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Abstract: An overall synthesis of biology and non-equilibrium thermodynamics remains a challenge at the
interface between the physical and life sciences. Herein, theorems from finite-time and control thermody-
namics are applied to biological processes to indicate which biological strategies will succeed over different
time scales. In general, living systems maximize power at the expense of efficiency during the early stages
of their development while proceeding at slower rates to maximize efficiency over longer time scales. The
exact combination of yield and power depends upon the constraints on the system, the degrees of freedom
in question, and the time scales of the processes. It is emphasized that biological processes are not driven by
entropy production but, rather, by informed exergy flow. The entropy production is the generalized friction
that is minimized insofar as the constraints allow. Theorems concerning thermodynamic path length and en-
tropy production show that there is a direct tradeoff between the efficiency of a process and the process rate.
To quantify this tradeoff, the concepts of compensated heat and waste heat are introduced. Compensated
heat is the exergy dissipated, which is necessary for a process to satisfy constraints. Conversely, waste heat
is exergy that is dissipated as heat, but does not provide a compensatory increase in rate or other improve-
ment. We hypothesize that it is waste heat that is minimized through natural selection. This can be seen in
the strategies employed at several temporal and spatial scales, including organismal development, ecologi-
cal succession, and long-term evolution. Better understanding the roles of compensated heat and waste heat
in biological processes will provide novel insight into the underlying thermodynamic mechanisms involved
in metabolism, ecology, and evolution.

Keywords: evolution, ecology, succession, information, entropy, exergy, minimum dissipation, maximum
power, compensated heat, waste heat

1 Introduction

Many scientists have contributed to understanding the underlying thermodynamics of biological processes.
One of the most notable attempts was Erwin Schrödinger’s bookWhat is Life [1]. The purpose of the current
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paper is to provide an updated perspective on the role of thermodynamics in biological systems. Many such
updates appearwith some regularity (see for exampleMurphy andO’Neil’sWhat is Life: The next 50 Years [2]).
The present update differs in two respects. First, it reformulates evolution and ecology in terms of informed
exergy flows and controlled spontaneity, shifting the focus away from entropy production and dissipation
(Box 1 andTable 1). Second,we explicitly examine the implications of finite-timeand control thermodynamics
for biological processes. It is our hope that this paperwill be of value to biologists andphysical scientists alike.
To this end, both equations and biological jargon have been kept to a minimum. There are also a number of
text boxes to afford deeper explanations of concepts that may need greater explanation than allowed for in
the main text, as well as a table of terms (Table 1).

Box 1 (Exergy and entropy).
The exergy (A) of a thermodynamic system is the work that could be extracted in a process that re-

versibly brings the system to equilibrium with its environment [3]. For processes at fixed environmental
temperature and pressure, the change in exergy is just the change in free energy of the system. In any
spontaneous process, exergy is dissipated, and available work is irretrievably lost. This dissipated exergy
appears as heat.

Entropy (S) is a thermodynamic state function whose change is equal to the heat received by the
system divided by its temperature. Entropy is also the logarithm of the number of microstates (W) con-
sistent with the information (I) about the system (S = kB lnW). In statistical terms this has been ex-
pressed as the well-known Shannon formula (S = −kB∑ pi ln pi). This statistical treatment of entropy has
led to entropy also being defined as missing information (S = −I). Here, kb is the Boltzmann constant
(1.38064852 × 10−23 J ⋅K−1) and pi is the probability of state i.
2 Thermodynamic perspectives

2.1 Thermodynamics of spontaneous exergy flow

One perspective of thermodynamics is the quantitative characterization of spontaneity of a flow. The moti-
vation for this notion began with a water wheel, where the spontaneity of water flowing is manifest as mass
moving toward a lower gravitational potential. The spontaneity of this flow is the maximum work, which
equals the mass flow times the difference in potential, so we have

Spontaneity = Flow × Potential difference. (1)

This point of viewwas instrumental toCarnot’s recognition that theworkproducedbya steamengine is driven
by heat flowing to a lower temperature [4, 5]. He further realized that just as for the water wheel, the most
work obtainable fromaheat engine is the least work required to raise the heat back to the higher temperature.
This enabled the creation of a temperature scale in which the temperatures can act as the potential in eq. (1).
Gibbs [6] extended Carnot’s realization to chemical phenomena, again exploiting the maximum work due
to the spontaneity of chemical reactions to define chemical potentials such that the maximum work is the
stoichiometric combination of the chemical potential differences (the affinity) times the mass that reacted
(flowed). Following this point of view, we define the spontaneity of the flow of the i-th extensity xi through
the intensity difference yi − yei to be

Spontaneityi = ∫(yi − y
e
i )dxi. (2)

The spontaneity of one flow can then be coupled to other flows to drive these flows in a specific direction.
The sum of spontaneities of all the extensities is guaranteed to be non-negative for all real processes by the
second law. Thus, the flow of extensities with negative spontaneity can be “driven” by coupling these to flows
with positive spontaneity.
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Table 1: Table of terms. All terms are italicized the first time they appear in the text. The table is ordered alphabetically. Symbols
used in equations are shown in parentheses.

Term Definition

Autopoiesis A system’s property of being able to maintain and reproduce itself
Compensated heat (Qc) The exergy dissipated as heat which is necessary to satisfy constraints
Constraint A conditional requirement of the feasible set of solutions to an optimization problem
Degree of freedom An independent coordinate, describing the state of a system, along which change can occur
Dissipation The degradation of energy available to do work
Dissipative structure An open non-equilibrium thermodynamic system that generates order spontaneously by directing

streams of exergy
Emergy The amount of exergy that is either directly or indirectly required to drive a process
Entropy (S) Entropy is a thermodynamic state function whose change is equal to the heat received by the

system divided by its temperature. See also Box 1.
Exergy The work that could be extracted in a process that reversibly brings the system to equilibrium with

the environment. See also Box 1.
Far-from-equilibrium system Systems subjected to flows of matter and/or energy, in the non-linear regime
Fitness The ability of an entity to survive and reproduce. Fitness is the quantitative parametrization of

selection in evolutionary biology
Functional control region The region between minimum dissipation operation and maximum power operation
Heterotroph An organism that cannot fix carbon from an inorganic source, so it must consume complex organic

molecules that have been previously anabolized by another organism
Informed Structured by the passage of information from a previous time
Near-equilibrium systems Systems in which flows are linear in the forces
Ontogeny The development of an organism from the time of its inception (e. g., fertilization) to its mature form
Orientor A variable that describes where a system tends move in state space
Pareto optimum A set of states which optimizes a combination of two or more objectives (e. g., maximum power and

minimum dissipation) where an improvement in one objective cannot occur without the worsening
of another

Power The rate at which work is done
Selection The differential reproduction and survival of a particular type. Selection is the key mechanism

behind evolutionary change
Spontaneity The maximum work obtainable from a reversible flow of an extensity
Succession The process of sequential change in the structure of an ecological community as the ecosystem

matures
Unit of selection Any entity in the hierarchy of biological organization that is subject to natural selection and

subsequent change over time
Waste heat (QW) The heat dissipated above and beyond the minimum necessary to achieve the specified rate of the

process subject to constraints

More generally, the focus here is about informed exergy flow. That is, the flowof exergy through pathways
that have been constrained by the passage of information from a previous time. Living systems direct flows of
exergy from sources, such as the sun or chemical bonds, through informed pathways to achieve homeostatic
and environmental control, and ultimately to reproduce. We emphasize that these pathways are informed to
highlight that living systems can extract work from an exergy source only if the exergy flows through specific
pathways which are informed by the passage of information, for example, the information stored in the DNA
molecules that are passed from parents to progeny. The ability of biological systems to compete for exergy
flows and efficiently direct them through informed pathways to extract work is the basis for what defines how
well a living entity will survive and reproduce. This differential ability to direct flows of exergy through in-
formed pathways to reproduce is ultimately what determines fitness and long-term evolutionary trajectories.

2.2 Thermodynamics of dissipation

The quantitative thermodynamic measure of spontaneity of a flow is the amount of work the flow could do
if it proceeded reversibly. However, real spontaneous processes are irreversible due to dissipation of exergy
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resulting in entropy production. Thus, real processes obey rather a balance condition involving exergy where

Exergyin − Exergyout = ΔExergystored + Exergydissipated, (3)

where the first term on the right includes exergy stored in bonds as well as mechanical energy.
In energetic terms, dissipation is measured by the amount of lost work; in entropic terms it is measured

by the amount of entropy produced. The lost work shows up as heat according to the Gouy–Stodola theorem,
which states that the reduction in exergy available to do work is proportional to the amount of entropy, S,
produced [7, 8, 9, 10]. That is,

Exergydissipated = −T0Sproduced, (4)

where T0 is the temperature of the environment. Thus, either dissipated work or entropy produced can quan-
tify dissipation.1

Dissipation happenswhen there is a flow in response to a forcewithout full compensation inwork stored.
One example of this is when one kilogram of water moves down one meter without doing the maximum 9.8
joules of work (m ⋅g ⋅h). The difference between the work done and this 9.8 joules is the dissipation. Lost work
appears as heat and equals the temperature of the environment times the entropy produced (see eq. (4)).

Modern fluctuation theory [11, 12, 13] has recently provided us with an intriguing expression for the en-
tropy production of a process given its probability of proceeding forwards, Pf , and backwards, Pr, as

Sproduced = kB ln(Pf /Pr), (5)

where kB is Boltzmann’s constant. One interpretation is that the more spontaneously (unidirectionally) a
step needs to proceed, the more entropy production must occur. This fact and its various phenomenological
counterparts have led many authors to assert that the entropy production “drove” the process [11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22]. However, entropy production does not drive any process; it is a consequence of the
rate of operation. The flow of exergy through informed pathways is what drives living systems to do work and
store exergy. The dissipation is the generalized friction in these processes that results due to the constraints
of finite time. Processes get selected to minimize the friction (the lost exergy, the wasted work, the entropy
produced) while getting the job done with the time and resources available.

In terms of eq. (5), consider bringing together two macromolecular reactants in a way that significantly
changes the odds that two reaction centers align. Although this may incur a cost, a molecular motor can
make this happen by bringing the reactants together in just the right way. Having such a molecular motor
dramatically changes the odds ratio in eq. (5).

Flows of exergy during spontaneous reactions result in entropy production. This entropy production, like
friction in mechanics, is a necessary byproduct due to imperfect technology. The technology makes a huge
difference, and for living systems this “technology” comes in the form of informed exergy flowpathways such
asmolecularmotors and carefully choreographed reaction chains informed by DNA [23]. Note that exergy not
wasted in one step is available for use in other coupled processes.

Many authors, starting with Lotka in 1922 [24, 25], have said much of the above: that exergy flows drive
andhencemakes possible the control of events in biological systems. Recognizing that dissipation is notwhat
drives biological processes, but is rather the undesirable part of what the technology allows, is however an
important new twist [26].

3 Thermodynamic states of biological systems
Both thermodynamics and biology frequently use the notion of equilibrium states. It is important to real-
ize that these notions of equilibrium depend on the timescale at which one is looking as well as on the de-

1 The distinction is only important for processes with varying environment temperatures [10].
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Figure 1: Dynamics across timescales. In any experiment, an observer is limited to certain degrees of freedom that are observ-
ably out of equilibrium. At different observational time scales, different degrees of freedom will have observable dynamics.
Other degrees of freedom will be too fast. That is, relaxation time is too fast to observe dynamics in these degrees of freedom
and thus they appear equilibrated. Still other degrees of freedom will be too slow. This means that relaxation time is too slow
to observe dynamics in these degrees of freedom causing them to appear stationary or non-existent. Thus, only the degrees of
freedom with relaxation times on the same scale as the observation time will have observable dynamics.

grees of freedom of interest. Every process has a timescale of relevance. For an organism’s processes this
timescale could be milliseconds to years, for an ecosystem hours to decades. Processes faster than this rel-
evant timescale will be fully equilibrated and thus not observable. Processes that are slower than this will
appear as stationary since nothing changes within the observed time window. Thus, being observably out
of equilibrium and the rate at which the system approaches equilibrium depend critically on the timescale
(Figure 1) [27, 28, 29].

A concept that is central to this relation between equilibrium and timescales is the notion of degrees
of freedom. The independent coordinates, describing the state of a system, along which change can occur
are the system’s degrees of freedom. Real biological systems contain many different degrees of freedom. On
the other hand, for a diatomic molecule, there are relatively few. There are translational degrees of freedom
of the molecule as a whole along the X, Y , and Z directions. There are also two rotational degrees of free-
dom and one vibrational degree of freedom. For more complicated systems, inclusion of diffusion, charge
build-up, temperature gradients, etc. may be relevant degrees of freedom. Each of these may be fully equili-
brated and may also be equilibrated with some others while at the same time totally out of equilibrium with
the remaining degrees of freedom. For example, translational motion is what is normally associated with a
sense of temperature, but rotation and vibration will often have their own temperatures of quite different
values. The fact that this occurs is a sign that translational motion does not couple strongly with rotation
and vibration. In that case, rotation and vibration may be disregarded when describing a chemical reaction
at (translational) temperature T. Only those degrees of freedom which change significantly on our timescale
need to be described in detail; all the other degrees of freedom can be treated parametrically on that time
scale.

As a simple illustration of the different dynamic behaviors of degrees of freedom, consider the temper-
ature and pressure in a sealed room, both being different from the outside temperature and pressure. Then
slightly open one of the windows. Pressure will equilibrate almost instantaneously while temperature will
take quite some time (i. e., those two equilibration processes have distinctly different time scales). Add the
CO2 concentration as an additional degree of freedom, and you have a still more complicated equilibration
process. Hence, the notion of how close a system is to an equilibrium state depends both on the relevant
timescale and the degrees of freedom being observed (Figure 1).

Irreversible thermodynamics often separates processes as being near equilibrium and far from equilib-
rium. The former concerns systems where the flows are in the linear regime (i. e., flows are proportional to
the corresponding forces). In the latter category forces are higher and the flows are non-linear. Thus, what is
considered is the rates of approach to equilibrium, not the actual forces.
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3.1 Non-equilibrium thermodynamic states and dissipative structures
Lotka pointed out that although living systems may appear to be unchanging and near equilibrium, they
might in fact be in a non-equilibrium steady state “feeding” off an exergy gradient to stay some distance
away from equilibrium. Onsager [30, 31, 32] provided one of the first complete theoretical discussions of non-
equilibrium steady-state dynamics and demonstrated that near-equilibrium steady states could persist as
long as there was an available exergy stream. He further showed that these near-equilibrium systems with
an influx of exergy tend toward states of minimum specific dissipation rates [30, 31]. These states consist of
structured systems that produce the minimal entropy compatible with the given constraints.

Box 2 (Dissipative Structures).
Dissipative structures are open non-equilibrium thermodynamic systems that generate order spon-

taneously by directing streams of exergy. A classic physical example of a self-organizing dissipative system
is the Benard cell [33, 34, 35]. In this example, a temperature gradient is applied to a fluid in a gravitational
field, which causes an instability in the system leading to self-organization in the form of convective cells.
The Benard cell is an example of order increasing within a system due to exergy flow and the concomi-
tant production and export of entropy across the boundaries of a dissipative system. Another example of
self-organizing dissipative systems are Taylor vortices. Taylor vortices can be seen in nature as hurricanes,
tornados, and whirlpools [35, 36]. This self-organization initially increases the entropy production rate,
followed by a decrease in the entropy production rate toward a minimum at steady state [68].

Figure 2: Schema of dissipative structures at multiple biological scales. A: Schematic representation of a dissipative struc-
ture that arises when systems are situated in an exergy gradient. These systems utilize low entropy exergy to do work and
store exergy in forms such as chemical bonds. Dissipative structures can be coupled to other systems (green arrows) or per-
turbed by other systems (orange arrow). B: Examples of dissipative structures at multiple biological scales from the cellular
systems of microorganisms being perturbed by phages on the left to organisms such as plants and animals interacting with
environmental parameters to ecosystems such as coral reefs being perturbed by human impact shown on the far right.
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Following from Onsager’s work, Prigogine [37, 38] and the Brussels School [39, 40, 41] described the dy-
namics of far-from-equilibrium systems and characterized a thermodynamic construct suitable for describing
living systems from cells to ecosystems. They termed these systems dissipative structures [37] (Box 2, Fig-
ure 2A). Dissipative structures form when systems are situated in a gradient, be it chemical, thermal, or
gravitational, that induces exergy flow through the system [42, 43, 44]. These flows can power the export
of entropy generated in the system into the surrounding environment. Thus, these systems maintain their
own entropy belowmaximal, allowing for the maintenance or creation of order and organization (Figure 2A)
[15, 16, 45, 46, 47, 48, 49, 50, 51].

3.2 Life-like features of dissipative structures

In addition to being open, irreversible systems far from equilibrium, some dissipative systems are also au-
tocatalytic. Well-known examples of such systems are the Belousov–Zhabotinsky reaction [52] and the self-
replicating hypercycles of Eigen and Schuster [53, 54, 55]. Prigogine and the Brussels school [38, 39, 40, 42]
showed that autocatalytic systems are able to cycle materials [48] and form feedback loops [56]. When au-
tocatalytic cycles give rise to feedback loops, the first element of the loop (the input) will be affected by the
last element (the output), resulting in self-organization of the entire system [57, 58, 59]. That is, the feedback
loop, driven by an external flow of exergy, forms an autonomous network, in which one element of the net-
work can exert control on the rest of the cycle. Fluctuations in these dissipative systems can yield instabilities
that can cause spontaneous hierarchical bifurcations (e. g., Turing bifurcations) [41, 42, 44, 60, 61, 62]. These
bifurcations can then give rise to variation, which can undergo natural selection (Table 1). They can also cre-
ate nested hierarchies of dissipative systems within dissipative systems [62, 63, 64]. These hierarchies then
lead to networks of interactions that will determine the optimal operation of each subsystem. In this sense,
biological systems across scales from cells, to organisms, to ecosystems can be seen as networks of dissipa-
tive structures (Figure 1B). Dissipative structures can be autocatalytic [37], self-organized [56, 58, 65] systems
capable of settling to multiple far-from-equilibrium steady states [66] and prone to hierarchical bifurcations
[61, 62]. Thus, it is generally accepted that dissipative structures (Figure 2A) are the closest thermodynamic
representations of biology at all scales (Figure 2B).

4 Finite-time thermodynamics

4.1 Tradeoffs between power and yield

The tradeoffbetweenpower and efficiency has been themajor themeof finite-time thermodynamics (FTT) [67,
68, 69, 70]. FTT studies concerning various types of heat engines reveal a rich tapestry of optimal operations
for various possible constraints, objectives, and mechanisms [71, 72, 73, 74, 75, 76, 77]. One feature however
is invariant. There is an interval of optimal operation between maximum power and minimum dissipation.
Operating outside of this interval is usually possible at both ends but entails waste of at least one of the
objectives as compared to what is possible within this interval, where better results can be achieved with
less resources. Similar results are found for chemical reaction systems [78, 79, 80, 81]. This area, between
maximum power and minimum dissipation, where a combination of time and efficiency of resource use can
be optimized, is termed the Functional Control Region (FCR) (the green region in Figure 3).

Figure 3 summarizes this in the context of heat engine optimizations. Note that the ordinate, power, be-
ing equal to output per time, inherently takes the rate of the process into account. The extremes of optimal
operation are minimum dissipation and maximum power [82]. Other objectives are combinations of these
[83, 84]. This tradeoff was originally cast in the form of the relative prices of products vs. reactants [82]. Panel
A of Figure 3 is the generic tradeoff curve between power and yield (efficiency) for the idealized case of an
endoreversible process [85] without idling costs (i. e., no losses associated with doing nothing). The maxi-
mum yield is achieved only for reversible operations where everything proceeds infinitesimally slowly and
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Figure 3: Typical curves of power and yield. A: The power vs. yield curve for an endoreversible process without idling costs.
B: The yield vs. power curve for an endoreversible process with idling costs where dissipation is present even with no power
output. Point i on the graphs represents maximum power operation, and point ii represents minimum dissipation operation.
The functional control region (FCR), shaded in green, where the slope is less than or equal to zero, is the only portion of the
curves where a combination of power and yield is optimized.

thus produces zero power (point ii in Figure 3A). Alternatively, in the limit of very rapid operation, all input is
lost to dissipation and thus produces no yield and also no power. Panel B shows the corresponding tradeoff
between power and yield when dissipation is present even when no output is produced [86, 87, 88]. In this
more realistic case, there is not only an upper bound on the power produced, but also on the efficiency or
yield of the process. Only under very special conditions do these two points coincide [75]. Generally, there is
the functional control region of tradeoff,marked in green in Figure 3,withinwhich other objectives determine
the optimal mode of operation.

4.2 Minimum dissipation, maximum power, and thermodynamic length

The extremes of maximum power and minimum dissipation both introduce interesting conditions of rele-
vance for biology. At the maximum power end there is the universal theorem that the yield is 50% of the
reversible yield to lowest order in the forces [89, 90]. In biology, the fact that maximal rate operation foregoes
about 50%of the yield is significant. Nonetheless, this theorem fromFTTdoes not seem to bewell known. For
example, in Karr et al.’s [91] complete simulation of aMycobacterium genitalium, theymanaged to account for
eachmolecule, with the exception of a couple of watermolecules, yet 44%of the exergy used asmeasured by
ATPs produced was unaccounted for. This discrepancy may be explained by the all-out reproduction process
being near the universal 50% efficiency at maximumpower and the fact that their simulated cell is reproduc-
ing as fast as it can. Biological systems working at maximum power are also significant early in colonization
events, when all-out growth is called for [92] and when the environment provides an abundance of exergy
streams. This is elaborated in Section 5 below.

FTT results concerning minimum dissipation point to a strategy involving a sequence of stages through
which the system should pass to minimize the dissipation. The more stages a relaxation process uses, the
less dissipation, provided that the stages are appropriately distributed. For a K-relaxation approximation to
a quasistatic process, the minimum dissipation is

ΔSmin = L
2/2K, (6)

where L is the total thermodynamic length [93, 94, 95] and K is the number of stages in the process. This
equation shows that decreasing the dissipation of a process can be accomplished by either increasing the
number of stages K, or by shortening the thermodynamic length L between the initial and final states [95].
Note that although adding a step anywhere in the process will reduce dissipation, the steps must be equidis-
tant in the thermodynamic length L to produce the minimum dissipation [93, 94]. Achieving this condition
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usually requires additional controls on the operation of the system [97]. This theorem leads us to hypothesize
that evolution selects for equal spacing of thermodynamic steps in biological processes.

One illustrative biological example is the electron transport chain (ETC) in mitochondria [81]. If an ad-
ditional molecule were to be added to the ETC, evolutionary processes should select for the redox potential
of the electron in the molecule such that the thermodynamic length should be equal between two existing
redox states in the ETC. By utilizing this theorem, one cannot predict which new molecule will arise in the
ETC. However, given a choice of molecules from several, one can predict which of the molecules would pro-
vide the greatest fitness advantage, and thus, which molecule would be the most likely to be selected for
and eventually fixed within a population. This theorem also allows for thermodynamic-based predictions at
higher biological levels, such as where new organisms might benefit most in trophic chains, or which new
niche space would be the most beneficial to occupy in order to receive the greatest bioenergetic benefit.

Frederiksen and Andresen [81] used eq. (6) to calculate the entropy production associated with the cy-
tochrome chain in human mitochondria, in which the chemical potential of an electron is lowered by se-
quential stages to extract work and produce, ultimately, ATPmolecules. They demonstrated that the spacing
of electron carrier molecules in actual mitochondria serves to produce close to the minimum entropy for a
K-step process of a given total path length. These calculations suggest that this strategy of equally spacing
each stage to minimize entropy production is being utilized by the mitochondrial ETC.

4.3 Accounting for dissipation

One important lesson from FTT is the ability to account for dissipation. That is, how much dissipation is
due to which factors and, most importantly, how much of the dissipated heat is waste. For example, when
sunlight heats a dark rock, almost all of the light’s exergy is dissipated completely without any other effect.
While some meager fraction of the exergy in the warm rock indeed can go on to contribute to meteorological
or erosion effects, the exergy carried by the sunlight effectively at 6000 degrees was degraded to exergy at
a few hundred degrees with no other effect. Exergetically, this is a complete waste. It is akin to a waterfall
without a water wheel. If the same amount of sunlight is absorbed by plants and the exergy is partially stored
as biomass, the dissipation is smaller. Eventually, of course, that stored exergy will end up as heat as well,
but it will have accomplished desired biological objectives along the way and can be sequestered over long
time periods as seen in large coal and petroleumdeposits. Itmust be emphasized here thatwhat is considered
a “desired” effect depends entirely on the controller. For evolution, the controller is natural selection, in the
sense that it is natural selection that dictates the evolutionary constraints on an entity and causes it to evolve.
Knowing the controller, however, allows us to minimize the dissipation subject to the constraints chosen by
our agent. This minimum dissipation is the compensated heat (QC). That is the exergy dissipated as heat
that is compensated for by satisfying the constraints of the controller. Any remaining dissipation above this
minimum is waste (QW ). Formally, waste is defined as any suboptimality in dissipation.

As an example, consider a heat engine of the type shown in Figure 3A, operating subject to the constraint
of a given power P = P0. One possible operation is shown as point i in Figure 4. The figure shows how actual
yield is the reversible yield minus the compensated heat and waste. Although the process at point i is oper-
ating at the necessary rate (i. e., P = P0), there is a large amount of waste, as the yield is lower than it could
be if the process were operating at point iii.

Now, consider themaximumpower operation point ii in Figure 4. This operation has nowaste – the yield
is reduced by the dissipation, but this was a necessary cost of increasing power.

For both examples and quite generally,

Wreal = Wreversible − Qcompensated − Qwaste, (7)

whereW and Q are work and heat, respectively. The sum of the last two terms is the uncompensated heat of
De Donder [98].
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Box 3 (Compensated heat and waste heat).
Compensated heat is the exergy dissipated as heat which is necessary to provide a specified rate

of a process subject to constraints. Waste heat is the heat dissipated in excess of the minimum neces-
sary to achieve the specified rate of the process subject to constraints. The sum of compensated heat and
waste equals the total dissipation. The decomposition depends on the specified constraints. Note that the
environment here includes a specification for the available technology, so the optimization problem is
well-defined.

Figure 4: Schematic representation of compensated heat (QC) and waste heat (QW) as a function of power and yield. The
horizontal dashed line is a constraint on the process that the power must be equal to P0. Both points i and iii satisfy the
constraint that P = P0. However, the process proceeding at point i has a lower yield and more exergy is dissipated as waste,
whereas at point iii there is no waste, as all of the exergy dissipated as heat is compensated by meeting the constraint that
P = P0.

Such analysis accounts for the dissipation as having been spent to satisfy a constraint. For biological
systems, though, the cost is only partially due to satisfying rate constraints. They also incur costs due to
resource scarcity and other environmental factors, as well as costs associated with spontaneity amplification
of the sort previously discussed in connectionwith eq. (5). Molecular processes in living cells must take place
with high yield and high fidelity. This forces many sizeable dissipation terms of the form kB ln(Pf /Pr). Other
compensateddissipation costsmay come fromunknownconstraints. For example, organismsneed the ability
to operate in more than one mode to achieve different goals such as when otherwise efficient muscles shiver
to generate heat [99].

Accounting for waste needs a detailed specification of the technology used in the optimization problem.
One concrete physical example is the losses associated with separating a mixture of two liquids into its com-
ponents. Traditional distillation column technology can never achieve a thermal efficiency greater than 69%
simply by its construction [100]. Switching to diabatic column technology eliminates this inefficiency. In bi-
ological systems, the specification of the technology is the set of available informed exergy flow pathways,
such as enzymes and molecular motors.

5 Thermodynamics across multiple biological scales
Non-equilibrium thermodynamics highlights the fact that there are specific generalities concerning entropy
production in thermodynamic systems at all scales (Figure 2). FTT takes this one step further by taking time
and rate into account and demonstrating that there is an explicit tradeoff between power and yield (Figures 3
and 4). This tradeoff provides an interesting optimization problem, where natural selection serves to opti-
mize some combination of yield and power (i. e., a Pareto optimum). Because of the constraints and selective
pressures of FTT, we find that there is a general power / yield tradeoff principle whereby biological systems
maximize power at the expense of yield over short time scales and when resources are plentiful, while pro-
ceeding at slower rates to maximize efficiency over longer time scales or when resources are scarce.
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This principle leads to several hypotheses and predictions about how biological systemswill behave over
particular time scales and exergy regimes. In the following sections we highlight several empirical studies
which serve as illustrative examples of how this principle explains the behavior of biological processes across
multiple scales (Figures 1 and 2), including ontogeny, succession, and evolution.

5.1 Ontogeny and aging

Prigogine and Wiame [101] hypothesized that the specific entropy production rate (i. e., entropy production
rate per unit biomass) decreases to a stable minimum during the development of biological systems. Zotin,
Lamprecht, and Zotina [102, 103, 104, 105] tested the predictions of the Prigogine–Wiame hypothesis [101],
demonstrating empirically that both ontogeny and development are characterized by a steady decrease in the
specific entropyproduction rate, althoughoftenprecededby an initial increase in specific entropyproduction
rate.

This hypothesis has been further empirically supportedbydata on trout [106], frog, and chicken [107, 108]
eggsduringontogenyandduringpost-embryonic development onbivalves [109, 110], gastropods, insects [111,
112], birds [113, 114], amphibians [115, 116], and even humans [96, 117, 118]. These data support the prediction
that the specific dissipation rate eventually decreases throughout the development and growth of organisms
despite sometimes increasing initially.

5.2 Ecology and succession

FTT can also be applied to the process of sequential change in the structure of ecological communities, known
as succession (Table 1). As an example, studies onmarine microbes demonstrate that microbial communities
inmarine systemsundergo succession to optimize the tradeoff between yield andpower in a predictableman-
ner [119]. The heterotrophic portion of these communities uses organic carbon as its exergy source. When sea
waters have greater bioavailable exergy stored in the form of these organic carbons the heterotrophic com-
munities switch their central carbon catabolism toward alternative glycolytic pathways with fewer thermo-
dynamic steps (i. e., smaller K from eq. (6)) such as the Entner–Doudoroff pathway [120]. By doing so they
are able to consume exergy resources at a faster rate and outcompete other organisms. However, by utilizing
these alternative catabolic pathways, they also dissipatemore exergy as heat (i. e., they are less efficient) [121]
and are thus less fit in exergy-limited environments. As a result of the selection for thermodynamic optimality,
there is a change in the relative gene frequencies for power and yield pathways depending upon the amount
of available chemical exergy in the surrounding environment [120]. Thus, empirically, it is observed that un-
der conditions of surplus exergy, ecological assemblageswill be selected for the ability to acquire and process
that exergy tomaximize power, whereas in environments with limiting exergetic resources, communities will
form, which decrease dissipation, thereby maximizing yield.

5.3 Minimum dissipation and maximum power in evolutionary processes

Due to the tradeoffs of power and yield, theory predicts that systems should be selected for maximum power
under conditions of surplus exergy and selected for minimum specific dissipation if exergy is limiting. Ken
Spitze’s [122, 123, 124] work on the life history in Daphnia pulex presents several accounts of organisms be-
ing selected for these two attributes under the appropriate energetic regimes. Spitze [123] found that, if D.
pulex populations were exposed to predation pressure from Chaoborus larvae, they were younger and larger
at the time of first reproduction and were also more fecund. This raised the following question: Why do these
“superfleas” not outcompete the less fecund “unterfleas” and quickly rise to fixation in the population? Van
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Table 2: Examples of the application of thermodynamics to biological systems at multiple scales.

Observation Reference(s)

In feeding experiments with mice, the animals had an increase in maximum sustainable
metabolic rate as well as basal metabolic rate when fed ad lib rather than being fed
controlled portions at specific times.

Hammond and Diamond, 1997 [128]

In snakes, active foraging strategies have a lower metabolic cost than sit-and-wait
predators when meals are frequent and small, but a higher metabolic cost when meals
are infrequent and large.

Secor and Diamond, 1998 [129]

Microbes in areas with higher chemical exergy in the form of bioavailable carbon have a
higher thermodynamic power output, as measured by isothermal calorimetry.

Roach et al., 2017 [121]

If a resource (e. g., a limiting nutrient for a plant) increases in abundance, it will typically
cycle faster.

Vollenweider, 1975 [130]

For lakes with significantly different levels of eutrophication the exergy-to-power ratio is
approximately the same in all cases.

Salomonsen, 1992 [131]

Noordick and de Jong [125, 126] hypothesized that these results could occur if there was genetic variation for
both power and yield. This would mean that superfleas are only super when resources are high, but when re-
source availability is low, they are less fit than the unterfleas. Tessier et al. [127] went on to show that the super
phenotype was indeed only more fit when resources are high, as the smaller, less fecund phenotype was able
to reduce available resources to a lower concentration than the larger, more fecund phenotypes. Here they
[124, 127] demonstrate that the increased efficiency of the unterfleas allows them to have a fitness advantage
when resources are limiting. For more examples of empirical studies and phenomenological support for the
application of thermodynamics to biological processes, see Table 2.

6 Discussion
The thermodynamics of living systems as informed flows of exergy [132, 133, 134] gives a physical foundation
for evolution by natural selection [24, 25, 89, 133, 135, 136, 137, 143]. How much of these flows is dissipated
in any particular part of the process depends upon the information passed through time and the available
exergy flow pathways. Any improvement in efficiency or an increase in speed of operation (power) without
other costs will be favored in any biological entity and in any environment. However, FTT demonstrates that
there is an explicit tradeoff between efficiency and rate that leads to a set of Pareto optima which optimize
some combination of power and yield under the given conditions of the system. Which Pareto optimum is
chosen depends upon the local orientors.

Thermodynamic functions provide important orientors of biological change at all scales, including on-
togeny, development, succession, and evolution. The central notion of the orientor has its beginnings in the
fields of systems analysis, cybernetics, and complexity science. The basic idea is that all dissipative systems
are able to build up gradients and macroscopic structure from “disordered” elements in a system. Thus, sim-
ilar characteristics can be observed in many different systems, and by utilizing these common aspects of
system evolution, systems can be described as being oriented toward specific points in state space. The cor-
responding state variables that are used to elucidate these dynamics are termed orientors and their technical
counterparts in in silicomodeling are termed goal functions. See Appendix A (Table 3) for a list and descrip-
tion of biological orientors.

Which orientors are appropriate and best describe the trajectory of the system will depend upon the
temporal and spatial scales of the process. In general, initial stages and short time scales are characterized
by maximizing exergy acquisition and power in line with Lotka’s power law [24, 25] and Odum’s maximum
emergy principle [138], whereas later stages are represented by efficiency serving to maximize yield andmin-
imize dissipation. However, other constraints and objectives will also determine the exact Pareto optimum of
power and yield. The theorems relating thermodynamic length to minimum entropy production (see eq. (6))
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[93, 94, 139] demonstrate that dissipation can be decreased by adding additional stages [95] or bymaking the
existing stages closer to equidistant [97, 140]. Understanding theways inwhich biological systems add exergy
extracting steps to processes and control the thermodynamic path length between steps aids in predicting
which evolutionary and ecological strategies are most likely to be explored. Thus, FTT enables additional
predictive power over current evolutionary and ecological theory.

This theoretical framework could prove particularly useful for pre-biological evolution and origin of life
research. As the presiding evolutionary dynamics of variation, constraint, and selection are established dur-
ing emergence of life, their thermodynamic basis can be seenmost clearly by examining them apart from the
specifics of biological organization [48, 135]. The principles that govern biological emergence carry through to
the rest of evolution. Thus, understanding the emergence of life from pre-biotic chemical systems can bring
to light new organizing principles of macroscopic biological change. For astrobiology the thermodynamic
generalities of living systems should prove fruitful in the search for extra-terrestrial life [141]. Lastly, ther-
modynamic approaches provide insight into how trophic dynamics are directing evolutionary trajectory and
ecological succession.

Future research should focus on merging the fields of developmental biology, ecology, and evolution
with thermodynamics, information theory, cybernetics, and autopoiesis, to better understand the relation
between boundary conditions, distance from equilibrium, dissipative rates, system complexity, exergy flow,
and entropy production. The use of calorimetry, isotopic labeling, and manometry will aid in developing
whole-system throughputmatriceswith data on primary production, respiration, biomass accumulation, dis-
sipation, and turnover rates to provide more detailed quantitative mechanisms, models, and predictions for
biological processes.

7 Conclusion

Byutilizing non-equilibrium thermodynamic theory, biological phenomena atmultiple time scales (Figure 1),
ranging from development to succession and evolution, can be understood as physical processes (Figure 2).
In order to apply thermodynamic theory to biological processes, biological systems should be treated as hi-
erarchical networks of informed exergy flows. These exergy flows are informed by the passage of information
from a previous time. It is this passage of information through time that allows living systems to build up
technology that extracts work from exergy streams. This passage of information through time is also what
allows for evolution by natural selection. Thus, from a thermodynamic perspective, natural selection acts
as a control, which continuously optimizes the tradeoff between power and yield (i. e., a Pareto optimum of
power and yield) (Figure 3). It is emphasized that biological systems are not driven by the production of en-
tropy, but rather by the flow of exergy through the informed pathways of the system. The entropy production
is the generalized friction, which is minimized subject to the constraints of finite time and resources.

The applicationof FTT to living systemsdemonstrates that there is an explicit tradeoffbetweenpower and
yield in biological processes. Utilizing theorems from FTT concerning thermodynamic length, process rate,
and dissipation (see eq. (6)), we develop hypotheses concerning the effects of this tradeoff on ecological and
evolutionary systems and offer a number of relevant studies, across several biological scales, as supporting
examples (Section 5 and Table 2).

To quantify the tradeoff between power and yield, we have introduced the notion of compensated heat
andwaste heat (Box 3). Compensated heat is the dissipated heat necessary to achieve a desired rate or meet a
constraint. Waste heat is any exergy that is dissipated as heat which does not provide a compensatory benefit
(Figure 4). Within this framework, there are characteristic generalities of non-equilibrium thermodynamic
systems across a variety of timescales. We emphasize that biological systems do not maximize power or min-
imize dissipation, but rather optimize the tradeoffs between power and yield within the functional control
region of operation. However, in general, living systems tend to maximize power over short time scales and
when resources are high, and tend to minimize dissipation over longer timescales or when resources are low.
This can be seen in the strategies employed at several biological scales, including organismal development,

Brought to you by | The Royal Library (Det Kongelige Bibliotek) - National Library of Denmark / Copenhagen University Library
Authenticated

Download Date | 9/18/18 12:11 PM



206 | T.N. F. Roach et al., Finite-Time Thermodynamics in Biology

ecological succession, and long-term evolution [142]. Better understanding the roles of compensated heat and
waste heat in biology will provide novel insight into the underlying physical mechanisms driving biological
processes at multiple temporal and spatial scales.
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Appendix A. Table of biological orientors
Table 3: Orientors for evolutionary and ecological trajectories. Factors in italics are components of the orientor, which may
serve as proxies to measure the orientor. Abbreviations are as follows. TST: Total System Throughput, TSE: Total System Export,
TSS: Total System Storage, AMI: Average Mutual Information.

Orientor Description Relevant literature

Maximum power
-TST
- Turnover rate
- Biomass
- Production: biomass
(minimizes)
- Production: respiration
(approaches unity)

Systems develop to maximize the flow of energy. In
network context this amounts to maximizing TST,
that is, maximizing the total energetic flow into or
out of all compartments of a system.

Lotka, 1922a,b; Lotka, 1925;
Odum and Pinkerton, 1955

Maximum empower (emergy) Systems organize in a manner that maximizes
emergy flow and storage.

Odum, 1988; Brown, Odum, and
Jorgensen 2004

Entropy production
- TSE

Systems will organize to maximize entropy
production early in development and then switch
towards minimizing entropy production at later
stages of development.

Aoki, 1989

Maximum ascendency
- TST
- AMI

Systems tend to maximize ascendency (i. e., the
total system throughput times the AMI) over time.

Ulanowickz, 1980, 1986,1997,
2006; Patricio et al., 2004

Maximum storage If multiple paths are available to move away from
thermodynamic equilibrium the one offering the
greatest amount of stored exergy will be selected.

Jorgenssen 1992, 1997, 2011

Minimum empower: exergy ratio
- TST
- TSS

Systems develop in a way that yields the minimum
cost (TST) to produce a given amount of
organization (TSS).

Bastianoni and Marchetini, 1997;
Bastianoni, 1998

Maximum dissipation
- TSE

Systems develop in a manner that will eventually
maximize the dissipation of energy gradients.

Schneider and Kay, 1990,
1994a,b, 1995, 1996; Prigogine,
1955; Prigogine and Stengers,
1984; Brooks and Wiley, 1986

Maximum cycling Energy flow in systems will generate cycling which
is a form of organization. As systems grow and
develop they will tend to maximize their energy
flowthrough and concomitantly their cycling.

Morowitz, 1968

Maximum residence time Residence time is a measure of the fraction of the
TST that remains as storage. As systems develop
they will organize to maximize the residence time of
stored exergy.

Cheslak and Lamarra, 1981
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Table 3: (continued)

Orientor Description Relevant literature

Minimum specific dissipation As systems approach steady states they will
organize to minimize the dissipation per unit mass.

Prigogine, 1947, 1955; Prigogine
andWiame, 1946

Relative ascendency Relative ascendency is the ascendency of a system
relative to its maximum ascendency (developmental
capacity). As systems mature relative ascendency
tends to approach 1.

Christensen, 1994

Decreased overhead As ecosystems near maturity the overhead tends to
decrease toward a minimum.

Rutledge et al., 1976
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