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Metabolism of starch is a major biological integrator of plant growth supporting nocturnal
energy dynamics by transitory starch degradation as well as periods of dormancy, re-
growth, and reproduction by utilization of storage starch. Especially, the extraordinarily
well-tuned and coordinated rate of transient starch biosynthesis and degradation
suggests the presence of very sophisticated regulatory mechanisms. Together with
the circadian clock, land plants (being autotrophic and sessile organisms) need to
monitor, sense, and recognize the photosynthetic rate, soil mineral availability as well
as various abiotic and biotic stress factors. Currently it is widely accepted that post-
translational modifications are the main way by which the diel periodic activity of
enzymes of transient starch metabolism are regulated. Among these mechanisms,
thiol-based redox regulation is suggested to be of fundamental importance and in
chloroplasts, thioredoxins (Trx) are tightly linked up to photosynthesis and mediate
light/dark regulation of metabolism. Also, light independent NADP-thioredoxin reductase
C (NTRC) plays a major role in reactive oxygen species scavenging. Moreover, Trx and
NTRC systems are interconnected at several levels and strongly influence each other.
Most enzymes involved in starch metabolism are demonstrated to be redox-sensitive
in vitro. However, to what extent their redox sensitivity is physiologically relevant in
synchronizing starch metabolism with photosynthesis, heterotrophic energy demands,
and oxidative protection is still unclear. For example, many hydrolases are activated
under reducing (light) conditions and the strict separation between light and dark
metabolic pathways is now challenged by data suggesting degradation of starch during
the light period.

Keywords: redox regulation, starch, thioredoxins, NTRC, diurnal regulation

STARCH METABOLISM: ENZYMATIC MACHINERY AND
REGULATION

Plants accumulate starch as both a transient and long-term carbohydrate reserve. As a result, starch
metabolism must be adjusted to provide ample carbon supply in response to many physiological
demands mainly related to nocturnal, stress, and germination events (Stitt and Zeeman, 2012;
Lloyd and Kossmann, 2015; Hedhly et al., 2016; Zanella et al., 2016; Pirone et al., 2017; Thalmann
and Santelia, 2017). Coordinated metabolic flux among starch biosynthetic enzymes can also
permit correct structuring of the starch granule irrespectively of carbon flow (Blennow and
Svensson, 2010; Glaring et al., 2012; Pfister and Zeeman, 2016; Botticella et al., 2018).
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The reactions of starch metabolism are catalyzed by a
series of enzymes (Figure 1), mainly regulated to account for
transitory starch biosynthesis during active photosynthesis and
mobilization at night (MacNeill et al., 2017). These reactions can
be functionally classified as synthetic or degradative reactions.
However, these should not be considered as strictly alternative
reactions as transitory starch degradation is suggested to occur
simultaneously with starch synthesis under long day conditions
(Fernandez et al., 2017).

To allow tight communication between energy demands
at a multitude of conditional situations, starch metabolism is
regulated at several levels (Kötting et al., 2010; Stitt and Zeeman,
2012; MacNeill et al., 2017). The rate of both starch biosynthesis
as well as starch degradation correlates with the anticipated
length of the night directly or reversibly (Smith and Stitt, 2007),
providing evidence of a tight circadian control (Graf et al., 2010).
Moreover, simultaneously monitoring photosynthetic rate, soil
minerals availability, various abiotic and biotic stress factors
requires precise mechanisms adjusting the rate of transient
starch turnover in response to these stimuli (Thalmann and
Santelia, 2017) and both transcriptional and post-translational
levels are important (Geigenberger, 2011; Stitt and Zeeman, 2012;
Geigenberger and Fernie, 2014; Santelia et al., 2015; Mahlow et al.,
2016; MacNeill et al., 2017).

Regulation at the transcriptional level provides a mid- to long-
term adjustment of starch turnover (Stitt and Zeeman, 2012)
while post-translational modifications are currently accepted
to be the main way by which the diel periodic activity of
enzymes of transient starch metabolism are regulated (Kötting
et al., 2010). The latter include diverse allosteric mechanisms,
phosphorylation dependent protein–protein complexation and
redox mediated cysteine modification (Table 1). Data that
emerged over the last two decades suggest that the redox state
of the cell plays an important coordinating role in cellular
homeostasis by regulation of starch metabolism. Such thiol-
based redox mechanisms are more pronounced in eukaryotes
than prokaryotes and in also more important in photosynthetic
organisms as compared to heterotrophic ones. This suggests an
importance of tight link between energy harvest and downstream
metabolism in complex autotrophic organisms.

REDOX-ACTIVE ENZYMES IN STARCH
METABOLISM

A large number of plastidial enzymes involved in carbohydrate
metabolism are demonstrated to be redox-sensitive as delineated
in Figure 1. These data identify enzymes both in the biosynthetic
and the degradation pathways, as mainly achieved by using well-
defined in vitro systems (Table 1) and are as such only indicative
for a cellular function. However, such mechanistic studies have
given important information to identify potential target enzymes,
cross-links between photosynthesis and stress-related metabolic
steps.

Many of the enzymes demonstrated to be redox sensitive has
been thoroughly studied in vitro and shown to (i) modulate
enzyme activity, (ii) depend on physiological reductants, and (iii)

depend on specific protein cysteine(s). Based on these criteria,
enzymes of starch metabolism like AGPase, SS1, GWD1, SEX4,
BAM1, and AMY3 can be considered redox-regulated. If some
of these criteria are not fulfilled, we denote enzymes, including
SS3, BE2, ISA1/2/3, BAM3, and LDA, as suggested to be redox
regulated, implying that further studies in vitro and in vivo,
should be performed to confirm the regulation.

The main identified mechanism involves cystin reversible
exchange mediated by thioredoxins (Trxs) having different redox
potentials (Yoshida and Hisabori, 2017) and NADP-dependent
thioredoxin reductase C (NTRC) leading to conformational
change in the target enzyme. Both Trx and NTRC are efficient
redox transmitters and for example AGPase and BAM1 are
starch-metabolic enzymes known to be reduced by Trx f, m and
NTRC (almost) equally well (Valerio et al., 2011; Thormählen
et al., 2013). Typically, target enzymes lose catalytic activity upon
oxidation (Couturier et al., 2013) and increased affinity to starch,
as for the starch phosphorylator GWD1 (Mikkelsen et al., 2005)
and SS1 (Skryhan et al., 2015; Table 1).

EMERGING EVIDENCE OF REDOX
REGULATION OF TRANSITORY STARCH
METABOLISM IN VIVO

In few cases (AGPase, GWD1), redox regulation was shown
also in vivo to be influenced by external conditions such as
illumination or sugar supply (Hendriks et al., 2003; Kolbe et al.,
2005; Hädrich et al., 2012; Skeffington et al., 2014). In most other
cases, however, in vivo data are completely lacking. This section
deals with redox regulation of starch metabolism in vivo.

In leaves, AGPase is highly reduced in the light but is
increasingly reduced also in the dark when leaves are supplied
with sucrose (Hendriks et al., 2003). In vitro, AGPase is reduced
by thioredoxins (mainly f and m) and by NTRC (Ballicora et al.,
2000; Thormählen et al., 2013) and in this way it becomes
more sensitive to 3-phosphoglycerate activation (Fu et al., 1998;
Ballicora et al., 2000). AGPase reduction, as directly measured in
plant extracts, is thus taken as a proxy of its actual activity in vivo.
Consistently, conditions that lead to AGPase reduction often
stimulate also starch accumulation and vice versa, supporting
the view that AGPase, in leaves, is reduced/activated in the
light by thioredoxins photoreduced by photosystem I (PS-I) via
ferredoxin/thioredoxin reductase (FTR), and reduced/activated
by sucrose through a different pathway, operative also in
the dark, that involves trehalose-6P and NTRC (Kolbe et al.,
2005). This view could be too simplistic, but is essentially
accepted.

To which extent redox regulation is important for starch
metabolism cannot, however, be easily assessed from this kind
of experiments. Arguably, reverse genetics provides the more
straightforward approaches to address this question. Mutant
plants in which the redox regulated cysteine(s) of a redox
regulated enzyme are substituted by redox-inactive amino
acid residues like serine constitute in principle the best plant
material for studying the relevance of redox regulation in a
physiological context. To our best knowledge, this approach
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FIGURE 1 | Pathways of starch synthesis (yellow) and degradation (blue) in Arabidopsis leaves. Orange boxes with red outlines represent well confirmed redox
regulated enzymes. Orange boxes with no outlines represent suggested redox regulated enzymes. Green boxes represent redox tolerant enzymes. AM, amylose; AP,
amylopectin; TP, triosephosphates; F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate; ADPGlc, ADP-glucose; MOS,
maltooligosaccharides; Mal, maltose; Glc, glucose; F16BP, fructose-1,6-bisphosphate; UDPGlc, UDP-glucose; SucroseP, sucrose-phosphate; ALD, aldolase;
FBPase, fructose-1,6-bisphosphatase; PGI, phosphoglucose isomerase; PGM, phosphoglucomutase; AGPase, ADP-glucose pyrophosphorylase; SS, soluble
starch synthase isoforms; GBSS, granule-bound starch synthase; BE, branching enzyme; ISA, isoamylase; LDA, limit dextrinase; PHS, α-glucan phosphorylase;
GWD1, glucan water dikinase; PWD, phosphoglucan, water dikinase; SEX4 and LSF2, phosphoglucan phosphatases; BAM, β-amylase; AMY, α-amylase; DPE,
disproportionating enzyme; FBPase, fructose-1,6-bisphosphatase; UGPase, UDP-glucose pyrophosphorylase; SPSase, sucrose-phosphate synthase; SPPase,
sucrose phosphate phosphatase; HK, hexokinase. Transporters are shown as red filled circles: (1) triose-phosphate/phosphate translocator (TPT); (2), G1P
translocator; (3) plastidial glucose transporter (pGLT); (4) maltose transporter (MEX1). Dashed arrows represent minor or possible routes. Figure inspired from Stitt
and Zeeman (2012).
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TABLE 1 | Redox regulated starch metabolic enzymes.

Enzyme Organism Effect on enzyme
activity by reduction

Midpoint redox
potential (pH 7.0)

Specificity (Trxs
and/or NTRC)

Cysteines involved in
disulfide formation

Reference

AGPase Potato Activation ∗n.d. Trxs f, m; Cys12 of two small subunits in
S. tuberosum, equivalent to
Cys81/82 in A. thaliana

Fu et al., 1998;
Ballicora et al.,
2000;
Michalska et al.,
2009;
Hädrich et al., 2012

Pea NTRC

Arabidopsis NTRC

SS1 Arabidopsis Activation −306 mV Trxs f1, m4; NTRC Cys164, Cys545 Skryhan et al.,
2015

GWD1 Potato Activation −255 mV Trxs f, m Cys1004, Cys1008 Mikkelsen et al.,
2005

SEX4 Arabidopsis Activation ∗n.d. Trxs f1, m1, m3,
m4, x, y1

Cys130, Cys198 Silver et al., 2013

BAM1 Arabidopsis Activation −302 mV Trxs f1, m1, y1;
NTRC

∗n.d. Sparla et al., 2006;
Valerio et al., 2011

AMY3 Arabidopsis Activation −276 mV Trxs f1, m1, m2,
m3, m4, x, y1, y2

Cys499, Cys587 Seung et al., 2013

∗n.d., no data available.

has been applied only in two cases in starch metabolism, to
AGPase (Hädrich et al., 2012) and GWD1 (Skeffington et al.,
2014).

AGPase has the analytical advantage that only a single
cysteine (Cys-81 in Arabidopsis) of its small subunit APS1 is
both necessary and sufficient for its redox regulation, which
consists in the formation of a disulfide bridge between two
APS1 subunits of the tetrameric enzyme. Mutants with a serine
substituting Cys-81 cannot form the disulfide bridge and are
permanently redox-activated (Fu et al., 1998; Hädrich et al.,
2012). Arabidopsis lines expressing such a mutagenized and
permanently active AGPase in a AGPase-knockout background,
contain more leaf starch when grown in long-days photoperiods.
Interestingly, this was suggested not to be an effect of faster
starch synthesis in the light, but slower starch degradation
during the night (Hädrich et al., 2012). Hence, a role for
AGPase redox regulation in starch turnover was demonstrated,
but the metabolic mechanisms are far from clear. Further
observations revealed that the mutagenized AGPase, in vivo,
was degraded faster than the wild type enzyme (Hädrich
et al., 2012), suggesting that its physiological turnover was
influenced by the redox state of the protein. In wild type
plants, oxidized AGPase might be somehow protected from
the rapid degradation suffered by mutagenized AGPase, which
mimics the reduced form. This hypothesis suggests an additional
role of redox regulation in protein turnover (van Wijk, 2015).
Such a mechanism is reminiscent of phosphoribulokinase
(PRK) that is rapidly degraded in plants in which the three
genes of CP12, a protein that redox regulates PRK and
GAPDH by assembling a supramolecular complex (Marri
et al., 2008, 2009), have been knocked out (López-Calcagno
et al., 2017). It has also been shown that oxidized GWD1
from potato (Mikkelsen et al., 2005) and recombinant SS1
from Arabidopsis thaliana (Skryhan et al., 2015) have the

enhanced affinity for the surface of starch granules. A possible
explanation of this phenomenon is that such mechanism
is necessary for the enzymes protection under oxidative
stress.

GWD1 is the main starch phosphorylator in the plant cell
(Blennow and Engelsen, 2010). In vitro, GWD1 is completely
inactive when disulfide oxidized in the CFATC motif (Mikkelsen
et al., 2005). Oxidized GWD tends to bind starch granules
in the dark, but a portion of GWD1 remains reduced and
soluble in the stroma (Mikkelsen et al., 2005). Interestingly, the
redox potential of GWD1 regulatory disulfide (E◦’ −250 mV)
is much less negative than that of thioredoxin f (E◦’−290 mV),
suggesting that GWD1 would be reduced in vivo under
normal conditions (Yoshida et al., 2014). However, granule-
bound oxidized GWD1 might be less easily reduced by Trx
f. The relevance of GWD1 for diurnal starch regulation has
been questioned by reverse genetic studies. It turns out that
Arabidopsis gwd mutants have a strong starch excess phenotype
but recover a quasi-normal starch turnover if complemented
with, either the wild type, redox-regulated, form or the redox
insensitive, mutagenized, GWD1 form (Skeffington et al., 2014).
Hence, the physiological role of GWD1 is unclear and it
remains to be tested whether the starch granule affinity of the
oxidized form (Mikkelsen et al., 2005) can have a protective
role, perhaps during severe stress conditions as mentioned
above.

Another possibility to test redox regulation in vivo is to
study mutants of regulatory proteins, especially Trxs, NTRC.
However, since both Trxs and NTRC have multiple targets
(Cejudo et al., 2012; Pérez-Pérez et al., 2017), results obtained
by this approach should be interpreted with caution because
of pleiotropic effects. The Arabidopsis genome codes for five
classes of plastidial Trxs (f, m, x, y, z), each including one (x,
z) or more isoforms (f1, f2; m1, m2, m3, m4; y1, y2) (Meyer
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et al., 2006). Trxs m1, m2, m4, and f1 are more abundant
and, among the 10 isoforms overall, constitute about 90% of
the protein content (Okegawa and Motohashi, 2015). In vitro,
different Trxs have different redox potentials and are reduced
by FTR with different efficiency (Yoshida and Hisabori, 2017).
In vivo, these Trxs are more reduced in the light than in
the dark, with differences among isoforms (Yoshida et al.,
2014).

Single knockout mutants for Trx f1 in Arabidopsis, did not
show any visible defect in growth or photosynthetic performance,
but accumulated less leaf starch and showed a lower activation
state of AGPase (Thormählen et al., 2013). Tobacco plants
that overexpress Trx f conversely accumulate large amounts of
starch in chloroplasts, and make more leaf biomass, although
the redox state of AGPase was not affected (Sanz-Barrio et al.,
2013). Intriguingly, NTRC overexpression also has a positive
effect on growth of Arabidopsis plants and accumulated more
starch in leaves (Toivola et al., 2013; Nikkanen et al., 2016).
NTRC has been demonstrated to promote starch accumulation
in response to light or external sucrose treatment via redox-
dependent AGPase activation (Michalska et al., 2009). Similar
to trx f1 plants, double trxf1-f2 mutants also accumulated less
starch at the end of the day but, different from trx f1 plants,
also showed more general phenotypic defects including growth
retardation in short-day photoperiods and lower photosynthetic
transport rates (Naranjo et al., 2016; Ojeda et al., 2017). Low levels
of starch were also found in ntrc and in trx x single mutants
(Ojeda et al., 2017), although Arabidopsis AGPase is efficiently
activated by NTRC but not as much by Trx x (Thormählen et al.,
2013). Overall, a scenario seems to emerge in which the level of
redox regulatory proteins like Trx f, Trx x, and NTRC correlate
with the amount of transitory starch and, in some cases, with
growth. Combinations of double and triple mutants like ntrc-
trx x and ntrc-trxf1-f2 confirm the trend since plants impaired in
these redox regulatory proteins tend to store less starch in leaves
(Ojeda et al., 2017). However, additional effects such as severe
growth inhibition, perturbed light acclimation, and impairment
of Calvin–Benson cycle activity prevents a simple interpretation
of these results.

The complexity of redox regulatory systems was nicely
demonstrated by the suppressed growth phenotype of ntrc
mutants by simultaneous knocking out two 2-Cys peroxiredoxins
(2CP, thiol peroxidases involved in antioxidant defense and
redox signaling, Pérez-Ruiz et al., 2017). It was proposed
that in chloroplasts of wild type plants NTRC is especially
involved in reducing 2CP and thus H2O2, while typical Trxs
are reduced by FTR to keep the Calvin–Benson cycle activated
in the light. The growth defect of ntrc mutant is explained
by the capacity of 2CP, in the absence of NTRC, to drain
electrons from the Trx pool, thereby causing an indirect
downregulation of the Calvin–Benson cycle. Abolishing the
electron withdrawal by additional knocking out the 2CPs
restores the capacity of FTR-reduced Trxs to activate the
Calvin–Benson cycle and thereby growth (Pérez-Ruiz et al.,
2017). Clearly, phenotypes of knockout mutants of redox
regulatory proteins (like ntrc) must be interpreted with
care.

TRANSITORY STARCH RE-CYCLING:
THE CURRENT DEBATE ON
SIMULTANEOUS BIOSYNTHESIS AND
DEGRADATION OF STARCH IN THE
LIGHT

In the last two decades the pathway of transitory starch
breakdown has been deeply detailed (Yu et al., 2001; Ritte et al.,
2002; Niittylä et al., 2004; Fulton et al., 2008; Kötting et al., 2009).
The widely accepted model describes a night-active pathway
for starch degradation to balance the lack of triose phosphates
from the Calvin–Benson cycle. Accordingly, starch behaves as
a carbon buffer to fuel plant metabolism and growth when
photosynthesis is inactive (Zeeman et al., 2010; Stitt and Zeeman,
2012). However, there is support for the existence of starch
degradation in illuminated leaves both in the absence (Stitt and
Heldt, 1981; Baslam et al., 2017; Fernandez et al., 2017) and in the
presence (Valerio et al., 2011; Feike et al., 2016; Thalmann et al.,
2016; Zanella et al., 2016) of stress.

There is a general agreement that stresses ranging from
increased photorespiratory rate to more severe osmotic stress,
trigger leaf starch degradation in light (Lu et al., 2005; Weise
et al., 2006; Valerio et al., 2011; Prasch et al., 2015; Thalmann
et al., 2016; Zanella et al., 2016). In relation to redox regulation,
it is worth mentioning that degradative enzymes can also
be reductively activated. At first sight, reductive activation of
enzymes involved in starch degradation is counterintuitive since
such degradation would interfere with active starch accumulation
during the day and loss of activity during the night-time.
Nevertheless, starch degradation has actually been shown to
take place simultaneously with starch synthesis under long day
conditions (Fernandez et al., 2017). Starch degradation during
the day can also play a physiological role under certain stress
conditions as demonstrated for AtBAM1 being active upon
osmotic stress (Valerio et al., 2011) and AtAMY3 showing
increased expression after cold shock. Additionally, starch
accumulation was elevated in mutants lacking AMY3 (Seung
et al., 2013). Another option is a spatial separation of starch
degradation which was demonstrated for guard cells where starch
degradation by the BAM1 sustains stomata opening (Valerio
et al., 2011; Santelia et al., 2015). Ability of some redox-sensitive
targets to be activated by NTRC, which takes the reducing
power from the light-independent oxidative pentose phosphate
pathway, can provide a reductive activation of starch degrading
enzymes in the night.

To what extent diurnal starch degradation contributes to
starch turnover in the light is still debated. Two very recent
studies have demonstrated active diurnal starch degradation in
plants exposed to continuous light (Baslam et al., 2017; Fernandez
et al., 2017). One study (Fernandez et al., 2017) proposes that
diurnal starch degradation only occurs late in the day (over
14 h from dawn) following the classical pathway illustrated
in Figure 1. A second model (Baslam et al., 2017) proposes
extensive starch degradation in the light based on a carbon
cycle around ADP-glucose (Baroja-Fernández et al., 2004; Baslam
et al., 2017). Accordingly, export of triose phosphate to the
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cytosol would result in the production of ADP-glucose through
the activity of sucrose synthase (Baroja-Fernández et al., 2004;
Baslam et al., 2017) that could enter the chloroplast (Pozueta-
Romero et al., 1991), be converted into starch, and be degraded
to sustain plant growth even in the light (Baslam et al., 2017).
Although intriguing, the main obstacle to this model is that the
role of chloroplastic AGPase in the synthesis of starch would
be marginal and the strong defective phenotype of the AGPase
mutant difficult to explain (Lin et al., 1988a,b; Wang et al., 1997,
1998).

FUTURE DIRECTIONS

Although significant advances in the understanding of redox
regulation of starch metabolism have been made, many
questions still remain open. Especially, much research has
been conducted on the redox response of chloroplastic
enzymes since transitory starch is a major product of leaf
photosynthesis through the Calvin–Benson cycle suggested to
be strictly redox-regulated (Michelet et al., 2013). Transitory
starch metabolism changes dramatically under light or dark
conditions, and this behavior may link diel starch metabolism
to the light-dependent redox state of chloroplast thioredoxins
in vivo (Yoshida et al., 2014). Emerging evidence supports
the view that starch accumulation in illuminated leaves is
positively correlated with the reduced state of the starch
biosynthetic enzyme AGPase and, in general, with the capacity
of the redox regulatory machinery (see section “Emerging
Evidence of Redox Regulation of Transitory Starch Metabolism
in vivo”). However, evidence for the physiological relevance
of the redox sensitivity of many starch metabolic enzymes
is still incomplete and stronger biochemical evidence is
required.

In vivo studies have clearly demonstrated the relevance of
redox regulation for starch metabolism through reverse genetic
approaches on redox regulatory proteins (trx f1, Thormählen
et al., 2013; trx f1-f2, Naranjo et al., 2016; ntrc and trx x;
Ojeda et al., 2017). Although the analysis of knock out mutants
has greatly contributed to the discovery of starch synthesis
and degradation pathways, this approach is limited since
thioredoxins and NTRC have several targets which complicates
the interpretation of data.

Mutating specific cysteines responsible for the redox
regulation of metabolic enzymes appears as a more promising
approach to directly deduce the mechanisms of regulation
(Hädrich et al., 2012; Skeffington et al., 2014; Skryhan et al.,
2015). The introduction of genome editing opens an exciting
scenario since this method allows direct modification of genes
of interest, avoiding additional genetic variations. However, any
attempt to precisely modify a DNA coding sequence in vivo will
require deeper biochemical in vitro knowledge of the structure
and behavior of the coded protein.

Hence, combinatorial approaches would be required shed new
light on the importance of redox regulation in starch metabolism.
Such information is urgently required considering that starch is
fundamental component of food, feed, and future materials like
bioplastics. Efficient agro-production to feed the doubling world
population in 2050 and to solve fundamental environmental
issues like plastics pollution requires stress-tolerant and robust
starch crops. Controlling redox modulation of starch crops is a
central point for maximizing crop efficiency in a future changing
climate.
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