at various levels of scrutiny. Probably, this is just
the tip of an iceberg with the by far larger majority of non-coding
RNAs never been touched.
As a trend, annual new gene function discovery rates were

growing in all categories of thresholds Tx in the years before 2000
(see Figures 2 and 3). Apparently, both the type of funding and
the organizational structure of life science research as well as the
mechanisms for selecting suitable individuals as principal inves-
tigators (PIs) were very appropriate for the medium-term, dedi-
cated nature of work in this field of science. The spike at around
1975 is of special interest and we can only speculate about its ori-
gin here. Most likely, the reason is in the drastic expansion that
the life science faculties and schools at universities have seen in
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the late 60-ies and early 70-ies. Typically, the young professors
have selected one new gene to study during their career and their
first paper appeared at about 1975. Further, first nucleotide se-
quencing techniques have just been invented.[39]

The sectioning of time intervals chosen in table 3 could be
made differently. Yet, we feel that, for the conclusions we are af-
ter in this work, the absolutely exact interval boundaries are not
that critical. Our time sections roughly correspond to the adoles-
cent, romantic era of life science research (until early 70-ies), the
mature period (up to 2000) and the decay thereafter. The slopes
are visibly different in the three time periods in Figure 2 whereas
their exact numbers are not that important (but their orders of
magnitude are).
Given the strong, robust and increasing growth of the protein

function discovery rate before 2000, the more astounding is the
decrease in protein function discovery after 2000 especially given
the explosion of the total volume of life science literature. The
number of annually added new entries in PUBMED[40] has grown
from �210 000 in 1970 to �442 000 in 2000 and to �870 000 in
2016.
At the other extreme of the publication universe, there are

gene-superstars that attracted tens of thousands of FPEs. We did
not explore the question why certain gene targets became re-
search big names. Maybe, there are biological reasons for some
cases (hubs in protein interaction networks, critical signaling en-
tities in common pathologies, etc.) but, in many others, we think
that quite profane factors such as being used as a biomarker for
a process, the influence of some fashion in committees that al-
locate grants, etc. are the actual reasons. Of course, interacting
genes have their FPEs grown in parallel by agglomeration.

4.2. When will we Understand the Human Genome?

This question was answered in 2012[2] based on a crude estimate
of function discovery reports in top journals. The conclusion was
that it will take us a hundred years just to complete the protein
function catalogue. The more quantitative data in this work al-
lows a better justified extrapolation and it leads to a slightly more
optimistic result. The total amount of proteins receiving a first
mentioning in 2017 was 186 and the number of proteins cross-
ing T10 was 246. If these numbers do not drop further, the cat-
alogue of estimated 10 000 missing protein functions might be
completed in about 50 years.
The decrease in protein function discovery rates after 2000 had

very substantial impact on the overall status of protein-coding
gene annotation in the sequence databases. If discovery rates for
protein functions had remained unchanged, the time for gener-
ating the same catalogue of functions would have taken, maybe,
about half the years. With rates at the level of year 2000 just until
2017, >2800 more proteins had seen their first publication and
additional >600 had crossed T10 in the same time.
The results of this literature analysis should be of concern at

the side of science funders and administrators as it hints towards
a waste of resources. When the event of full human genome se-
quencing was celebrated with pomp in 2001 and the availabil-
ity of all gene sequences and their relative order in the genome
was considered a major boost for the future development of
science,[41] hardly anybody would have predicted that this event

was the beginning of a sharp drop in the rate of protein function
discovery (to just one third from 2000 towards 2017 if we take T0
as a measure).
Notably, there is no shortage of completely uncharacterized

proteins to study. It also does not help to mention that this de-
crease should be imagined to be offset by function discoveries for
non-coding RNAs. At best, the total rate of new function discov-
ery has been stagnate when, at the same time, the international
life science research community in academia and industry has
rather expanded since 2000, total funding is at historically un-
precedented heights and our research tools including the battery
of omics methods is as good and as widely available as never be-
fore. Thus, it is unlikely to believe that cracking the problem of
function for the remaining targets is so difficult that scientists at
our time are incapable of being successful from the intellectual,
resource or methodical points of view.
The most worrying point is that the fastest growing subgroup

of protein targets attracting new life science literature is that of
T500 proteins, those that are best studied anyhow when, at the
same time, the rates for new T0, T1, T5 and T10 protein targets
are rather declining. Thus, some part of the problems seem to be
associated with the changes in science funding that occurred in
the late 90-ies that direct people away from searching new func-
tions encoded in the genome. It appears to be more aligned with
the science system to propose research with incremental out-
come in well-studied areas and to continue studying the same tar-
gets by inertia (as plentiful “preliminary data” is available). At the
same time, efforts that aim at venturing into the really unknown
are considered too risky or not sufficiently industrially applied by
commissions assessing research grants and by scientists them-
selves. Reasons for scientists to systematically avoid big research
questions have been discussed in detail elsewhere.[2] Most im-
portantly, a function discovery is an effort of 5–10 years of a few
scientific groups each costing about a million dollars per year.
For most scientists and even PIs that have family and other long-
term social obligations or that are in uncertain and short-term
employment and funding conditions and need a fast success, it
is not possible to unilaterally redirect their efforts towards such
more fundamental issues.
The literature data does not support the claim that the availabil-

ity of the full human genome sequence lead to a boost in biolog-
ical function discovery associated with specific genomic regions
or genes. Rather, the extremely successful trends for ever larger
annual function discovery rates in 1980–1999 were reversed to-
wards a sharp decline in reports of new protein functions. Even
together with non-coding RNA function reports, the total discov-
ery rate after 2000 is hovering at numbers that have already been
seen around 2000. There is nothing comparable with the steep
growth in the decade before. This is a paradoxical observation as
the availability of the full genome sequence should and does ease
the study of uncharacterized genomic regions.
The Battelle report from May 2011[42] finds that the human

genome project had a great scientific impact implying consid-
erable new functional insight besides a dramatic economic ef-
fect and the larger part of the report is dedicated to the former
(pp. 17–52 of the main text in ref. 42). The argument is mainly
qualitative (e.g., with Table 14 on page 23 of the main text about
the biomedical applications of human genome sequencing) and
with emphasis about the opportunities that the technology devel-
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opment has opened. Especially, finding genomic aberrations in
inherited diseases and determining their functional implications
have become drastically easier compared with the previous era.
Some credentials such as rational drug development are rather
the results of independent successful developments in the pre-
ceding decade; full genome sequencing is not a prerequisite. It
appears also that the event of full genome sequencing was per-
ceived as a signal by the lay community to invest into academic
life science research, biotechnology startups, and life science in-
dustry in general.
Maybe, we have to conclude that, because the support for clas-

sical function discovery work has dropped and been replaced by
the preference toward hyped purely omics studies, many oppor-
tunities for function discovery associated with the full genome
breakthrough have not been realized so far. Big funding organi-
zations might revisit their own data and make conclusions. To
note, omics methodologies just complement the biological re-
search tool box available previously. They can nicely record ex-
pression patterns, subcellular localizations, etc. in a large scale.
Yet, they do not substitute the old, proven techniques and ap-
proaches. Function of a gene is multifaceted and individual, it re-
quires some dedicated, individual effort for every group of genes
involved in a pathway or some type of biomolecular mechanism
to discover the enzymatic changes, interactions, and signal trans-
ductions. Thus, an individual paper reporting about that gene’s
function is expected to appear at some time point but, alas, it is
missing for thousands of genes.
Future fundamental research activities are desirably directed

at function discovery of human genes that are not studied at all
or to a very little extent. The group of conserved hypothetical
proteins[43] in the human genome (some of them with homol-
ogy up to the level of bacteria) is of special interest and it is most
ridiculous that many of them have not been targeted by research
efforts after so many decades. Yet, to compile a list of them that
is accurate at this point of time is not trivial and, in this MS, we
rather refrain from thematter. From the viewpoint of research ef-
ficiency, it might be commendable to concentrate efforts on sim-
ple organisms such as Escherichia coli or Saccharomyces cerevisiae
to bring the list of non-annotated genes down to zero as experi-
mentation with them is cheaper and easier than with the human
system and any function discovery here informs about the func-
tion of othermodel organisms even if there is apparently no exact
orthologue visible.
Further, the issue of alternative splicing variants, protein iso-

forms, etc. deserves much more attention; yet, at the level
of today’s literature mark-up, this is very difficult track in
the literature. Yet, we can surely assume that, for the over-
whelming number of gene targets, the issue of splicing vari-
ants and protein isoforms has never been touched in previous
research.

5. Conclusions

The existing body of life science literature is misbalanced.
A small group of <5000 elite proteins that have been well
known since decades and <125 non-coding RNAs have at-
tracted the overwhelming fraction of the life science literature
dedicated to biomolecular mechanisms (94.2 and 76%, respec-

tively). The trends in function discovery until 2000 worked to-
ward improving the balance. At best, the biological function
discovery rate for genomically defined named entities has not
dropped (when it has gone down drastically for proteins) since
2001, the year of presenting the human genome sequence, but
the expected boost in function discovery thereafter is suspi-
ciously absent as there is no evidence for it in the life science
literature.
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