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The structure of macromolecules can be studied by small-angle scattering

(SAS), but as this is an ill-posed problem, prior knowledge about the sample

must be included in the analysis. Regularization methods are used for this

purpose, as already implemented in indirect Fourier transformation and bead-

modeling-based analysis of SAS data, but not yet in the analysis of SAS data

with analytical form factors. To fill this gap, a Bayesian regularization method

was implemented, where the prior information was quantified as probability

distributions for the model parameters and included via a functional S. The

quantity Q = �2 + �S was then minimized and the value of the regularization

parameter � determined by probability maximization. The method was tested on

small-angle X-ray scattering data from a sample of nanodiscs and a sample of

micelles. The parameters refined with the Bayesian regularization method were

closer to the prior values as compared with conventional �2 minimization.

Moreover, the errors on the refined parameters were generally smaller, owing to

the inclusion of prior information. The Bayesian method stabilized the refined

values of the fitted model upon addition of noise and can thus be used to retrieve

information from data with low signal-to-noise ratio without risk of overfitting.

Finally, the method provides a measure for the information content in data, Ng,

which represents the effective number of retrievable parameters, taking into

account the imposed prior knowledge as well as the noise level in data.

1. Introduction

Small-angle scattering (SAS) is widely used for investigating

the low-resolution structure of macromolecules (Svergun &

Koch, 2003; Svergun et al., 2013). Physical quantities such as

the radius of gyration and molecular weight can be obtained

directly from the data, and the overall structure of the

macromolecules can be probed indirectly by modeling.

Deducing a structure exclusively from SAS data is an ill-

posed problem, meaning that several structures can explain

the data. In SAS modeling with analytical form factors, a

geometrical model that describes the scattering intensity in

terms of a set of model parameters is tested against data (see

e.g. Pedersen, 1997). Typical parameters include particle

dimensions, excess scattering length densities, concentration

etc. These parameters are then refined to obtain the values

that provide the best fit to data. In order to circumvent the ill-

posed nature of the problem and minimize the number of free

parameters, Hayter & Penfold (1981) introduced molecular

constraints in an early small-angle neutron scattering (SANS)

study of SDS micelles. This allowed for explicit use of the

information available about the SDS chemical structure, the

partial specific molecular volumes and the sample concentra-

tion, such that the model could be reparametrized into a
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minimal number of free parameters. The core–shell micelle

model and associated interparticle structure factor were

reparametrized into a particularly simple model with only two

free parameters: the charge and aggregation number of the

micelles. The approach of using molecular constraints has

been generalized to various later and more complicated

applications in SAS (e.g. by Cabane et al., 1985; Arleth et al.,

1997; Kučerka et al., 2004; Skar-Gislinge & Arleth, 2011).

However, the approach may lead to an over-constrained fit

where the experimental data cannot be fitted. This will often

be the case if one or more of the fixed parameters are slightly

wrong. At the same time, all information about the fixed

parameters in the new data is ignored. To circumvent these

problems, model parameters that, according to Hayter &

Penfold (1981), should ideally be well known and kept fixed

are instead taken as free parameters. This may, on the other

hand, create a situation where the most optimal fit has

unrealistic values for central parameters; for example, the

fitted concentration could be incompatible with an indepen-

dent concentration assessment, the shape of the particle

unrealistic, or the fitted internal scattering length densities too

far from the expected values. If the overall model is trusted,

this creates a situation where the scientist has to make a

choice: either the inconsistent parameters are fixed, thereby

ignoring any information about those parameters in the new

data and possibly having to accept a poor fit, or alternatively,

the new refined values are trusted, thus effectively ignoring

the prior knowledge. Clearly, none of these solutions are

optimal and an improved framework for inclusion of the prior

knowledge is required.

As will be shown in the following, regularized expressions

provide such a framework and can be utilized to include prior

knowledge directly in the data analysis. Regularization

methods are already used extensively in the analysis of SAS

data, for example in indirect Fourier transformation (Glatter,

1977; Svergun, 1992), where a smoothness constraint is

imposed on the pair distance distribution function, in ab initio

modeling (Svergun, 1999), where a compactness constraint is

applied to the refined models, and in rigid-body modeling

(Petoukhov & Svergun, 2005), where regularization terms

prevent overlap of the rigid bodies and ensure that the solu-

tion does not diverge significantly from known residue

distances. However, to the best of our knowledge they have

not been used in the analysis of SAS data modeled with

analytical form factors, as proposed in the present work.

In this paper, a regularization method that allows for

inclusion of prior knowledge and avoids fixing parameter

values is presented. The prior knowledge is quantified as

probability distributions, so-called priors. The approach

exploits Bayesian statistics, which provides an ideal frame-

work for inclusion of priors in analysis of experimental data.

Bayesian methods have been used for decades in the field of

image processing (see e.g. Gull, 1989; Schultz & Stevenson,

1994) and more recently in the processing of electron micro-

scopy images, as implemented, for example, in the program

RELION (Scheres, 2012). Moreover, Bayesian statistics is

used in the effort of effectively combining experimental data

with molecular dynamics simulations, as presented for

instance in the recent paper by Shevchuk & Hub (2017).

The second issue treated in the present paper is the quan-

tification of information in data. It is of fundamental interest

to assess the information in experimental data and thus be

able to optimize the information content under different

experimental conditions that may be varied, such as concen-

tration, exposure time and neutron contrast situation

(Pedersen et al., 2014), and it will be argued that the ‘number

of good parameters’ Ng constitutes a suitable measure for that

purpose. Ng, as introduced by Gull (1989), has been discussed

in relation to indirect Fourier transform of SAS data by Müller

et al. (1996) and by Vestergaard & Hansen (2006), and in the

present paper we show how it applies in the context of SAS

data analysis using analytical form factors.

2. Theory

In conventional analysis of SAS data with analytical form

factors, a mathematical model is hypothesized, which

describes the theoretical intensity and can be tested against

data (see e.g. Pedersen, 1997). The model is expressed in terms

of a set of model parameters, for example the particle

dimension, the contrast situation, the concentration or the

polydispersity of the sample. These parameters are refined by

minimizing the likelihood function, �2, defined in terms of the

theoretical intensities Ith and the experimentally measured

intensities Iexp as

�2
ðpÞ ¼

XN

i¼1

I
exp
i � Ith

i ðpÞ
� �2

�2
i

: ð1Þ

Here, N is the number of data points and �i is the experimental

standard deviation of data point i. Ith
i ðpÞ is assumed to be a

function of K model parameters p ¼ ðp1; :::; pKÞ. Both

experimental and theoretical intensities are functions of the

momentum transfer, q, given in terms of the wavelength of the

incoming beam � and the scattering angle 2�, q ¼ 4� sinð�Þ=�.

The detector image is azimuthally averaged and binned into

discrete q values such that the intensity is also discretized, i.e.

Ii ¼ IðqiÞ. The reduced �2 is used to assess the goodness of

fit and is defined as �2
r ¼ �

2=f , where f is the number of

degrees of freedom, conventionally found as f ¼ N � K.

Residual plots are used to evaluate the goodness of fit visually

and give the difference in intensity in units of �, i.e.

ð�I=�Þi ¼ ðI
exp
i � Ith

i Þ=�i.

In the Bayesian approach, the prior knowledge is directly

incorporated in the minimization process through a functional,

SðpÞ, that gives a penalty to solutions with parameter values

far from the prior values. We will assume normally distributed

priors with mean values l ¼ ð�1; :::; �KÞ and standard

deviations dp ¼ ð	p1; :::; 	pKÞ. Then SðpÞ takes the form

SðpÞ ¼
XK

k¼1

pk � �kð Þ
2

	p2
k

: ð2Þ

�k and 	pk reflect the prior knowledge about the kth para-

meters. If this comes from a measurement, or a previous
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experiment, a mean and a standard deviation is usually

available. If the prior, on the other hand, is based on general

biophysical knowledge about the system, this knowledge must

be expressed in terms of �k and 	pk. If almost no knowledge is

available, a mostly non-informative prior should be used, for

example a uniform prior or a very wide normal distribution.

The determination of priors is exemplified and explained for

the two experimental examples in x3. �2ðpÞ is then replaced in

the minimization routine by the expression

QðpÞ ¼ �2ðpÞ þ �SðpÞ; ð3Þ

where � is a regularization parameter, balancing the influence

of the prior knowledge (S) and the data (�2).

2.1. Determining a and introducing the Bayesian Occam
term

The Bayesian method provides a consistent way of deter-

mining �, the regularization parameter. � is a so-called

hyperparameter and must be determined by other means than

the model parameters (MacKay, 1999; Hansen, 2000), namely

by maximizing the probability for � and the data D given the

hypothesized model H. Using standard probability rules, we

can express this probability as a product,

PðD; � j HÞ ¼ PðD j �;HÞPð�Þ; ð4Þ

where PðD j �;HÞ is the evidence, describing the probability

for the data set given both � and the model. For a more

elaborate introduction to the evidence and Bayesian prob-

ability theory see, for example, Bolstad (2007). Pð�Þ is the

prior for �. As � is a so-called scale parameter, Jeffreys’ prior,

Pð�Þ ¼ 1=� (Jeffreys, 1946), is used in the following. Also, it is

exploited that minimizing �2 log½PðD; � j HÞ� is analogous to

maximizing PðD; � j HÞ. Denoting by A, B and C the curva-

ture matrices A ¼ rr�S, B ¼ rr�2 and C ¼ rrQ, and

denoting by � the fraction � ¼ detðCÞ= detðAÞ, it can be

shown that (Hansen, 2000)

�2 log½PðD; � j HÞ� ¼ QðpÞ þ logð�Þ þ 2 logð�Þ; ð5Þ

where QðpÞ is defined in equation (3) and the third term is the

Jeffreys prior for �. � plays a significant role in the analysis:

the determinant detðAÞ is given as �ð
QK

j¼1 	pjÞ
�2, i.e. it is

inversely proportional to the squared product of the standard

deviations of the priors for the model parameters. This

product spans the volume in the parameter space where the

solution is expected to exist a priori. The determinant detðCÞ

can be written as detðrr�2 þ �rrSÞ, where the curvature

matrix rr�2 depends on the analytical model and must be

found numerically. So the expression cannot be simplified any

further in the general case. However, detðCÞ is generally

inversely proportional to the a posteriori solution volume. In

summary, � / (a priori volume)/(a posteriori volume).

In the simplest possible solution where the data contain no

new information about the parameters (rr�2 ¼ 0), the two

volumes are identical, i.e. the prior knowledge is not altered,

and logð�Þ is zero. Otherwise, the term will be positive, since

the a priori volume is generally larger than the a posteriori

volume. Hence, the term favors simple solutions and will be

denoted the Occam term (MacKay, 1992). The contributions

of all terms of equation (5) are shown graphically for the

nanodisc example in Fig. 1, and it is clearly seen how the

Occam term ‘pushes’ the solution towards higher � values, i.e.

towards simpler solutions closer to the prior.

2.2. Quantifying the information content in data

Following the argumentation in previous work (Gull, 1989;

Müller et al., 1996; Vestergaard & Hansen, 2006), the infor-

mation content can be quantified as the number of good

parameters Ng, describing the effective number of free para-

meters retrievable by the data. It is defined in terms of � and

the eigenvalues 
i and �i of the diagonalized curvature

matrices B and C, respectively. By change of units

Cij ! Cij	pi	pj, the eigenvalues of C can be written as

�i ¼ �þ 
i, and Ng can then be expressed simply in terms of �
and 
i as

Ng ¼
XK

i¼1


i

�i

¼
XK

i¼1


i

�þ 
i

; ð6Þ

where K is the number of parameters in the model. The

measure is similar in methodology to single value decom-

position, i.e. the model is, so to say, redescribed in a new basis.

The good parameters do not therefore correspond directly to

parameters in the investigated model, but Ng is the minimum

number of independent effective parameters retrievable from

the data. The magnitude of 
i (eigenvalue i of B ¼ rr�2)

expresses the significance of the ith effective parameter. All

eigenvalues are positive, but some are very small compared

with �. If an eigenvalue is very large, 
i � �, it will contribute

1 to Ng, and if 
i � �, then 
i will not contribute to the sum at

all. Thus Ng is between 0 and K. The information may be

distributed evenly among the physical model parameters, but

the data may also contain much information about some

parameters and very limited information about others. This
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Figure 1
Graphical representation of equation (5) for the nanodisc example. The
optimal value of � is found at the minimum (� ¼ 0:24). Note that the
lower y limit is 500, i.e. �2 constitutes the major contribution.



will be reflected in the difference between the prior and the

posterior distribution for each parameter.

3. Methods

3.1. Experimental examples

To test the method, we analyzed the experimental small-

angle X-ray scattering (SAXS) data from two different

macromolecular samples.

The first sample contained nanodiscs of 1,2-dilauroyl-sn-

glycero-3-phoshocholine (DLPC) and the membrane scaf-

folding protein MSP1D1, measured at 293 K. The data set was

previously obtained and analyzed by Skar-Gislinge et al.

(2010). The nanodisc is a composite particle consisting of a

phospholipid bilayer surrounded by two amphipathic and

�-helical scaffolding proteins that form a stabilizing belt

around the hydrophobic edge of the bilayer (Fig. 2). Each belt

protein has a protruding His tag with a tobacco etch virus

(TEV) cleavage site, and these were modeled as random

Gaussian coils. The nanodisc itself was modeled by combining

analytical form factor amplitudes, as described and illustrated

by Skar-Gislinge & Arleth (2011). In brief, the bilayer was

described as stacked elliptical cylinders with different scat-

tering length densities, and the two scaffolding proteins were

collectively described as a homogeneous hollow cylinder with

elliptical cross section. For the purpose of the present work,

the model was parametrized to have 12 physically relevant

parameters, as listed in Table 1. The parameters were back-

ground B, concentration c, molecular volume of the lipids Vl,

molecular volume of the lipid tailgroups Vt, volume of the

protein Vp, number of lipids per nanodisc N, number of water

molecules per lipid headgroup nw, thickness of the protein belt

T, surface roughness �R [implemented as in the work of Skar-

Gislinge et al. (2010)], area per lipid A, ellipticity of the disk "
and radius of gyration of the random Gaussian coils Rg. Vl was

determined by densitometry with an estimated 2% uncertainty

and Vt was given by Tanford’s formula (Tanford, 1972), also

with an estimated uncertainty of 2%, and from these, the

volume of the lipid headgroups could be calculated as

Vh ¼ Vl � Vt. Vp was calculated by summing the atomic van

der Waals volumes (Svergun et al., 1995), assuming a relative

error of 4%. Excess scattering length densities, ��, were

calculated from the molecular volumes and scattering lengths,

with the latter calculated from the chemical composition of the

relevant molecules. T was known approximately from the

�-helical structure of the protein belt, and the priors for A and

nw were estimated in accordance with the work of Kučerka et

al. (2005). SAS experiments on similar systems (Midtgaard et

al., 2015; Kynde et al., 2014) were used to estimate the prior for

". Finally, the prior for Rg was estimated from molecular

dynamics simulations of proteins with random coil structure

by Fitzkee & Rose (2004).

The second example was a sample of self-assembled

N-dodecyl-
-maltoside (DDM) micelles, measured at room

temperature. The micelles were modeled as core–shell ellip-

soids (Pedersen, 1997), using seven parameters, as listed in

Table 2. The seven parameters were constant background B,

concentration c, scattering contrast of the detergent head-

groups in the shell ��h and of the detergent tailgroups in the

core ��t, number of detergents per micelle N, ellipticity " of

the micelle, and surface roughness �R. The form factor and

parametrization are as described by Arleth et al. (1997), with a

roughness term added, as in the nanodisc model. The partial

specific molecular volumes used to determine the scattering
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Figure 2
Illustration of a nanodisc. (a) All-atom structure from Shih et al. (2007),
with a hydrophobic core of lipid tails (turquoise), caps of hydrophilic lipid
headgroups (gray), and a surrounding ‘belt’ of two amphipathic and �-
helical proteins (blue). (b) Analytical nanodisc model with dimensions
corresponding to the prior values in Table 1. The His tags with TEV sites
were not included in the illustrations.

Table 1
Refined parameter values from the analysis of the nanodisc data set,
comparing the Bayesian regularization method with conventional �2

minimization.

One standard deviation is given as error (in parentheses). The prior values are
listed in the middle column in terms of the mean (and standard deviation) of
the respective prior normal distributions. The goodness of the fits were
evaluated with the reduced �2 and the Cmap test (Franke et al., 2015).

Model
parameter

�2

minimization Prior
Bayesian
minimization

N 103 (22) 152.0 (10.0) 119 (7)
" 1.3 (4.5) 1.40 (0.15) 1.33 (0.03)
A (Å2) 76 (19) 61 (5) 70 (4)
nw 18 (12) 8 (2) 10 (3)
Vl (Å3) 996 (19) 985 (30) 1001 (3)
Vt (Å3) 702 (111) 666 (20) 684 (22)
Vp (�104 Å3) 5.3 (0.7) 5.7 (0.2) 5.4 (0.2)
T (Å) 11.4 (2.1) 10.0 (0.3) 10.2 (0.6)
Rg (Å) 13.8 (1.2) 12.5 (1.0) 14.1 (0.7)
�R (Å) 3.2 (1.0) 6.0 (1.0) 3.3 (0.5)
c (�M) 22 (19) 22.6 (3.0) 23.3 (4.9)
B (�10�4 cm�1) �0.3 (2.1) 1.0 (10.0) 0.1 (1.1)

Goodness of fit,
�2

r

6.26 – 6.30

Goodness of fit,
Cmap

C ¼ 10, N ¼ 106 – C ¼ 10, N ¼ 106
P(C � 10 j N) = 9.2% – P(C � 10 j N) = 9.2%



contrasts, ��h and ��t, were found with densitometry and the

volumes were assumed to have a relative uncertainty of 2%

(supporting information of Midtgaard et al., 2018). The priors

for N were estimated according to Oliver et al. (2013), and the

detergent concentration was determined by weighing the

added detergent in the stock solution before making the

samples, with an estimated uncertainty of 10%.

3.2. Implementation of the Bayesian optimization routine

The Bayesian fitting algorithm was implemented in Fortran

77 and the source code is freely available online (https://

github.com/Niels-Bohr-Institute-XNS-StructBiophys/BayesFit).

A Levenberg–Marchardt algorithm (Levenberg, 1944;

Marquardt, 1963) was used to minimize QðpÞ. It was imple-

mented with minor modifications of the algorithm from

Numerical Recipes (Press et al., 1992) and with the parameters

constrained to a range defined by the prior mean �i and

standard deviation 	pi such that �i � 5	pi < pi <�i þ 5	pi. A

golden section search was used to determine the most prob-

able �, assuming that �10< logð�Þ< 10. The CPU time for

the refinement of the nanodisc model is about 20 min on a

typical PC, searching 17 � values to determine the optimal �.

The CPU time for conventional �2 minimization is thus 17

times faster, i.e. approximately 1 min. The CPU time for the

the micelle model is only about 2 min with 19 steps in � (i.e.

less than 10 s for a �2 minimization). Parallelization has not

been included in the present implementation but is in prin-

cipal easy to implement, since the calculations for each q value

are independent. With other �-optimization algorithms, the �
calculations would also be independent and thus paralleliz-

able, for example with grid search or random search (Bergstra

& Bengio, 2012).

4. Results

4.1. Nanodiscs

The Bayesian approach was compared with conventional �2

minimization. As seen in Fig. 3(a), both methods found a

solution that fitted the data well. The conventional method

varied the 12 parameters freely to minimize �2, with the mean

of the prior values used as the starting point for the fitting

routine. In the Bayesian approach, the most probable � was

determined, and the parameters were refined as described in

xx2 and 3. The optimal � was found at 0.24. Moreover, to

monitor the effect of �, a minimization of Q [equation (3)] was

performed for a range of logarithmically spaced values of �
from 10�10 to 1010, and �2 log½PðD; � j HÞÞ [equation (5)] was

calculated at each step.

The refined values of the fitting parameters obtained with

both the Bayesian and the �2-minimization methods are listed

in Table 1. The parameters refined by the Bayesian approach

are generally closer to the prior and have smaller uncertain-

ties, as a consequence of including the regularization term.

Notice, for example, that the area per lipid headgroup, A, was

refined to 70 	 4 with the Bayesian method (prior value 61 	

5) as compared to 76 	 19 with �2 minimization, and N was
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Figure 3
Analyzed examples of SAXS data sets for (a) a nanodisc sample and (b) a
sample of detergent micelles. The data sets (black points with error bars)
were fitted using conventional �2 minimization (red solid line) and
Bayesian minimization (green dashed line). The gray dashed line is the
prior. Residual plots are shown below, where �I ¼ Iexp � Ifit and � is the
experimental standard deviation.

Table 2
Refined parameter values for the micelle data set.

Notation as in Table 1, and be is the electron scattering length (2.82 fm).

Model
parameter

�2

minimization Prior
Bayesian
minimization

N 125.0 (0.3) 130 (15) 125.0 (0.3)
" 0.5398 (0.0007) 1.00 (0.30) 0.5398 (0.0007)
��h (be Å�3) 0.183 (0.033) 0.184 (0.013) 0.184 (0.006)
��t (be Å�3) �0.055 (0.010) �0.056 (0.006) �0.056 (0.002)
�R (Å) 5.41 (0.03) 6.0 (1.0) 5.41 (0.03)
c (mM) 30.3 (11.0) 30.0 (3.0) 29.8 (1.9)
B (�10�3 cm�1) 0.89 (0.01) 1.0 (10.0) 0.89 (0.01)

Goodness of fit,
�2

r

170 – 170

Goodness of fit,
Cmap

C ¼ 36, N ¼ 90 – C ¼ 36, N ¼ 90
P(C � 10 j N) ’ 0% – P(C � 10 j N) ’ 0%



refined to, respectively, 119 	 7 and 103 	 22 with the

Bayesian and the conventional methods (prior value 152 	

10). These two parameters have been plotted for a range of �

values in Figs. 4(a) and 4(b), and they clearly approach the

prior value as � increases. The refined values were thus

influenced concurrently by the SAXS data and the prior. In

Fig. 5 the prior, likelihood and posterior distributions for N

are plotted, clearly showing how the refined value for N using

the Bayesian method (posterior distribution) is affected both

by the prior and by the likelihood. Figs. 4(c) and 4(d) show the

values of " and Vl, which were not affected significantly by the

prior at the optimal �. Generally, parameters are mostly

effected by the prior if, firstly, there is a large discrepancy

between the prior mean value and the likelihood value (see

Fig 5), secondly, 	p (the prior width) is narrow, and, thirdly, the

parameters have little effect on �2.

4.2. Detergent micelles

In the micelle example, both the �2 minimization and the

Bayesian minimization found a solution that fitted the data

relatively well as judged by visual inspection (Fig. 3b), and the

regularization parameter, �, was optimized to 1.5. The residual

plot reveals some systematic discrepancies. This is verified by a

correlation map (Cmap) test (Franke et al., 2015), from which

it can be concluded that the data are significantly different

from the model [significance level 1%, C = 36,

P(C � 36 j N ¼ 90) ’ 0%]. The monodisperse prolate ellip-

soidal model is thus not a perfect description of the physical

micelles, but constitutes an approximate model. In the micelle

example the prior had only a minor effect on the fitted results,

as seen from Table 2. This means that the global minimum for

�2 in the parameter space is physically meaningful and

consistent with the prior. While the prior hardly affects the

model parameters, it does lead to more reasonable errors

(Table 2). Note that the concentration had a prior value of

30.0 	 3.0 mM. The error should decrease after taking the
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Figure 5
Probability distributions for N in a nanodisc sample. N was refined with
�2 minimization to obtain the likelihood distribution (red dotted line)
and with Bayesian minimization to obtain the posterior distribution
(green solid line), which was regularized by the prior distribution (gray
dashed line).

Figure 4
The refined value of four different parameters for the nanodisc model, as
a function of �. The refined parameter values for the optimal � are
marked by a green ring. The gray dashed line and the gray shaded area
show, respectively, the prior mean and the prior standard deviation. Some
parameters were significantly altered by the prior, e.g. A (a) and N (b),
whereas other parameters were virtually unaffected, e.g. " (c) and Vl (d).



SAS data into account, since these data refined the concen-

tration to a value very close to the prior value (30.3 and 29.8

for the conventional and Bayesian methods, respectively).

Thus, the error of 	1.9 found with the Bayesian approach is

more sensible than the error of	11.0 found with conventional

�2 minimization. The same applies for the refined values of

��h and ��t.

4.3. The regularization stabilizes the solution upon addition
of noise

Noisy data were simulated with different noise levels to

examine the influence of the Bayesian regularization on noisy

data. The best fits for the nanodisc and the micelle data sets

were used to generate respective simulated data sets. Standard

deviations (error bars) were assigned to each point in q by

�ðqÞ ¼ 
½IfitðqÞ�
1=2
þ B, where IfitðqÞ is the refined fit value

found by the Bayesian approach, 
 is a relative noise para-

meter and B is a constant noise level, set to B ¼ 10�5. The

simulated intensities were randomly sampled from a normal

distribution with mean � ¼ IfitðqÞ and standard deviation �.

The simulated data and corresponding fits for selected noise

levels can be seen in Fig. 6. As in the experimental situation,

the prior differs slightly from the simulated data, and it is also

plotted in Fig. 6.

For each noise level, several data sets were generated by

random sampling from the normal distribution and fitted with

the model, so the variation in the refined parameter values

could be evaluated. This is shown for A in Fig. 7, where each

point is the mean value of five runs simulated with the same

noise level and the error bars are standard deviations. The

final refined value of A was stabilized considerably in the

Bayesian method as compared to the conventional method,

expressed by a nearly constant mean value for all noise levels

and small standard deviations.

4.4. The information content in data

The information content for the nanodisc SAXS data,

according to equation (6) and given the prior, was Ng ¼ 9:1,

while the number of fitted parameters was 12: that is, 12

parameters were refined, but the information coming from the

SAXS data corresponded to nine parameters. The rest of the

information came from the prior. For the micelle data set, the

information content from the SAXS data was Ng ¼ 6:0, while

the model had seven fitting parameters. Therefore, in both

cases, the parameters were refined mainly from the SAXS data

and to a lesser degree from the prior. However, when

analyzing the simulated data with added noise, the prior

played a greater role. In Fig. 8(b), Ng is plotted for an

increasing value of the relative noise parameter 
. Ng

decreases from around 10 (nanodisc example) and 7 (micelle

example) at 
 ¼ 0 to Ng < 3 (both cases) at 
 ¼ 40: that is, for

noisy data sets, the refined parameters are mainly determined
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Figure 7
Refined value for the area per headgroup A, found by �2 minimization
(red) and by Bayesian minimization (green), for increasing relative noise

. The prior, used in the Bayesian minimization, is shown with a gray line
for the mean and a gray area for the standard deviation.

Figure 6
Simulated data with increasing relative noise, 
 = 0 (blue), 
 = 2 (green),

 = 5 (red) and 
 = 15 (cyan). Fit with Bayesian minimization (solid line)
and regularized with the prior (dashed line). (a) Simulated nanodisc data
and (b) simulated micelle data.



by the prior. In accordance with our intuition, this shows that

less information can be obtained from noisy data, but intri-

guingly, it also implies that, since the risk of fitting the noise in

data is circumvented by the prior, some information can still

be extracted with the Bayesian regularization method, even

from very noisy data. This would not be possible with the

conventional approach, owing to the large fluctuations of the

refined parameter values, as exemplified in Fig. 7. The infor-

mation content depends on the value of �, i.e. on how the prior

information is weighted with respect to the new data set. In

Fig. 8(a), it is shown how Ng decreases as � increases, from

Ng ’ K at � ¼ 10�10 (K ¼ 12 for the nanodisc example and 7

for the micelle example) to Ng ’ 0 for � ¼ 1010. Large �
values give weight to the prior, resulting in a low estimated

information content of the new data set.

After having introduced Ng, it is worth returning to the

Occam term from equation (5). This term pushes the algo-

rithm towards solutions with higher � values and closer to the

prior parameter values (Fig. 1). Higher � values also imply a

smaller Ng (Fig. 8a), that is, fewer parameters can be retrieved

from the data. Hence, the Occam term favors simpler solutions

with fewer effective parameters.

5. Discussion

In SAS data analysis with analytical form factors, the prior

knowledge can be included via molecular constraints as

implemented in the parametrization of the hypothesized

model. The remaining model parameters are then, in principle,

free and can take any value. In practice, however, many

parameter values cannot be accepted, owing to inconsistency

with the prior knowledge about these parameters, for example

from other experiments. This is often accounted for by fixing

certain parameters or by setting up limits for the parameter

values, i.e. not allowing the parameters to exceed a certain

range. This is implemented in several commonly used

programs for SAS data analysis with analytical form factors,

for example SasView (http://www.sasview.org), SASfit (Breßler

et al., 2015), Scatter (Förster et al., 2010) and WillItFit

(Pedersen et al., 2013). It can be argued that this practice

corresponds to a Bayesian approach using uniform priors with

a finite probability in a given interval and zero probability

outside this interval. In the present paper we improve this

conventional method by allowing for normally distributed

priors that better represent the prior knowledge than uniform

priors.

The Bayesian approach is similar to other optimization

methods using regularized expressions, but the regularization

parameter is here determined automatically and in a statisti-

cally sound way, such that a subjective choice of � is avoided.

In a wider perspective, the presented method is a solution to

a multi-objective problem (for details see e.g. Miettinen,

1998). The objectives are here quantified in terms of the

likelihood and the prior functions (�2 and S), and the wanted

solution is a set of model parameters. The objective functions

may be minimized by different sets of model parameters, and

the goal is to find the most probable solution taking into

account both functions. The �2 versus S solution space can be

divided into two regions, as shown for the nanodisc example in

Fig. 9. One region is unreachable since no set of parameters

results in these combinations of �2 and S values. The other

region is reachable, but most solutions here are non-optimal

since there exists another set of parameters which is superior

with respect to one of the objective functions without being

inferior with respect to the others. The border between the

regions is denoted the Pareto frontier (Miettinen, 1998). It

contains all sets of model parameters that constitute an

optimal solution for a given weight between the two objective

functions (Pareto optimal sets). A scan over � corresponds to

a walk along the Pareto frontier, as indicated in Fig. 9. At

� ¼ 0, �2 is minimized and S takes a a relatively high value. As

� increases, S converges towards 0 and �2 towards the �2 value

for the prior solution. Intriguingly, the Pareto frontier is

convex for the nanodisc example, meaning that a small
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Figure 8
(a) Ng as a function of �, with the value for the optimal value of �marked
in green. (b) Ng for varying noise levels. Each point was a mean for a
small range of subsequent values of � (a) or 
 (b).



perturbation of �2 allows a large improvement of S, and vice

versa. The Pareto frontier for the micelle example is almost

single valued, since the same set of parameters minimizes both

�2 and S. The present method is a so-called scalarization,

transforming the multi-objective problem into a single-objec-

tive problem with only one solution, namely that for the most

probable �.

We have chosen to use Gaussian priors for all parameters,

despite the fact that non-Gaussian priors may better represent

the knowledge about some of the model parameters. Gaussian

priors are, however, computationally economical and simpler

to comprehend. The computational speed is relevant, because

the Bayesian algorithm needs to refine the model for several

values of � to find the most probable solution, thus being 10–

20 times slower than conventional �2 minimization

(depending on the effectiveness of the �-optimization algo-

rithm). For a complex model with two (or more) numerical

integrals, such as the nanodisc model, the CPU time can thus

extend to 20 min on a standard PC (single core). Considerable

speedup can, however, be obtained by parallelization in q.

An inherent problem of the presented method is that it

relies on the principle that priors and experimental errors are

correctly estimated. Priors may be wrongly estimated, for

example because of an erroneous concentration measurement,

or errors on refined parameters from previous experiments

may be underestimated. A prior for a certain parameter can

either be too wide, be too narrow or have a wrong mean value.

If the prior is too wide, its effect on the refined value will be

underestimated and the errors overestimated. If, on the other

hand, a prior is too narrow, it will over-restrict the refined

parameter, and the refined error will be underestimated. In

the case of a wrong prior mean value, the data will pull the

solution far away from this value. Large deviations are thus

apparent when comparing the prior with the refined result, so

the method constitutes an evaluation of prior assumptions.

Generally, a wrongly estimated prior for a given parameter

will affect the solution the most if the new data contain rela-

tively little information about that parameter, but will only

have a minor effect if the parameter is well determined by the

new data. Wrongly estimated priors should, of course, be

avoided since inaccurate input will inevitably lead to inaccu-

rate output.

The errors on SAS data may likewise be wrongly estimated,

as discussed for example by Franke et al. (2015) and Rambo &

Tainer (2013). In the nanodisc example the fit is good, as

judged by visual inspection. However, the residuals (Fig. 3a)

are expected to be within 	3� for a good fit, but in this case

reach up to 	10�. In the same way, �2
r is expected to be in the

range [0.67, 1.43] (95% confidence interval), but a value of

6.26 was obtained. The size of the experimental errors can be

evaluated by indirect Fourier transformation, since data are

here fitted with a generic function that should result in a �2
r

value close to unity. However, a �2
r value of 6.6 was obtained in

the Bayesian indirect Fourier transformation, thereby indi-

cating that the experimental errors are underestimated. With

the Cmap test, the fit could be evaluated independently of the

experimental errors. The Cmap test confirmed that the simi-

larity of model and data could not be rejected [significance

level of 1%, C ¼ 10, P(C � 10 j N ¼ 106) = 9.2%] and hence

confirmed that the experimentally determined error bars were

underestimated.

Underestimation of the experimental errors will give too

much weight to data (and too little to the prior), since the

weight given to data is inversely proportional to the square of

the experimental errors [equation (1)]. For a data set with

severely over- or underestimated errors, an error correction

could therefore be included either separately before the

analysis or as an implicit part of the analysis to avoid the effect

of erroneously determined experimental errors. We have not

included that in the present work because we believe it

deserves a more thorough discussion, and it is not a question

related specifically to the Bayesian method presented here but

affects all methods based on �2.

The stabilization of the refined solution upon addition of

noise, as exemplified in Fig. 7, shows that the Bayesian regu-

larization method is especially relevant for data with a low

signal-to-noise ratio: that is, when sample concentration is

limited, for example for protein samples with low-yield

expression and samples that are only stable at low concen-

trations, when exposure time is limited, for exmaple in time-

resolved studies, or when flux is limited, for example in SANS

and in SAXS at home-source instruments.

The number of degrees of freedom in a SAS data set with q

range qmax–qmin and maximum intraparticle distance Dmax has

been described in terms of the number of Shannon channels

(Shannon, 1949; Moore, 1980) as NS ¼ Dmaxðqmax � qminÞ=�,

provided that qmin <�=Dmax. NS is widely used to assess the

information content in data (e.g. Grant et al., 2015). As a

measure for the information content, however, NS has the

obvious shortcoming that it does not take into account the
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Figure 9
The �2 versus S space for the nanodisc example. The Pareto frontier
(black line) separates the unreachable region and the reachable region.
The minimum �2 value (dashed line; � ¼ 0) and the direction of
increasing � are shown. The most probable solution was found at
� ¼ 0:24, S ¼ 14 and �2 ¼ 668 (point not included).



noise level of data. A solution was proposed by Konarev &

Svergun (2015), who introduced an effective number of

Shannon channels MS by truncation of data at high q values

with poor signal-to-noise ratio, thus taking into account the

noise level of data.

As shown here, and by Pedersen et al. (2014), the noise is

also effectively taken into account by Ng. Moreover, Ng takes

into account the included prior knowledge. Pedersen et al.

(2014) and Vestergaard & Hansen (2006) used a generic prior,

namely that pðrÞ is a smooth function. In fact, this is the same

general information used to estimate MS. We will in the

following denote the number of good parameters obtained

with the smoothness constraint by NS
g (not to be confused with

NS). NS
g can be calculated with the indirect Fourier transform

algorithm in BayesApp (http://www.bayesapp.org; Hansen,

2012). The Ng introduced in the present paper uses Gaussian

priors for each parameter and will therefore be denoted NG
g .

For the micelle data set NS
g ¼ 8:8 and NG

g ¼ 6:0, and for the

nanodisc data set NS
g ¼ 7:3 and NG

g ¼ 9:1: that is, the esti-

mated information content varies with the prior. In the same

way, if the Gaussian prior is altered, then NG
g will change

accordingly. To show this, the priors (Tables 1 and 2) were

altered by rescaling the prior width with a scale factor �, i.e.

	p! � 	p, corresponding to a change in the certainty about

the priors. NG
g increases asymptotically as the prior width

increases (Fig. 10), i.e. when the a priori certainty about the

parameters decreases. The dependence on prior knowledge is

especially evident for repetition series. Here, the first

measurement has a relatively high information content, but

since that measurement will be included in the updated prior

knowledge, the second measurement will contain less infor-

mation, the third repetition even less, etc. At some point, no

more measurements need to be taken, since the information

content of succeeding measurements would effectively be

zero. The prior knowledge has no effect on NS, which is

nevertheless widely used as a measure for the information in

data. Therefore, we propose to use NS
g or MS instead of NS to

assess the information content in a single SAS data set or a

repetition series prior to modeling. After modeling, NG
g can be

used to evaluate the information obtained when SAS is

combined with other experimental results and/or other avail-

able prior knowledge, as shown in the two examples.

6. Conclusion

A Bayesian regularization method for SAS data analysis was

developed and tested on two data sets: a sample of nanodiscs

described by a model with 12 parameters and a sample of

detergent micelles described by a model with seven para-

meters. In both cases, the Bayesian regularization method

found a set of model parameters that were physically mean-

ingful without compromising the goodness of fit. The regu-

larization method, furthermore, stabilized the solution when

tested against simulated data with increasing noise, thereby

preventing overfitting of random noise. This had the important

advantage that information could be retrieved even from very

noisy data. The method is founded upon probability theory

and provides an automatic procedure for weighing the like-

lihood function �2 and the prior function S with respect to

each other, by optimizing the regularization parameter �.

Moreover, the Bayesian method provides a measure for the

information content in data, the number of good parameters

Ng, which takes into account both the noise level of the data

and the prior knowledge about each model parameter.

Bayesian regularization is generally applicable to inverse

problems and is indeed widely applied in many other fields, as

mentioned in x1. But, owing to the relatively low information

content in SAS data combined with the use of models with

multiple parameters, the Bayesian regularization method is of

clear relevance for this field.
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