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Abstract Neutral pion and η meson invariant differential
yields were measured in non-single diffractive p–Pb colli-
sions at

√
sNN = 5.02 TeV with the ALICE experiment at

the CERN LHC. The analysis combines results from three
complementary photon measurements, utilizing the PHOS
and EMCal calorimeters and the Photon Conversion Method.
The invariant differential yields of π0 and η meson inclu-
sive production are measured near mid-rapidity in a broad
transverse momentum range of 0.3 < pT < 20 GeV/c and
0.7 < pT < 20 GeV/c, respectively. The measured η/π0

ratio increases with pT and saturates for pT > 4 GeV/c at
0.483 ± 0.015stat ± 0.015sys. A deviation from mT scaling
is observed for pT < 2 GeV/c. The measured η/π0 ratio is
consistent with previous measurements from proton-nucleus
and pp collisions over the full pT range. The measured η/π0

ratio at high pT also agrees within uncertainties with measure-
ments from nucleus–nucleus collisions. The π0 and η yields
in p–Pb relative to the scaled pp interpolated reference, RpPb,
are presented for 0.3 < pT < 20 GeV/c and 0.7 < pT < 20
GeV/c, respectively. The results are compared with theoreti-
cal model calculations. The values of RpPb are consistent with
unity for transverse momenta above 2 GeV/c. These results
support the interpretation that the suppressed yield of neutral
mesons measured in Pb–Pb collisions at LHC energies is due
to parton energy loss in the hot QCD medium.

1 Introduction

Proton-nucleus (pA) collisions are an important tool for the
study of strongly interacting matter and the Quark–Gluon
Plasma (QGP), complementing and extending measurements
carried out with high energy collisions of heavy nuclei [1].
By using a proton instead of a heavy nucleus as one of the
projectiles, measurements of pA collisions have unique sen-
sitivity to the initial-state nuclear wave function, and can

See Appendix B for the list of collaboration members
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elucidate the effects of cold nuclear matter on a wide range
of observables of the QGP [2,3].

Measurements of inclusive distributions of hadrons at
mid-rapidity at the LHC probe parton fractional momentum
x in the range 10−4 < x < 10−2, where nuclear modi-
fication to hadronic structure is expected to be sizable [2].
This range extends an order of magnitude smaller in x with
respect to other colliders. Inclusive hadron measurements
are also essential to constrain theoretical models of particle
production ([4] and references therein).

Within the framework of collinearly-factorized pertur-
bative QCD (pQCD), effects of the nuclear environment
are parameterized using nuclear-modified parton distribu-
tion functions (nPDFs) [5–10], which have been determined
from global fits at next-to-leading order (NLO) to data from
deep inelastic scattering (DIS), Drell–Yan, and π0 produc-
tion. Inclusive hadron measurements at the LHC provide new
constraints on gluon nPDFs [5,9,11], and the flavor depen-
dence of sea-quark nPDFs [12]. Hadron production measure-
ments at the LHC are likewise needed to improve constraints
on fragmentation functions (FFs) [13–15].

An alternative approach to the theoretical description of
hadronic structure is the Color Glass Condensate (CGC) [16],
an effective theory for the nuclear environment at low x
where the gluon density is high and non-linear processes are
expected to play a significant role. CGC-based calculations
successfully describe measurements of particle multiplicities
and inclusive hadron production at high pT in pp, d−Au and
p–Pb collisions at RHIC and at the LHC [17–19]. CGC cal-
culations, with parameters fixed by fitting to DIS data, have
been compared to particle distributions at hadron colliders,
thereby testing the universality of the CGC description [19].
Additional measurements of inclusive hadron production at
the LHC will provide new constraints on CGC calculations,
and help to refine this theoretical approach.

Recent measurements of p–Pb collisions at the LHC indi-
cate the presence of collective effects in such systems, which
influence inclusive hadron distributions [3,20–25]. Detailed
study of identified particle spectra over a broad pT range can
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constrain theoretical models incorporating such effects. For
example, the EPOS3 model [26] requires the inclusion of col-
lective radial flow in p–Pb collisions to successfully describe
the pT spectrum of charged pions, kaons, protons, � and �

baryons [27,28]. Tests of this model with neutral pions and η

mesons will provide additional constraints to this approach.
The shape of the invariant production cross section of var-

ious hadron species in pp collisions can be approximated by
a universal function of mT = √

p2
T + M2 (“mT scaling”) [29]

where M is the hadron mass. This scaling has been tested
with many different collision energies and systems [30–32],
and is commonly utilized to calculate hadronic distributions
in the absence of measurements. Violation of mT scaling at
low pT in pp collisions at the LHC has been observed for π0

and η mesons at
√
s = 7 TeV [33], and at

√
s = 8 TeV [34];

this may arise from collective radial flow that is indicated in
pp collisions for

√
s > 0.9 TeV [35]. However, a deviation

from mT scaling at very low pT has also been observed in pA
collisions at

√
sNN = 29.1 GeV [36], where it was attributed

to enhanced low pT pion production from resonance decays.
The simultaneous measurement of π0 and η mesons over a
broad pT range is therefore important to explore the validity
of mT scaling in pA collisions. Precise measurements of π0

and η mesons at low pT also provide an experimental deter-
mination of the background for measurements of dilepton
and direct photon production [37,38].

Strong suppression of inclusive hadron yields at high pT

has been observed in heavy-ion collisions at RHIC [39–44]
and the LHC [45–49]. This suppression arises from partonic
energy loss in the QGP [50–53]. Measurements of p–Pb col-
lisions, in which the generation of a QGP over a large volume
is not expected, provide an important reference to help dis-
entangle initial and final-state effects for such observables
[3,54,55]. Suppression of inclusive hadron production is
quantified by measuring RpA, the relative rate of inclusive pro-
duction in pA compared to pp, scaled to account for nuclear
geometry. Measurements at RHIC and at the LHC report
RpA consistent with unity for pT > 2 GeV/c [27,28,56–61].
Additional, precise measurements of the inclusive hadron
production in p–Pb collisions will provide a new test of this
picture.

This paper presents the measurement of π0 and η pT dif-
ferential invariant yields, together with the η/π0 ratio in non-
single diffractive (NSD) p–Pb collisions at

√
sNN = 5.02 TeV.

The measurement covers a range of |ylab| < 0.8, where ylab

is the rapidity in the laboratory reference frame. The mea-
sured π0 spectrum is corrected for secondary neutral pions
from weak decays. The inclusive π0 and η yield suppres-
sion (RpPb) is determined using a pp reference that was
obtained by interpolating previous measurements by the
ALICE experiment of π0 and η meson production in pp
collisions at

√
s = 2.76 TeV [47,62], at 7 TeV [33], and at

8 TeV [34]. The results are compared to theoretical models

incorporating different approaches, including viscous hydro-
dynamics, pQCD at NLO with nuclear-modified PDFs, and
a color glass condensate model, as well as commonly used
heavy-ion event generators.

The paper is organized as follows: the detectors relevant
for this analysis are described in Sect. 2; details of the event
selection are given in Sect. 3; photon and neutral meson
reconstruction, the systematic uncertainties as well as the
calculation of the pp reference for the nuclear modification
factor are explained in Sect. 4; the results and comparisons
to the theoretical models are given in Sect. 5 followed by the
conclusions in Sect. 6.

2 Detector description

A comprehensive description of the ALICE experiment and
its performance is provided in Refs. [63,64]. The π0 and η

mesons were measured via their two-photon decay channels
π0 → γ γ and η → γ γ (branching ratio BR = 98.823 ±
0.034% and 39.41 ± 0.20%, respectively), and in case of the
π0 also via the Dalitz decay channel π0 → γ ∗γ → e+e−γ

(BR = 1.174 ± 0.035%) including a virtual photon γ ∗ [65].
Photon reconstruction was performed in three different ways,
using the electromagnetic calorimeters, the Photon Spec-
trometer (PHOS) [66] and the Electromagnetic Calorimeter
(EMCal) [67], and the photon conversion method (PCM).
The PCM used converted e+e− pairs reconstructed using
charged tracks measured in the Inner Tracking System (ITS)
[68] and the Time Projection Chamber (TPC) [69]. Each
method of photon and neutral meson reconstruction has its
own advantages, specifically the wide acceptance and good
momentum resolution of PCM at low pT, and the higher pT

reach of the calorimeters [33,47,62,70]. The combination of
the different analysis methods provides independent cross-
checks of the results, a broader pT range of the measurement,
and reduced systematic and statistical uncertainties.

The PHOS [66] is a fine-granularity lead tungstate elec-
tromagnetic calorimeter that covers |ηlab| < 0.12 in the
lab-frame pseudorapidity and 260◦ < ϕ < 320◦ in azimuth
angle. During the LHC Run 1 it consisted of three mod-
ules at a radial distance of 4.6 m from the ALICE inter-
action point. The PHOS modules are rectangular matrices
segmented into 64 × 56 square cells of 2.2 × 2.2 cm2 trans-
verse size. The energy resolution of the PHOS is σE/E =
1.8%/E ⊕ 3.3%/

√
E ⊕ 1.1%, with E in units of GeV. The

EMCal [67] is a lead-scintillator sampling electromagnetic
calorimeter. During the period in which the analyzed dataset
was collected, the EMCal consisted of 10 modules installed
at a radial distance of 4.28 m with an aperture of |ηlab| < 0.7
and 80◦ < ϕ < 180◦. The energy resolution of the EMCal
is σE/E = 4.8%/E ⊕ 11.3%/

√
E ⊕ 1.7% with energy E

in units of GeV. The EMCal modules are subdivided into
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24 × 48 cells of 6 × 6 cm2 transverse size. The material bud-
get of the active volumes of both calorimeters is about 20
radiation lenghts (X0). The amount of material of the inner
detectors between the interaction point and the calorimeters
is about 0.2 X0 for PHOS and ranges between 0.55 X0 to
0.8 X0 for EMCal, depending on the module. The relative
cell energy calibration of both calorimeters was obtained by
equalization of the π0 peak position reconstructed in each
cell with high-luminosity pp collisions.

The Inner Tracking System (ITS) consists of six layers of
silicon detectors and is located directly around the interac-
tion point, covering full azimuth. The two innermost layers
consist of Silicon Pixel Detectors (SPD) positioned at radial
distances of 3.9 and 7.6 cm, followed by two layers of Silicon
Drift Detectors (SDD) at 15.0 and 23.9 cm, and two layers of
Silicon Strip Detectors (SSD) at 38.0 and 43.0 cm. While the
two SPD layers cover |ηlab| < 2 and |ηlab| < 1.4, respectively,
the SDD and the SSD subtend |ηlab| < 0.9 and |ηlab| < 1.0,
respectively. The Time Projection Chamber (TPC) is a large
(≈ 85 m3) cylindrical drift detector filled with a Ne/CO2

(90/10%) gas mixture. It covers |ηlab| < 0.9 over the full
azimuth angle, with a maximum of 159 reconstructed space
points along the track path. The TPC provides particle iden-
tification via the measurement of the specific energy loss
(dE/dx) with a resolution of 5.5%. The material thickness
in the range R < 180 cm and |ηlab| < 0.9 amounts to (11.4
± 0.5)% of X0, corresponding to a conversion probability of
(8.6 ± 0.4)% for high photon energies [64]. Two arrays of
32-plastic scintillators, located at 2.8 < ηlab < 5.1 (V0A)
and −3.7 < ηlab < −1.7 (V0C), are used for triggering [71].

3 Event selection

The results reported here use data recorded in 2013 during
the LHC p–Pb run at

√
sNN = 5.02 TeV. Due to the 2-in-1 mag-

net design of the LHC [72], which requires the same mag-
netic rigidity for both colliding beams, the nucleon-nucleon
center-of-mass system was moving with yNN = 0.465 in the
direction of proton beam. About 108 p–Pb collisions were
recorded using a minimum-bias (MB) trigger, which corre-
sponds to an integrated luminosity of 50 μb−1. The ALICE
MB trigger required a coincident signal in both the V0A and
the V0C detectors to reduce the contamination from single
diffractive and electromagnetic interactions [73].

The primary vertex of the collision was determined using
tracks reconstructed in the TPC and ITS as described in
detail in Ref. [64]. From the triggered events, only events
with a reconstructed vertex (∼98.5%) were considered for
the analyses. Additionally, the z-position of the vertex was
required to be within ±10 cm with respect to the nominal
interaction point. The event sample selected by the above-
mentioned criteria mainly consisted of non-single diffractive

(NSD) collisions. The neutral meson yields were normalized
per NSD collision, which was determined from the number
of MB events divided by the correction factor 96.4%±3.1%
to account for the trigger and vertex reconstruction efficiency
[61,73]. This correction factor was determined using a com-
bination of different event generators and taking into account
the type of collisions used in the analyses. This correction is
based on the assumption that non-triggered events contain
no neutral mesons at mid-rapidity; see Ref. [73] for details.

Pile-up events from the triggered bunch crossing, which
have more than one p–Pb interaction in the triggered events,
were rejected by identifying multiple collision vertices
reconstructed by the SPD detector. The fraction of such pile-
up events in the analyzed data sample was at the level of
0.3%.

4 Data analysis

4.1 Photon and primary electron reconstruction

Photons and electrons hitting the PHOS or the EMCal pro-
duce electromagnetic showers which deposit energy in mul-
tiple cells. Adjacent fired cells with energies above Emin

cell
were grouped together into clusters. Noisy and dead chan-
nels were removed from the analysis prior to clusterization.
The clusterization process started from cells with an energy
exceeding Eseed. The choice of the values of Eseed and Emin

cell
was driven by the energy deposited by a minimum ionizing
particle, the energy resolution, noise of the electronics, and
optimizing the signal to background ratio of meson candi-
dates. For PHOS, Eseed = 50 MeV and Emin

cell = 15 MeV
were chosen. The corresponding thresholds for EMCal were
Eseed = 500 MeV and Emin

cell = 100 MeV. The photon recon-
struction algorithm in PHOS separates the clusters produced
by overlapping showers from close particle hits, via a clus-
ter unfolding procedure. Due to a low hit occupancy in the
calorimeters in p–Pb collisions, relatively loose selection cri-
teria were applied for clusters to maximize the neutral meson
reconstruction efficiency and minimize systematic uncertain-
ties from photon identification criteria. The minimum num-
ber of cells in a cluster was set to three and two for PHOS and
EMCal, respectively, to reduce contributions of non-photonic
clusters and noise. Consequently, the energy threshold for
PHOS and EMCal clusters was set to 0.3 and 0.7 GeV,
respectively.

Apart from the cluster selection criteria described above,
additional detector-specific criteria were applied in the PHOS
and EMCal analyses to increase the purity and signal to
background ratio of the photon sample. The EMCal clus-
ters were selected in |ηlab| < 0.67 and 80◦ < ϕ < 180◦,
which is the full EMCal acceptance during the LHC Run
1 p–Pb run. In the EMCal analysis, the purity of the pho-
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ton sample was enhanced by rejecting charged tracks recon-
structed in the TPC that are matched to a cluster in the EMCal.
The matching criteria, based on the distance between the
track and the cluster in η and ϕ, depend on the track pT

to maximize purity at low pT and statistics at high pT. The
purity is further enhanced by requirements on the squared
major axis of the cluster shape σ 2

long calculated as the prin-
ciple eigenvalue of the cluster covariance matrix si j via

σ 2
long = (sηη + sϕϕ)/2 +

√
(sηη − sϕϕ)2/4 + s2

ηϕ where

si j = 〈i j〉 − 〈i〉〈 j〉 are the covariance matrix elements,
i, j are cell indices in η or ϕ axes respectively, 〈i j〉 and
〈i〉, 〈 j〉 are the second and the first moments of the clus-
ter cells weighted with the cell energy logarithm [62,74].
Photon clusters in EMCal and PHOS were defined by the
condition 0.1 < σ 2

long < 0.5 and σ 2
long > 0.2, respectively,

which selected clusters with axial symmetry.
In addition to these requirements, a selection criterion on

cluster timing was applied in order to exclude clusters from
other bunch crossings. Since the minimum interval between
colliding bunches was 200 ns, |t | < 100 ns had to be fulfilled
for PHOS. For EMCal the cell time of the leading cell of the
cluster was required to be within |t | < 50 ns of the time of
the triggered bunch crossing.

Photons converted into e+e− pairs were reconstructed
with a secondary-vertex algorithm that searches for
oppositely-charged track pairs originating from a common
vertex, referred to as V0 [64]. Three different types of selec-
tion criteria were applied for the photon reconstruction:
requirements on the charged track quality, particle identi-
fication criteria for electron selection and pion rejection, and
requirements on the V0 sample that exploit the specific topol-
ogy of a photon conversion. Details of the PCM analysis and
the selection criteria are described in Refs. [33,47]. Electron
identification and pion rejection were performed by using
the specific energy loss dE/dx in the TPC. Detailed require-
ments are listed in Table 1, where nσe and nσπ are deviations
of dE/dx from the electron and pion expectation expressed
in units of the standard deviation σe and σπ , respectively. In
comparison to the previous analyses of the γ γ decay channel
(PCM − γ γ ) [33,47], the converted photon topology selec-
tion criteria were slightly modified to further increase the
purity of the photon sample. The constant selection crite-
rion on the e± transverse momentum with respect to the V0

momentum, qT, was replaced by a two-dimensional selec-
tion in the (α,qT) distribution, known as the Armenteros–
Podolanski plot [75], where α is the longitudinal momen-
tum asymmetry of positive and negative tracks, defined as
α = (p+

L − p−
L )/(p+

L + p−
L ). The fixed selection criterion

on the reduced χ2 of the converted photon fit to the recon-
structed V0 was changed to the ψpair-dependent χ2 selec-
tion, where ψpair is the angle between the plane that is per-
pendicular to the magnetic field (x–y plane) and the plane

defined by the opening angle of the pair [76]. It is defined as

ψpair = arcsin
(

θ
ξpair

)
, where θ is the polar angle difference

between electron and positron tracks, θ = θ(e+) − θ(e−),
and ξpair is the total opening angle between them. For con-
verted photons with vanishing opening angle between the
e+e− pair the ψpair distribution is peaked at zero, while
it has larger or random values for virtual photons of the
Dalitz decay or combinatorial background, respectively. The
applied selection criteria on the converted photon for the
PCM-γ γ and PCM-γ ∗γ decay channels are summarized in
Table 1.

Virtual photons (γ ∗) of the Dalitz decays were recon-
structed from primary electrons and positrons with the ITS
and the TPC for transverse momenta pT > 0.125 GeV/c.
Tracks were required to cross at least 70 TPC pad rows,
with the number of TPC clusters to be at least 80% of the
number expected from the geometry of the track’s trajec-
tory in the detector. Track selection was based on χ2 of
the ITS and TPC clusters fit to the track. To ensure that the
selected tracks came from the primary vertex, their distance
of closest approach to the primary vertex in the longitudinal
direction (DCAz) was required to be smaller than 2 cm and
DCAxy < 0.0182 cm + 0.0350 cm/p1.01

T in the transverse
plane with pT given in GeV/c which correspond to a 7 σ

selection [64]. In addition, in order to minimize the contri-
bution from photon conversions in the beam pipe and part of
the SPD, only tracks with at least one hit in any layer of the
SPD were accepted. Electrons were identified by the TPC
dE/dx by requiring that tracks fall within −4 < nσe < 5 of
the electron hypothesis. For the pion rejection at intermedi-
ate pT the same nσπ selection as described for the conversion
electron tracks was used while at high pT the selection was
not applied, to increase the efficiency.

For the neutral meson reconstruction via the Dalitz decay
channel a γ ∗ is constructed from the primary e+e− pairs
and is treated as real γ in the analysis, except with non-zero
mass. The pion contamination in the primary electron sample
was reduced by constraints on the γ ∗ invariant mass (Mγ ∗ <

0.015 GeV/c2 at pT < 1 GeV/c and Mγ ∗ < 0.035 GeV/c2 at
pT > 1 GeV/c) exploiting that most of the γ ∗ from π0 Dalitz
decays have a very small invariant mass, as given by the
Kroll–Wada formula [77]. Contamination of the γ ∗ sample
by γ conversions was suppressed by requiring the primary
e+e− pairs to satisfy |ψpair| < 0.6 − 5ϕ and 0 < ϕ <

0.12, where ϕ = ϕ(e+) − ϕ(e−) is the difference between
electron and positron azimuth angles.

4.2 Meson reconstruction

The π0 and η meson reconstruction was done by pairing γ γ

or γ ∗γ candidates and calculating their invariant mass in
transverse momentum intervals. For simplicity, the notation
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Table 1 Selection criteria of the converted photon reconstruction with PCM for the two-photon (PCM − γ γ ) and the Dalitz decay channel
(PCM − γ ∗γ )

PCM − γ γ PCM − γ ∗γ

Track reconstruction

e± track pT pT > 0.05 GeV/c pT > 0.05 GeV/c

e± track η |ηlab| < 0.9 |ηlab| < 0.9

Nclusters/Nfindable clusters > 60% > 60%

Conversion radius 5 < Rconv < 180 cm 5 < Rconv < 180 cm

Track identification

nσe TPC −4 < nσe < 5 −4 < nσe < 5

nσπ TPC nσπ > 1 at 0.4 < p < 100 GeV/c nσπ > 2 at 0.5 < p < 3.5 GeV/c

nσπ > 0.5 at p > 3.5 GeV/c

Conversion γ topology

qT qT < 0.05
√

1 − (α/0.95)2 GeV/c qT < 0.15 GeV/c

Photon fit quality χ2
max = 30 χ2

max = 30

ψpair |ψpair| < 0.1 (1 − χ2/χ2
max) —

PCM-EMC will stand for the method with one photon recon-
structed via PCM and the second photon reconstructed in
EMCal. PCM, EMC and PHOS refer to the methods with both
photons reconstructed by the same methods. PCM-γ ∗γ is the
method of meson reconstruction via the Dalitz decay chan-
nel. In total, five different measurements (PCM, PCM-γ ∗γ ,
EMC, PCM-EMC and PHOS) were done for the π0 meson
and three different ones (PCM, EMC and PCM-EMC) for the
η meson. The reconstruction of η mesons is not accessible by
PHOS due to the limited detector acceptance and the wider
opening angle of the decay photons compared to the π0.

Examples of invariant mass distributions are shown in
Figs. 1 and 2 for selected pT intervals for π0 and η mesons,
respectively. The combinatorial background, estimated using
the event mixing technique [78], was scaled to match the
background outside the signal region and subtracted from
the total signal. The shape of the combinatorial background
was optimized by mixing events within classes of similar
primary vertex position and for all methods except PHOS
also similar photon multiplicity. In case of the EMC analy-
sis a minimal opening angle selection between the two pho-
tons of 17 mrad between the cluster seed cells was applied,
which corresponds to 1 cell diagonal at mid rapidity, in order
to provide a good event mixed background description. For
PCM and PCM-EMC an opening angle selection of 5 mrad
was applied. The background-subtracted signal was fitted to
reconstruct the mass position (Mπ0,η) and width of the π0

and η mesons. In case of the PCM, PCM-γ ∗γ , EMC, and
PCM-EMC analyses, the fit function consisted of a Gaussian
function convolved with an exponential low-energy tail to
account for electron bremsstrahlung [79] and an additional
linear function to take into account any residual background.
For the PHOS analysis a Gaussian function was used.

The reconstructed π0 and η meson peak position and
width versus pT compared to GEANT3 [80] simulations are
shown in Figs. 3 and 4, respectively. The reconstructed meson
mass peak position and width for each method are in good
agreement for data and MC. The π0 and η meson peak posi-
tion for EMC and PCM-EMC was not calibrated to the abso-
lute meson mass, but the cluster energy in MC was corrected
by a pT dependent correction factor such that the π0 mass
peak positions in data and MC match within 0.4% for EMC
and 0.5% for PCM-EMC. The cluster energy correction fac-
tor was calculated with π0 mesons reconstructed with the
PCM-EMC method where the energy resolution of converted
photons is much better than the one of real photons detected
in EMC. Deviations of the MC π0 peak position with respect
to the measured one in data were fully assigned to the EMC
cluster energy. The π0 mass peak positions in PHOS were
also tuned in MC to achieve a good agreement with data,
which was done with a cluster energy correction.

The π0 and η raw yields were obtained by integrating
the background-subtracted γ γ or γ ∗γ invariant mass dis-
tribution. The integration window around the reconstructed
peak of the meson mass was determined by the fit function.
The integration ranges, as shown in Table 2, were selected
according to the resolution of respective methods.

The raw π0 and η meson yields were corrected for sec-
ondaryπ0 mesons, reconstruction efficiency, and acceptance,
to obtain the invariant differential yield [33,47,62]. The sec-
ondary π0 mesons from weak decays or hadronic interactions
in the ALICE detector were subtracted by estimating the con-
tribution in a cocktail simulation, using measured spectra of
relevant particles as input. The K0

S meson is the largest source
of secondary π0 mesons, followed by hadronic interactions.
The contamination from secondaries is largest for low pT and
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Fig. 1 The diphoton invariant mass distributions around the π0 mass
for selected intervals in pT, without and with combinatorial background
for each of the five measurements: PHOS, EMC, PCM, PCM-γ ∗γ , and

PCM-EMC. The vertical lines correspond to the limits of the region
used to compute the integration of the meson signal
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Fig. 2 The diphoton invariant mass distribution around the η mass for
selected intervals in pT, without and with combinatorial background
for each of the three measurements: EMC, PCM, and PCM-EMC. The

vertical lines correspond to the limits of the region used to compute the
integration of the meson signal

then steeply decreases with pT. This correction is of the order
of 8.5, 4.4, 2.8, 7% at the corresponding lowest pT and 1.4,
2.4, < 1, < 1 % at high pT, for PHOS, EMC, PCM-EMC and
PCM, respectively, and negligible for PCM−γ ∗γ . The PCM
analysis is affected by events from bunch crossings other
than the triggered one, referred to as out-of-bunch pile-up.
In the PCM analysis a correction was applied, as described
in Ref. [47], that is of the order of 10% for the lowest pT bin
and sharply declines to about 2% for high pT. The out-of-
bunch pile-up contribution in PHOS, EMC and PCM-EMC is
removed by time cuts. The PCM−γ ∗γ analysis used Monte
Carlo simulations to apply an additional correction for the
remaining contamination (∼ 2.5%) of the π0 → γ γ in the
π0 → γ ∗γ decay channel. Furthermore, raw π0 and η meson

yield were corrected for acceptance and reconstruction effi-
ciency using GEANT3 simulations with HIJING [81] (PCM
and PCM − γ ∗γ ) or DPMJET [82] (PHOS, EMC, PCM and
PCM-EMC) as Monte Carlo event generators. The product of
acceptance and efficiency was calculated in each pT bin and
normalized to unit rapidity and full azimuth angle ϕ = 2π .
A typical value of the acceptance × efficiency varies from a
few percent to few tens of percent, depending on pT and on
the reconstruction method.

4.3 Systematic uncertainties

The systematic uncertainties of the π0 and η invariant differ-
ential yields were evaluated as a function of pT by repeating
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(a)

(b)

Fig. 3 Reconstructedπ0 mass width (top) and position (bottom) versus
pT for data and Monte Carlo simulation for all five methods

(a)

(b)

Fig. 4 Reconstructed η mass width (top) and position (bottom) versus
pT for data and Monte Carlo simulation for PCM, EMC and PCM-EMC

Table 2 Integration windows for the π0 and η meson invariant mass
distributions, where Mπ0 and Mη are the reconstructed mass positions
from the fit, and M is the nominal mass of the respective meson

M − Mπ0 (GeV/c2) M − Mη (GeV/c2)

PHOS [− 3σ,+ 3σ ]
EMC [− 0.05,+ 0.04] [− 0.08,+0.08]
PCM [− 0.035,+ 0.01] [− 0.048,+ 0.022]
PCM − γ ∗γ [− 0.035,+ 0.01]
PCM-EMC [− 0.032,+ 0.022] [− 0.06,+ 0.055]

the analysis for variations on the selection criteria. The mag-
nitude of the systematic uncertainty for each set of variations
is quantified by the average of the largest significant positive
and negative deviations, and is parametrized by a low order
polynomial function to remove the statistical fluctuations.
Tables 3 and 4 show all the sources of systematic uncer-
tainties and their magnitude in two representative pT bins
for π0 and η mesons, respectively. All contributions to the
total systematic uncertainties within a given reconstruction
method are considered to be independent and were added
in quadrature. The systematic uncertainties of the η/π0 ratio
were evaluated independently such that correlated uncertain-
ties cancel out. All the sources to the total systematic uncer-
tainty are briefly discussed in the following.

For each reconstruction method the material budget is a
major source of systematic uncertainty. For the calorimeters
the uncertainty comes from material in front of the PHOS and
EMCal, resulting in 3.5% for PHOS and 4.2% for EMC. For
the other methods, the material budget reflects the uncertainty
in the conversion probability of photons [64], adding 4.5%
uncertainty for a reconstructed conversion photon.

The yield extraction uncertainty is due to the choice of
integration window of the invariant mass distributions. The
integration window is varied to smaller and larger widths to
estimate the error. The yield extraction uncertainty for the
π0 meson for the different methods is ∼ 2%, while for the η

meson it increases to ∼ 5%. The yield extraction uncertainty
for PHOS is estimated by using the Crystal Ball function
instead of a Gaussian to extract the yields, resulting in a
contribution to the total systematic uncertainty of 2.2% for
low pT and 2.5% for higher pT.

The PCM γ reconstruction uncertainty is estimated by
varying the photon quality and Armenteros–Podolanski
selection criteria. For PCM it is 0.9% at low pT and increases
to 3% for high pT. The uncertainty on the identification of
conversion daughters in PCM is done by varying the TPC PID
selection criteria. For PCM it is 0.8% at low pT and increases
to 2.4% for high pT, and for PCM −γ ∗γ it is 2.7% at low pT

and decreases to 2.3% for high pT. The track reconstruction
uncertainty is estimated by varying the TPC track selection
criteria. This uncertainty slightly increases with increasing
pT and is ∼1%. The secondary e+/e− rejection uncertainty
reflects the uncertainty of the real conversion rejection from
theγ ∗ sample and is only present in PCM−γ ∗γ . It is obtained
varying the selection on ψpair-ϕ or requiring a hit in the sec-
ond ITS pixel layer. The Dalitz branching ratio uncertainty
(3.0%) is taken from the PDG [65].

The uncertainty on the cluster energy calibration is esti-
mated from the relative difference between data and simula-
tion of the π0 mass peak position and also includes the uncer-
tainty from the cluster energy corrections for both calorime-
ters. In the PHOS analysis, the energy calibration is also veri-
fied by the energy-to-momentum E/p ratio of electron tracks
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Table 3 Relative systematic
uncertainties (%) of the π0

spectrum for the different
reconstruction methods

Relative systematic uncertainty (%)

PHOS EMC PCM PCM − γ ∗γ PCM-EMC

pT (GeV/c) pT (GeV/c) pT (GeV/c) pT (GeV/c) pT (GeV/c)

1.5 7.5 1.5 14.0 1.5 7.5 0.9 3.1 1.5 7.5

Material budget 3.5 3.5 4.2 4.2 9 9 4.5 4.5 5.3 5.3

Yield extraction 2.2 2.5 1.5 3.6 2.2 1.5 3.5 1.1 1.2 2.6

γ reconstruction 0.9 3.0 2.3 1.8 0.6 1.7

e+/e− identification 0.8 2.4 2.7 2.3 0.5 0.8

Track reconstruction 0.3 0.7 1.6 2.0 0.5 0.7

Sec. e+/e− rejection 4.5 2.8

Dalitz branching ratio 3.0 3.0

Cluster energy calib. 4.9 6.2 1.7 2.5 2.0 2.6

Cluster selection 4.6 5.1 1.1 1.7

π0 reconstruction 0.9 3.9 0.9 1.1 1.9 2.0 0.3 0.3

Secondary correction 1.0

Generator efficiency 2.0 2.0 2.0 2.0

Acceptance 2.2 2.2

Bkg. estimation 4.6 4.9 0.1 0.1 1.8 2.0

Pile-up correction 1.0 1.0 0.8 0.3

Total 8.3 9.3 7.0 9.1 9.4 10.0 9.2 7.7 6.3 7.2

reconstructed in the central tracking system. The residual
deviation of π0 mass and E/p ratio of electrons is attributed
to the systematic uncertainty of the energy calibration which
contributes 4.9% at low pT and increases to 6.2% for high
pT. The uncertainty of the neutral meson spectra caused by
the energy calibration uncertainty in EMC is estimated as
1.7% at low pT and increases to 2.5% for high pT. The uncer-
tainty on the cluster selection was estimated by varying the
minimum energy, minimum number of cells and time of the
EMCal clusterization process. For the EMC the σlong selec-
tion and track matching criteria are varied to estimate the
contribution to the cluster selection uncertainty. This uncer-
tainty accounts for 4.6% at low pT and increases to 5.1% for
higher pT.

The π0(η) reconstruction uncertainty is due to the meson
selection criteria and was estimated by varying the rapidity
window of the meson and the opening angle between the two
photons. It is a minor contribution to the total error with a
magnitude of ∼ 1%. A pT dependent uncertainty from 2% at
1 GeV/c to smaller than 0.5% for pT larger than 2 GeV/c is
assigned for PHOS to the secondary π0 correction, and the
other methods were not significantly affected by this con-
tribution. The generator efficiency uncertainty quantifies the
difference between different Monte Carlo generators that are
used to calculate the reconstruction efficiency of the π0 and
η meson and affects photon reconstruction with the EMCal.
It contributes 2.0% to the π0 meson systematic uncertainty
and 4.0% to the η meson systematic uncertainty. The uncer-
tainty on the acceptance correction for PHOS is estimated to

be 2.2% and includes the uncertainty introduced by the bad
channel map. For EMC this uncertainty is included in the
generator efficiency correction.

For PCM and PCM − γ ∗γ , the uncertainty on the back-
ground estimation is evaluated by changing the event mixing
criteria of the photons from using the V0 multiplicity to using
the charged track multiplicity. For PCM this contributes 0.1%
(0.3%) for the π0 (η) meson and for PCM−γ ∗γ it contributes
1.8% at low pT and increases to 2.0% for high pT. For PHOS,
the uncertainty of the background is estimated using different
polynomial functions to scale the mixed event background.
The contribution is of the order of 4.6%, increasing slightly
towards high pT. The systematic uncertainty due to the out-
of-bunch pile-up subtraction is 1.0% for PHOS and it varies
from 3.0% at 0.35 GeV/c to 0.3% at high pT for PCM.

4.4 pp reference

In order to quantify cold nuclear matter effects in p–Pb col-
lisions, we require inclusive π0 and η distributions in pp
collisions at the same collision energy. However, such dis-
tributions are not available at present for pp collisions at√
s = 5.02 TeV. Therefore, the pp reference was calculated

by interpolating between the measured spectra at midrapid-
ity at

√
s = 2.76 TeV [47,62], at

√
s = 7 TeV [33] and at√

s = 8 TeV [34] assuming a power-law behavior for the
evolution of the cross section in each pT bin as a function of√
s given by d2σ(

√
s)/dydpT ∝ √

sα(pT) [61], where the fit
parameter α(pT) increases with pT which reflects the hard-
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Table 4 Relative systematic
uncertainties (%) of the η

spectrum for the different
reconstruction methods

Relative systematic uncertainty (%)

EMC PCM PCM-EMC

pT (GeV/c) pT (GeV/c) pT (GeV/c)

3.75 14.0 1.6 7.0 3.75 7.0

Material budget 4.2 4.2 9 9 5.3 5.3

Yield extraction 6.6 8.5 3.1 6.1 4.4 5.2

γ reconstruction 3.0 5.2 3.0 4.2

e+/e− identification 1.8 3.4 1.9 2.6

Track reconstruction 1.4 1.4 2.0 2.2

Cluster energy calib. 4.2 6.4 3.5 4.7

Cluster selection 4.9 6.7 3.0 3.8

η reconstruction 1.6 4.1 0.6 5.6 1.5 1.5

Generator Eff. 4.0 4.0 2.0 2.0

Bkg. estimation 0.3 0.3

Pile-up correction 0.8 0.3

Total 11.0 14.5 10.3 13.8 9.6 11.3

ening of hadron spectra with collision energy. The method
was cross-checked using events simulated by PYTHIA 8.21
[83], where the difference between the interpolated and the
simulated reference was found to be negligible.

The invariant differential spectra [33,34,62] were fitted
either with a Tsallis function [33,84]:

1

2πNev

d2N

pTdpTdy
= A

2π

· (n − 1)(n − 2)

nT (nT + M(n − 2))

(
1 + mT − M

nT

)−n

,

(1)

where M is the particle mass, mT = √
M2 + p2

T , and A, n
and T are fitting parameters; or with a two component model
(TCM) as proposed in Ref. [85]:

1

2πNev

d2N

pTdpTdy
= Ae exp (−ET,kin/Te)

+A

(
1 + p2

T

T 2n

)−n

(2)

where ET,kin = √
p2

T + M2 − M is the transverse kinematic
energy of the meson, with M the particle mass, Ae and A are
normalization factors, Te, T and n are free parameters. The
parametrizations of the π0 and η spectra at the different col-
lision energies using the Tsallis or TCM fits were needed due
to the different pT binning of the various pp and p–Pb spec-
tra. The fits were then evaluated in the used p–Pb binning.
The systematic uncertainty for each bin was calculated as
average uncertainty of adjacent bins in the original binning.
The statistical uncertainties of the parametrized spectra were
computed from the fits to the measured spectra with only
statistical errors.

The PHOS, PCM, EMC and PCM-EMC pp references
are based solely on their contribution to the published spec-
tra [33,34,47,62] in order to cancel part of the system-
atic uncertainties in the calculation of RpPb. The PCM-γ ∗γ
method used the same pp reference as the PCM. The PCM
π0 measurement at

√
s = 2.76 TeV was extrapolated for pT

> 10 GeV/c using the published fit. The PCM η measure-
ments were also extrapolated for pT > 6–8 GeV/c using the
published fits. The difference between the π0 spectrum at
y = 0 and at y = −0.465 has been evaluated with PYTHIA
8.21 to be 1% for pT > 2 GeV/c and 0.5% at 0.5 GeV/c.
This correction was applied to the pp reference spectrum.
In each pT bin, the systematic uncertainty of the interpolated
spectrum was estimated by the largest uncertainty among the
input spectra used for the interpolation process. The statisti-
cal error is obtained from the power-law fit.

5 Results

5.1 Invariant yields of π0 and η mesons

The ALICE π0 and η meson invariant differential yields were
determined by combining the individual meson measure-
ments via a weighted average as described in Refs. [86,87].
The correlations among the measurements for PCM, PCM-
EMC, EMC, and PCM − γ ∗γ were taken into account using
the Best Linear Unbiased Estimate (BLUE) method [88,89].
The PCM, PHOS and EMC measurements are completely
independent and are treated as uncorrelated. Due to different
pT reach, statistics, and acceptance, the binning is not the
same for the various methods. For the combined result, the
finest possible binning was chosen. Thus, yields were com-
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Fig. 5 Left: invariant differential π0 and η yields produced in NSD
p–Pb collisions at −1.365 < ycms < 0.435 at

√
sNN = 5.02 TeV. The

statistical uncertainties are represented as vertical error bars whereas
the systematic uncertainties are shown as boxes. In addition, Tsallis fits

to the measured yields are shown. The TCM fit to the 〈TpPb〉 scaled π0

and η pp reference spectra (see Sect. 5.3 for details) is shown. Right:
Ratios of the measured data to their corresponding Tsallis fits

Table 5 Fit parameters and χ2/NDF of the Tsallis fits to the combined
π0 and combined η meson invariant differential yields

π0 Spectrum fit η Spectrum fit

A 9.41 ± 0.49 0.87 ± 0.10

n 7.168 ± 0.078 7.56 ± 0.34

T (GeV/c) 0.159 ± 0.004 0.269 ± 0.019

χ2/NDF 0.70 0.18

bined bin by bin and methods that did not provide the yield
for the specific bin were not taken into account.

The invariant differential meson yields were normalized
per NSD event, with the normalization uncertainty added in
quadrature to the combined systematic uncertainties.

The invariant differential π0 and η yields measured in
NSD p–Pb collisions at

√
sNN = 5.02 TeV are shown in Fig. 5.

The horizontal location of the data points is shifted towards
lower pT from the bin center by a few MeV and illustrates the
pT value where the differential cross section is equal to the
measured integral of the cross section over the corresponding
bin [90]. For the η/π0 ratio and RpPb the bin-shift correction
is done in y-coordinates. Fits with a Tsallis function (Eq. 1)
to the combined NSD π0 and η spectra with statistical and
systematic uncertainties added in quadrature are also shown
in Fig. 5. In each case the Tsallis fit leads to a good descrip-

tion of the meson yield. The resulting fit parameters and the
χ2/NDF are listed in Table 5 for the π0 and η meson. The
small values of χ2/NDF arise from the correlation of sys-
tematic uncertainties. The ratios between the meson yields
obtained in the various reconstruction methods and the Tsal-
lis fit to the combined spectrum for π0 and η are presented in
Fig. 6. All measurements are consistent within uncertainties
over the entire pT range. The invariant differential yield of
neutral pions is consistent with that of charged pions [61]
over the entire pT range.

5.2 η/π0 ratio and mT scaling

A combined η/π0 ratio was calculated and is presented in
Fig. 7. For this purpose, the π0 was measured with the
same binning as the η meson with the PCM, EMC and
PCM-EMC methods. The η/π0 ratio was determined for
each method separately to cancel out the common systematic
uncertainties and then combined taking into account the cor-
relations among the measurements using the BLUE method.
The η/π0 ratio increases with pT and reaches a plateau of
0.483 ± 0.015stat ± 0.015sys for pT > 4 GeV/c. This value
agrees with the η/π0 ratio of 0.48 ± 0.03 (0.47 ± 0.03)
for pT > 2 GeV/c measured by PHENIX [30] in pp (d-
Au) collisions at

√
sNN = 200 GeV and with results from

pA collisions at fixed-target experiments E515 [91] (p–Pb
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Fig. 6 Ratio between individual π0 (left) and η (right) invariant differential yield measurements, and Tsallis fit to the combined meson yield. The
statistical uncertainties are represented as vertical error bars whereas the systematic uncertainties are shown as boxes

Fig. 7 Left: η/π0 ratio as function of pT measured in NSD p–Pb col-
lisions at −1.365 < ycms < 0.435 at

√
sNN = 5.02 TeV. The statistical

uncertainties are shown as vertical error bars. The systematic uncer-
tainties are represented as boxes. For comparison, also the η/π0 ratios
measured in 7 TeV pp collisions with ALICE [33], in d-Au collisions

at
√
sNN = 200 GeV with PHENIX [30], and in p–Au and p–Be colli-

sions at
√
sNN = 29.1 GeV with TAPS/CERES [36] are shown, as well

as the ratio where the η yield is obtained via mT scaling from the mea-
sured p–Pb π0 yield. Right: Ratio of the measured η/π0 ratio to the one
obtained via mT scaling

at
√
s = 23.8 GeV, η/π0 = 0.47 ± 0.03) and E706 [92]

(p-Be at
√
s = 31.6 GeV, η/π0 = 0.45 ± 0.01 and at√

s = 38.8 GeV, η/π0 = 0.42 ± 0.01). A comprehensive
compilation of all measured η/π0 ratios [30] shows that this
ratio reaches an asymptotic value of Rη/π0 ∼ 0.4−0.5 at high
pT in hadronic collisions. Figure 7 shows a good agreement
between the η/π0 ratio measured in p–Pb and pp collisions at√
sNN = 5.02 TeV and

√
s = 7 TeV with ALICE [33], respec-

tively. To illustrate universality of the η/π0 ratio and its inde-
pendence of the collision system or energy, Fig. 7 also shows
theη/π0 ratio measured in d–Au collisions at

√
sNN = 200 GeV

with PHENIX [30] and in fixed-target p–Be and p–Au colli-
sions at

√
sNN = 29.1 GeV by the joint TAPS/CERES collab-

oration [36] in their corresponding pT coverage.
To test the validity of mT scaling, a comparison of the

measured ratio to the ratio obtained via mT scaling is shown

in Fig. 7. For this purpose, the η yield was calculated from
the Tsallis parametrization to the combined π0 yield, Pπ0 ,

assumingmT scaling E d3Nη/dp3 = Cm ·Pπ0

(√
p2

T + m2
η

)
,

with Cm = 0.483±0.015stat ±0.015sys. The ratio of the mT-
scaled η yield to the π0 Tsallis fit is shown in Fig. 7 as a red
curve.

Above pT ∼ 4 GeV/c the measured ratio agrees with the
mT-scaled distribution. At lower pT the measured ratio devi-
ates from the mT scaling prediction, reaching a 40% differ-
ence at pT = 1 GeV/c. The TAPS/CERES data also supports a
deviation from mT scaling at low mT while the PHENIX data
were found to be consistent with mT scaling, although this
measurement starts only at pT ∼ 2 GeV/c. The mT scaling
is often utilized in measurements of electromagnetic probes
[38,93] to describe decay photon spectra from heavier neutral
mesons. The measurement reported here demonstrates that
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Fig. 8 π0 (left) and η (right) nuclear modification factors RpPb mea-
sured in NSD p–Pb collisions at −1.365 < ycms < 0.435 at√
sNN = 5.02 TeV compared to the nuclear modification factors of

charged pions and charged kaons, respectively. The statistical uncer-

tainties are shown as vertical error bars and the systematic uncertainties
are represented as boxes. The overall normalization uncertainty is given
as the solid black box around unity

mT scaling is not valid for the η meson at low pT. Therefore,
a measured η yield, especially at low pT, is crucial for the
study of direct photons and dileptons in pA collisions, since
mT scaling from the measured π0 yield overestimates the η

yield at low pT considerably [94]. Measurements of heavier
neutral mesons such as ω in a wide pT range are thus also
desirable.

5.3 Nuclear modification factor RpPb

The ratio of the yield of π0 or η in pA collisions relative
to that in pp collisions, also known as nuclear modification
factors (RpA), are calculated using

RpPb(pT) =
d2N pPb

π0,η
/dydpT

〈TpPb〉 · d2σ
pp
π0,η

/dydpT

, (3)

where d2N pPb
π0,η

/dydpT are the π0 and η invariant yields

measured in p–Pb collisions and d2σ
pp
π0,η

/dydpT are the

interpolated invariant π0 and η meson cross sections in pp
collisions at

√
sNN = 5.02 TeV, as described in Sect. 4.4.

〈TpPb〉 is the average nuclear overlap function, 〈TpPb〉 =
0.0983 ± 0.0035 mb−1 [58,73].

In the absence of nuclear effects, RpPb is unity in the
pT region where hard processes dominate particle produc-
tion. The values of RpPb were calculated for each individual
method to cancel out the common systematic uncertainties
and then combined using the BLUE method (Fig. 8). For the
Dalitz RpPb the PCM pp reference is used. This induces a
correlation of the Dalitz RpPb with the RpPb from PCM. The
NSD normalization uncertainty is added in quadrature to the
overall normalization uncertainty together with the uncer-

tainties of the TpPb and of the inelastic pp cross sections.
The fit to the reference π0 and η spectra in pp collisions at√
s = 5.02 TeV scaled by 〈TpPb〉 are also displayed in Fig. 5.

The fit parameters are given in Table 6.
The values of RpPb are consistent with unity for transverse

momenta above 2 GeV/c for the π0 and η mesons. The RpPb

measurements for neutral and charged pions as well as the
RpPb measurements for η mesons and charged kaons [61]
agree with each other within uncertainties over the complete
pT range as shown in Fig. 8.

5.4 Comparisons to theoretical models

Comparisons of the π0 and η meson transverse momentum
spectra to several theoretical calculations are shown in Fig. 9.
In the following, we discuss each model individually, com-
pared with the experimental data.

pQCD calculations at NLO [6,13,95] using the EPPS16
nPDF [96] with the CT14 PDF [100] or using the nCTEQ
nPDF [10] and DSS14 FF [15] reproduce the π0 spectrum in
Fig. 9, within the uncertainties due to the nPDF, the FF and
variation of the factorization, renormalization and fragmen-
tation scales. The largest contribution to the systematic uncer-
tainty is due to the uncertainties in the choice of scales. Note
that the EPPS16 nPDF has larger uncertainties than EPS09
nPDFs. pQCD calculations at NLO [95] using the nCTEQ
nPDF [10] and AESSS FF [97] reproduce the η meson spec-
trum at intermediate pT while it overestimates the spectrum
up to a factor two at high pT. Inclusive η meson production
has been measured in pp collisions at different LHC energies
[33,34,62], which could be used to improve the η meson FF
[97] utilizing global fits, similar to a recent calculation for
pions and kaons [15,101].
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Fig. 9 Comparison of several theoretical calculations to the invari-
ant differential π0 and η yields produced in NSD p–Pb collisions at
−1.365 < ycms < 0.435 at

√
sNN = 5.02 TeV from Fig. 5. Theoret-

ical calculations are shown for the EPOS3 model [26], CGC model
[19], pQCD calculations at NLO [6,13,95] using EPPS16 nPDF [96]
or using the nCTEQ nPDF [10] and DSS14 FF [15] for the π0 and using
nCTEQ nPDF [10] and AESSS FF [97] for the η meson, hydrodynamic

framework (labeled as VISHNU) [98] using the iEBE-VISHNU code
[99], DPMJET model [82], and HIJING model [81]. The blue band on
the EPOS3 calculation shows the statistical errors of the prediction. The
gray band on the pQCD calculation includes the uncertainties on the
factorization, renormalization and fragmentation scales, as well as on
the nPDF and FF. The ratios of the measured data and several theoretical
calculations to the data Tsallis fits (Fig. 5) are shown in the right panel

The HIJING model [81] combines a pQCD-based calcu-
lation for multiple jet production with low pT multi-string
phenomenology. The model includes multiple minijet pro-
duction, nuclear shadowing of parton distribution functions,
and a schematic mechanism of jet interactions in dense mat-
ter. The Glauber model for multiple collisions is used to cal-
culate pA and AA collisions. Figure 9 shows that the central
value of the model calculation for inclusive π0 is about 20%
smaller than the measured value at intermediate pT, between
1 and 4 GeV/c, while it agrees with the η meson production
in p–Pb collisions. At lower and higher pT values the calcu-
lation overestimates the π0 and η yields by up to 60–80%.

The DPMJET event generator [82] based on the Gribov-
Glauber approach is an implementation of the two-component
Dual Parton Model. This model treats the soft and the hard
scattering processes in an unified way, using Reggeon the-
ory for soft processes and lowest order pQCD for the hard
processes. DPMJET was tuned to reproduce RHIC measure-
ments of hadron production at low and moderate pT by intro-
ducing a new mechanism of percolation and chain fusion,
though it overestimates inclusive hadron yields at high pT at
RHIC energies [102]. Comparison of the π0 and η meson
measurements with DPMJET calculations in Fig. 9 shows
that the model reproduces the distributions for pT < 1 GeV/c,

but underestimates the yields by 40% at higher pT. This sug-
gests that the model parameters may need to be adjusted for
the new energy domain. Comparison of DPMJET model pre-
dictions to particle production measurements in pp collisions
at LHC energies also shows that the energy dependence of
hadron production predicted by the model does not agree
with data [103].

Theπ0 invariant differential yield computed with the CGC
model [19] with MVγ [104] as the initial condition agrees
with the measurements in Fig. 9 for pT < 5 GeV/c. The devi-
ation seen at high pT is similar to that observed for inclusive
π0 production in pp collisions at LHC.

The iEBE-VISHNU package [99] consists of a 3+1 vis-
cous hydrodynamical model coupled to a hadronic cascade
model [98]. Fluctuating initial conditions in the transverse
plane are generated using a Monte–Carlo Glauber model.
Figure 9 shows that this model reproduces the π0 and η

meson inclusive spectra for 0.7 < pT < 1.5 GeV/c. For
lower momenta (pT < 0.7 GeV/c) the model prediction is
lower than the measured π0 yield by up to a factor of two
at 0.35 GeV/c. For pT > 1.5 GeV/c the model predictions
underestimate the π0 and η meson yields by a factor 5 at
3.5 GeV/c. This comparison shows that additional mecha-
nisms not included in the model, in particular jet production,
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are important to describe particle production in p–Pb colli-
sions in this region.

The EPOS3 [26] event generator is based on 3D+1 vis-
cous hydrodynamics, with flux tube initial conditions that
are generated in the Gribov–Regge multiple scattering frame-
work. The reaction volume is divided into a core and a corona
part. The core is evolved using viscous hydrodynamics. The
corona is composed of hadrons from string decays. Figure 9
shows that this model reproduces the π0 inclusive pT spec-
trum well over the full measured range. The model also
reproduces the charged pion and kaon inclusive spectra in
pA collisions [26]. However, the η meson spectrum is well-
reproduced only for pT < 4 GeV/c, while at pT > 4 GeV/c
the calculations lie above the data, with the disagreement
reaching a factor of two at 10 GeV/c. Note that the VISHNU
theoretical predictions [98] and EPOS3 are within 10-20 and
30–40% for the π0 and η mesons, respectively, for pT <

1.5 GeV/c. The comparisons to VISHNU and EPOS3 shows
that a picture incorporating viscous hydrodynamic flow is
consistent with measured particle yields at low pT in p–Pb
collisions.

Comparison of the measured high-precision π0 and η

meson spectra with theoretical models in Fig. 9 clearly shows
that different underlying pictures can describe the data qual-
itatively. However, systematic uncertainties of the theoreti-
cal models are not provided, or are sizable. Hydrodynamic
models agree with the data at low pT, while jet production
appears to be needed for a good description at pT > 4 GeV/c.
While the high pT part of the spectra can be described by
NLO pQCD calculations, the precise data presented here will
help to reduce their uncertainties significantly, for instance
providing additional constraints on identified-particle FFs.
Improved theoretical uncertainties are needed in order to dis-
criminate among the models.

The comparison of the η/π0 ratio to different theoretical
predictions is shown in Fig. 10. The DPMJET and HIJING
model calculations are very close to the mT scaling predic-
tion, i.e. they lie above the measured ratio for pT < 4 GeV/c,
and agree with it at larger pT. On the other hand, the EPOS3
model calculation is closer to the data at low pT than the mT

scaling prediction, while for pT > 4 GeV/c it continues to
increase instead of reaching the plateau observed in data. The
prediction from the VISHNU hydrodynamical calculation is
in agreement with the measured data and very close to the
EPOS3 prediction. However, this comparison may only be
relevant up to pT of 1.5 GeV/c where the calculation was
able to reproduce the measured neutral meson spectra. This
behavior highlights once more the importance of hydrody-
namical flow in p–Pb collisions at the LHC.

A comparison of the measured π0 and η RpPb to differ-
ent model predictions is shown in Fig. 11. The NLO pQCD
calculations for the π0 [6,13,95] utilize the EPPS16 nuclear
PDF [96] or the nCTEQ nPDF [10], and DSS14 FF [15],

Fig. 10 Comparison of different theoretical calculations to the η/π0

ratio measured in NSD p–Pb collisions at −1.365 < ycms < 0.435 at√
sNN = 5.02 TeV from Fig. 7. Theoretical calculations are shown for

the EPOS3 model [26] with statistical errors shown as a band, hydrody-
namic framework (VISHNU) [98] using the iEBE-VISHNU code [99],
DPMJET model [82] and HIJING model [81]

and for the η meson [95] the nCTEQ nPDF [10] and AESSS
FF [97] are used. The central values of the NLO predictions
for π0 and η lie below the data for pT < 6 GeV/c. While
the uncertainties of π0 calculations using nCTEQ are small
and show sizable difference, the uncertainties for π0 calcula-
tions using EPPS16 are large and in agreement with the data.
The CGC prediction from Ref. [19] uses the kT factorization
method and is able to reproduce the measured RpPb.

6 Conclusions

The pT differential invariant yields of π0 and η mesons
were measured in NSD p–Pb collisions at

√
sNN = 5.02 TeV

in the transverse momentum range 0.3 < pT < 20 and
0.7 < pT < 20 GeV/c, respectively. State-of-the-art pQCD
calculations at NLO are able to describe the π0 spectrum
within the uncertainties of the nPDF and the pQCD scale,
whereas they describe the η spectrum at intermediate pT and
overestimate it up to a factor of two at high pT. As the wealth
of the η measurements is already sizable at the LHC, it will
be important to include them in global fits to reach a sim-
ilar theoretical progress in the pQCD calculations of the η

meson.
The η/π0 ratio is constant with a value of 0.483 ±

0.015stat ± 0.015sys at pT > 4 GeV/c which is consistent
with the η/π0 measurements at lower-energy pp, pA and AA
collisions. Universality of the η/π0 behavior at high pT sug-
gests that the fragmentation into light mesons is the same
in all collisions systems. At pT < 2 GeV/c, the η/π0 ratio
shows a clear pattern of deviation from the ratio predicted by
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Fig. 11 Comparison of different theoretical model calculations to the
π0 (left) and η (right) nuclear modification factors RpA measured in
NSD p–Pb collisions at −1.365 < ycms < 0.435 at

√
sNN = 5.02 TeV.

The grey band shows a pQCD calculation at NLO using the EPPS16
nPDF [96], the CT14 PDF [100] and the DSS14 FF [15] including sys-

tematic uncertainties. Color Glass Condensate predictions using the kT

factorization method are also shown. NLO calculations using nCTEQ
nPDF [10], and DSS14 FF (π0) [15] or AESSS FF (η) [97] are also
shown

the mT scaling, confirming a mT scaling violation observed
earlier in pA collisions at

√
sNN = 29.1 GeV and in pp col-

lisions at
√
s = 7 TeV and

√
s = 8 TeV. The presence of

radial flow effects in small systems and contributions from
heavier-mesons decays to the η and π0 production spectra
are among possible interpretations of the mT scaling viola-
tion. The comparison to different model calculations suggests
that hydrodynamical flow may help to describe the measured
spectra at low pT. Theoretical calculations using DPMJET
and HIJING are very close to the mT scaling prediction and
therefore overestimate the measured ratio. The η/π0 ratio is
reproduced in the complete pT range by the VISHNU calcula-
tions although any conclusions above 1.5 GeV/c are difficult
to extract as the spectra were underestimated by large factors.
For pT < 3 GeV/c, the η/π0 ratio calculated by EPOS3 is
closer to the measured data than the mT scaling prediction,
and it agrees with the data in the intermediate pT range 2 <

pT < 5 GeV/c. These model comparisons support the inter-
pretation that radial flow plays a role in collisions of small
systems at the LHC.

The measured nuclear modification factors RpPb for the
π0 and η meson are consistent with unity at pT > 2 GeV/c
which confirms previously reported measurements at RHIC
[56,57] and LHC [27,28,58–60]. Theoretical calculations
based on the latest nPDFs and a model based on the CGC
framework are able to describe RpPb well. These results sup-
port the interpretation that the neutral pion suppression in
central Pb–Pb collisions is due to parton energy loss in the
hot QCD medium.

These data are an important input for theoretical models
aiming at the description of particle production in small sys-
tems at LHC energies and provide additional constraints on
nPDFs and identified FFs.
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A Parameters of TCM fits

The parameters of the two-component model fits to the ref-
erence π0 and η meson spectra in pp collisions at

√
s =

5.02 TeV shown in Fig. 5 are given in the Table 6. The π0

and η meson references were calculated using Eq. 3, from the
combined spectra in p–Pb collisions (Fig. 5), and combined
RpPb (Fig. 8).

Table 6 Fit parameters of the TCM fits to the reference π0 and η spectra
in pp collisions at

√
s = 5.02 TeV

π0 spectrum fit η spectrum fit

Ae (pb GeV−2c3) 3.76 × 1011 5.75 × 109

Te (GeV/c) 0.151 0.252

A (pb GeV−2c3) 3.1 × 1010 1.21 × 109

T (GeV/c) 0.585 0.916

n 3.09 3.12
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104 Rudjer Bošković Institute, Zagreb, Croatia

123



Eur. Phys. J. C (2018) 78 :624 Page 25 of 25 624

105 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
106 Saha Institute of Nuclear Physics, Kolkata, India
107 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
108 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
109 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
110 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
111 Suranaree University of Technology, Nakhon Ratchasima, Thailand
112 Technical University of Košice, Kosice, Slovakia
113 Technische Universität München, Excellence Cluster ’Universe’, Munich, Germany
114 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
115 The University of Texas at Austin, Austin, TX, USA
116 Universidad Autónoma de Sinaloa, Culiacán, Mexico
117 Universidade de São Paulo (USP), São Paulo, Brazil
118 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
119 Universidade Federal do ABC, Santo Andre, Brazil
120 University College of Southeast Norway, Tonsberg, Norway
121 University of Cape Town, Cape Town, South Africa
122 University of Houston, Houston, TX, USA
123 University of Jyväskylä, Jyväskylä, Finland
124 University of Liverpool, Liverpool, UK
125 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
126 University of Tennessee, Knoxville, TX, USA
127 University of the Witwatersrand, Johannesburg, South Africa
128 University of Tokyo, Tokyo, Japan
129 University of Tsukuba, Tsukuba, Japan
130 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
131 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
132 Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
133 IRFU, Department de Physique Nucléaire (DPhN), Université Paris-Saclay Centre dÉtudes de Saclay (CEA), Saclay,

France
134 Università degli Studi di Pavia, Pavia, Italy
135 Università di Brescia, Brescia, Italy
136 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
137 Variable Energy Cyclotron Centre, Kolkata, India
138 Warsaw University of Technology, Warsaw, Poland
139 Wayne State University, Detroit, MI, USA
140 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
141 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
142 Yale University, New Haven, CT, USA
143 Yonsei University, Seoul, Republic of Korea

a Deceased
b Dipartimento DET del Politecnico di Torino, Turin, Italy
c M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
d Department of Applied Physics, Aligarh Muslim University, Aligarh, India
e Institute of Theoretical Physics, University of Wroclaw, Poland

123


	Neutral pion and η meson production in p–Pb collisions at sqrtsNN = 5.02 TeV
	Abstract 
	1 Introduction
	2 Detector description
	3 Event selection
	4 Data analysis
	4.1 Photon and primary electron reconstruction
	4.2 Meson reconstruction
	4.3 Systematic uncertainties
	4.4 pp reference

	5 Results
	5.1 Invariant yields of π0 and η mesons
	5.2  η/π0 ratio and mT scaling
	5.3 Nuclear modification factor RpPb
	5.4 Comparisons to theoretical models

	6 Conclusions
	Acknowledgements
	A Parameters of TCM fits
	References




