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Profiling of G protein-coupled receptors in vagal
afferents reveals novel gut-to-brain sensing
mechanisms
Kristoffer L. Egerod 1,*, Natalia Petersen 1, Pascal N. Timshel 2, Jens C. Rekling 3, Yibing Wang 4, Qinghua Liu 4,
Thue W. Schwartz 1, Laurent Gautron 5,**
ABSTRACT

Objectives: G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and
metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the
activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined
the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal
tract.
Methods: Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified
GPCRs expressed in vagal unmyelinated Nav1.8-expressing afferents.
Results: GPCRs for gut hormones that were the most enriched in Nav1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R,
CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast,
NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite
sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Nav1.8-expressing vagal afferents. GPCRs involved in
lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly
enriched in Nav1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents.
Conclusion: Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including
novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication.

� 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The gastrointestinal (GI) mucosa has long been known to be richly
innervated by unmyelinated axons [1,2]. These axons typically wander
within the lamina propria, often approaching its epithelium without
penetrating the basal lamina. While many axons present in the GI
mucosa are of enteric origin [3], anterograde tracing studies revealed
that vagal afferents also abundantly innervate the GI mucosa [4e8].
Some vagal unmyelinated afferents supplying the GI tract are poly-
modal [9], and electrophysiological studies have demonstrated that
mucosal vagal afferents respond to a wide range of molecules
absorbed across the epithelium or locally released, in addition to the
distension of the alimentary canal, as well as noxious, thermic and
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osmotic stimuli [10e17]. Thus, it is not surprising that a variety of
sensations and autonomic reflexes can be elicited by the mechanical or
chemical stimulation of the GI mucosa [18e21].
Many of the molecules that modulate the activity of vagal afferents,
including neurotransmitters, gut peptides, lipids, and metabolites, are
G protein-coupled receptors (GPCRs) ligands [22]. However, due to a
lack of understanding of GPCRs distribution in vagal afferents, it is
unknown whether the aforementioned molecules directly act on these
neurons. For instance, a prevalent view suggests that vagal GI mucosal
afferents directly respond to peptides released from enteroendocrine
cells including, cholecystokinin (CCK) and glucagon-like peptide 1
(GLP-1) [23e27]. In support of this view, the receptors for CCK and
GLP-1 are abundantly expressed in vagal afferents [7,28e30], and
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CCK and GLP-1 acutely enhance the activity of vagal afferents [10,31].
Moreover, the anorectic effects of peripheral CCK and GLP-1 are
attenuated in deafferented animals [32e35]. Despite these findings,
several other studies have suggested that gut-derived CCK and GLP-1
act through potentiating vagal responses to distending loads and/or
directly on the brain [36e40]. A recent study further challenged the
common view that CCK and GLP-1 can be directly detected by mucosal
afferents by demonstrating that neurons expressing receptors for these
gut hormones do not innervate the mucosa [7]. Lastly, considering that
at least 10 different peptides are known to be secreted by different
types of enteroendocrine cells [41], it is unknown which gut peptides,
other than CCK and GLP-1, can be detected by vagal afferents.
Here, we determine the expression profile of all GPCRs in the vagal
afferents of the mouse. A special emphasis was given to vagal af-
ferents expressing Nav1.8, a voltage-gated sodium channel involved
in the generation of action potentials in vagal unmyelinated afferents
[16,42,43]. Nav1.8-expressing vagal afferents richly innervate the
entire GI mucosa [5], making these neurons ideally positioned
to detect nutrients and molecules locally released in the GI tract. To
better understand how the vast assortment of GPCRs contribute to
vagal sensing mechanisms, we fully characterized GPCRs expression
in Nav1.8-expressing vagal afferents using a combination of quan-
titative PCR (qPCR), RNA sequencing, and double in situ hybridization
studies.

2. MATERIALS AND METHODS

2.1. Mice
Male C57BL/6JRj and C57BL/6J wild-type mice were purchased from
Janvier Breeding Centre (France) and the ARC at UT Southwestern
Medical Center (Dallas), respectively. These mice were used for qPCR
assays, chromogenic Brown, Red, and Duplex in situ hybridization.
Nav1.8-Cre-DTA mice were generated and genotyped as previously
described by us [44]. Briefly, we crossed Nav1.8 knock-in Cre-
recombinase mice (gift from Dr. John Wood, University College Lon-
don) on a pure C57Bl/6J background with ROSA26-eGFP-DTA mice
(stock #006331; The Jackson Laboratory, USA) to generate litters with
a 1:1 ratio of littermate controls (Nav1.8-Cre) and ablated mice
(Nav1.8-Cre-DTA). Young male ablated and control mice were used for
RNA-Seq studies.
Nav1.8-Cre-ChR2-YFP male mice were also used for the purpose of
ISH combined with immunohistochemistry. Mice carrying one Nav1.8-
Cre and one ChR2-YFP alleles were generated and genotyped exactly
as previously described by us [45]. In these mice, YFP clearly de-
lineates the membrane of Nav1.8 neurons, hence facilitating double
labeling analysis.
All mice used were young males (6e10 weeks old) housed in a barrier
facility with temperature controlled environment (w23 �C). Mice were
fed ad libitum with standard chow. The Danish Animal Experiments
Inspectorate or Institutional Animal Care and Use Committee at the
University of Texas Southwestern Medical Center at Dallas approved all
animal procedures.

2.2. qPCR array of nodose ganglia
Wild-type mice (C57/Bl6JRj, Janvier) were euthanized using cervical
dislocation and the nodose ganglia from 2 mice were dissected into
RNAlater at room temperature and kept at 4�C overnight prior of RNA
extraction using the NucleoSpin� RNA XS (MACHEREY-NAGEL) and
RT-PCR was performed using SuperScript III Reverse Transcriptase
(Invitrogen). Custom-designed RT2 Profiler PCR Arrays (Qiagen) was
used to analyze 377 GPCRs and 3 Receptor-Activity Modifying Proteins
MOLECULAR METABOLISM 12 (2018) 62e75 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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(RAMPS) on a LightCycler480 (Roche). Relative expression was
calculated using the formula:

Relative expression ¼ 2�ðCqTarget�CqRef Þ � C

where CqTarget ¼ the quantification cycle (Cq) for the target gene;
CqRef ¼ the geometrical mean of the quantification cycle for the
reference genes (Ywhas, Actb and Gapdh); C is an arbitrary constant
dependent on CqRef used to shift the relative expression so Cq values
of 35 on average are equal to 1, here C¼ 24221. Undetectable targets
were assigned a Cq value of 40. In total 8 mice was used to generate
the 4 samples analyzed. Information of genes on the qPCR array is
given in Table S1.

2.3. RNA-sequencing of nodose ganglia
RNA sequencing was performed on the nodose ganglia of ablated and
control mice (n ¼ 3/group). The two nodose ganglia (left and right)
from one mouse were pooled and RNA was extracted as described
above for qPCR. Library construction (Truseq, Illumina), sequencing
(Hiseq 100 PE, Illumina) and read quality control filtering was per-
formed at BGI Tech solutions (Hong Kong). The sequencing data was
processed using the “Tuxedo tools” (Tophat2, Cufflinks2, cummeR-
bund) as outlined in [46] using the mm10 reference annotation only.
Briefly, normalized expression quantification and differential expres-
sion tests for Ensembl genes were obtained using Cuffdiff2 with
“–frag-bias-correct” [47] and “–multi-read-correct” enabled. The
output from Cuffdiff2 [46] was analyzed with the R package
cummeRbund (version 2.12.1).

2.4. In situ hybridization

2.4.1. RNAScope chromogenic “brown” assay
Wild-type mice received an overdose of chloral hydrate (500 mg/kg,
i.p.) and their nodose ganglia were rapidly dissected and frozen on dry
ice. Ganglia were cut using a cryostat at 14 mm and stored at�80 �C.
Following the manufacturer’s protocol (Advanced Cell Diagnostic),
ganglia were hybridized with double-Z oligo probes for the genes listed
in Table S2. Signal detection was achieved using DAB and tissue was
counterstained with Nuclear Fast Red (Sigma).

2.4.2. RNAScope chromogenic “red” assay combined with
immunohistochemistry for YFP
Nav1.8-Cre-ChR2-YFP mice were anesthetized with chloral hydrate
(500 mg/kg, i.p.) and transcardiacally perfused with 10% formalin
(Sigma). Fixed nodose ganglia were kept in 10% formalin for 48 h at
4 �C before being transferred into 20% sucrose in PBS for an additional
24 h. Ganglia were next frozen and cut at 14 mm onto SuperFrost Plus
slides (1:5 series). Tissue was baked at 60 �C for 30 min, washed in
1X PBS, treated in H2O2 for 10 min. Pretreatment consisted of hot 1X
Target Retrieval solution for 1e2min. Next, slides were rinsed in
distilled water and dehydrated in fresh 100% ethanol. Tissue was
incubated with Pretreatment 3 at 40 �C for 15mins. After rinsing the
slides in distilled water, hybridization was performed using the stan-
dard ACD procedure and reagents from the RNAscope� 2.5 HD
Detection Kit (RED). The probes listed in Table S2 were applied at
40 �C for 2hrs. Amplification steps were done using the following the
manufacturer’s instructions. Lastly, signal detection was achieved
using a mix of Fast RED-B and Fast RED-A in a ratio of 1:60 at room
temperature for about 10 min. Slides were washed in distilled water.
The native tdTomato fluorescence was greatly diminished following in
situ hybridization. Nodose ganglia were next labeled using a GFP
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 63
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chicken antibody known to detect YFP (1:1,000). On the next day,
tissue was rinsed and incubated in a solution of biotinylated anti-
chicken (1:1,000; Cat#703065155; Jackson ImmunoResearch) for
1hr, followed by Streptavidin, AlexaFluor 488 (1:1,000; Cat#S32354;
Invitrogen) for 1 h. EcoMount mounting medium was applied to the
slides and coverslip over the tissue section. Pilot experiments in
adjacent tissue sections were also performed to ensure that the
combination of in situ hybridization with immunohistochemistry did not
alter the staining obtained with each individual procedure.

2.4.3. RNAScope chromogenic “duplex” assay
Fixed nodose ganglia were obtained from C57Bl/6J mice as described
for the “red” assay. Ganglia were next frozen and cut at 8 mm onto
SuperFrost Plus slides (1:5 series). Tissue was pretreated with boiling
1X Target Retrieval followed by Protease III at 40 �C for 15mins. After
pretreatment, the slides were hybridized with the probes listed in
Table S2. Amplification steps were done using the reagents from the
RNAscope� 2.5 HD Duplex Assay. Signal detection was achieved
using two different chromogenic substrates (HRP-C1-Green and AP-
C2-Red). Finally, slides were counterstained with hematoxylin and
covered with EcoMount mounting medium.
As a negative control, we used a probe recognizing the prokaryotic
gene dapB. Ganglia were completely devoid of a signal. As a positive
control, we detected the expression of cyclophilin mRNA across the
nodose ganglion (data available upon request).

2.4.4. Microscopy
Images of DAB- and Duplex-labeled ganglia were captured using the
standard brightfield optics of a Zeiss Axioplan light microscope
attached to a digital camera. Images of FastRed-labeled ganglia were
acquired using the 63x oil objective of the Leica Sp5 confocal laser
scanning microscope (UT Southwestern Live Imaging Core Facility).
Estimates were performed using ImageJ. Specifically, we manually
counted YFP-positive cells expressing select receptors and expressed
the data as percentage of Nav1.8 coexpression. This was done in 2e4
left ganglia from different mice. For each gene, we counted a total of
262e536 cell profiles. Data were expressed as the percentage of YFP-
positive cell profiles expressing red dots. In Duplex-labeled ganglia, we
counted the number of neuronal profiles unequivocally containing
green and/or red dots in 2e3 left ganglia from different mice. For each
combination of gene, we counted a total of 215e572 cell profiles. Data
were included in pie charts representing the percentage of cell profiles
expressing green, red, or both green and red dots. Lastly, Adobe
Photoshop CS5 was used to annotate, crop and adjust the contrast of
our digital images.

2.5. Patch clamp on ex vivo cultures of vagal afferent neurons
Mice were euthanized by cervical dislocation, and the ganglia was
dissected into DMEM (Dulbecco’s Modified Eagle Medium) at 4 �C. For
a typical experiment, ganglia from 4 mice were pooled prior of incu-
bation at 37 �C in DMEM supplemented with 1.3 Wünsch units/ml
Liberese TM (Roche) for w1 h. During the first half hour, the tubes
were shaken every 10 min. The next half hour, the samples were
resuspended using a pipette every 10 min. After 1 h, the samples were
resuspended using a pipette every 5 min until the sample was clearly
digested and the majority of cells in single cell suspension. The cells
were passed through a cell strainer (70 mm) and resuspended in
DMEM. The cell suspension was distributed on poly-D-lysin coated
coverslips and cultured during 4e6 days in Neurobasal Medium
(Gibco) containing 100 units/mL penicillin/streptomycin, 10 mmol/L
HEPES, 2 mmol/L Glutamax and B27 supplement (Gibco). On day two,
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the cultures were treated with 0.5 mM Ara-C in the culture medium for
48 h to eliminate glial cells. For electrophysiological measurements,
the neurons on coverslips were transferred to a 1 ml recording
chamber and superfused at room temperature with an artificial gan-
glion solution (AGS) containing (in mM): 152 NaCl, 5 KCl, 10 HEPES, 10
D-Glucose, 1 MgCl2, 2 CaCl2 with a pH of 7.4. Whole-cell patch clamp
recordings were performed in current clamp using an AxoClamp 2B
amplifier (Molecular Devices, Sunnyvale, CA, USA). Data were digitally
acquired at a sampling rate of 10 kHz. Glass micropipettes were pulled
from filament capillary glass (O.D. 1.5 mm, I.D. 0.86 mm, Harvard
Apparatus, Holliston, MA, USA) using a PUL-100 micropipette puller
(World Precision Instruments, Sarasota, FL, USA) to a tip resistance of
4e6 MU. Patch pipettes were filled with a solution containing (in mM):
130 HCH3SO3, 130 KOH, 10 HEPES, 0.4 NaGTP, 4 Na2ATP, 5 Na2-
phosphocreatine, 4 MgCl2, whose osmolarity measured 310 mOsm
with a pH of 7.3. Patch pipettes were visually guided to target
tdTomato-positive neurons under visual control using ROE-200 mi-
cromanipulators (Sutter Instruments, Novato, CA, USA) on a fixed-
stage upright microscope (modified Olympus BX51, Olympus Corpo-
ration, Tokyo, Japan) under 40X magnification. Local application of
CCK (50 nM dissolved in 50% water, 50% AGS) was done by placing a
separate patch pipette close to the cell and applying 5e25 psi pres-
sure for 5 e w60 s. Electrophysiological data was acquired using
pClamp 10.0 (Molecular Devices, Sunnyvale, CA, USA) and subse-
quently analyzed using Igor Pro 7 (Wavemetrics, Tigard, OR, USA).

3. RESULTS

3.1. NaV1.8 neurons ablated mice lack unmyelinated vagal
afferents
Receptors enriched in Nav1.8-expressing vagal afferents were identi-
fied by comparing the transcriptional profile of nodose ganglia from
mice lacking Nav1.8 neurons (ablated) to that of control littermates.
Successful ablation of Nav1.8 neurons in Nav1.8-Cre-DTA mice was
previously demonstrated by us and others [44,48]. RNAseq compari-
son of the nodose ganglion of ablated and control mice further revealed
very little expression of several markers selective of unmyelinated
peptidergic and non-peptidergic sensory neurons, including Nav1.8,
Trpa1, Trpv1, Sst, and Plxnc1 (Figure S1) [49] in the ablated mice. With
the exception of Cacna1h, all genes enriched in myelinated
neurofilament-containing afferents including Nefh, Trkb, and Spp1, in
ablated animals (Figure S1) [49]. Several genes such as Nav1.9, Calca,
and Tac1 showed reduced expression in ablated mice (Figure S1).
Their residual expression in ablated mice could be attributed to their
expression in small subtypes of myelinated neurons [49]. The
expression of several neuropeptides appeared downregulated in the
nodose ganglion of ablated mice including Sst, Calca, Calcb, Nmb and
Pcart (Figure S1). Overall, we confirmed that ablated mice showed a
selective lack of unmyelinated vagal afferents including many pepti-
dergic neurons. In the following sections, we characterized the change
in expression of GPCRs in afferent vagal neurons upon NaV1.8 ablation.

3.2. A group of selected gut peptide receptors are expressed in
vagal afferents
It is well established that a major part of the effects of certain gut
hormones such as CCK and GLP-1 is mediated through afferent vagal
signaling [10,26,27,31]. However, the expression of peptide receptors
and their subtypes has not been systematically studied. As shown in
Figure 1A, qPCR of the whole nodose ganglion revealed that the
expression profile was dominated by Cck1r, Glp1r, Npy2r, and Ntsr1.
These receptors are conceivably sensing gut-derived CCK, GLP-1, PYY,
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: Gut hormone receptors expression and enrichment in NaV1.8-expressing vagal afferents. (A) Expression level of gut hormone receptors in vagal afferent (whole
nodose ganglion) of wild-type (WT) mice, the dotted line indicates the median for GPCRs expression. (B) Volcano plot for the fold change of expression level for 408 GPCRs (gray
dots) in NaV1.8 neurons ablated vs. control mice. Gut hormone receptors are shown in red with corresponding names, the size of the dots relate to the expression level prior of
ablation. (C) In situ hybridization of selected gut hormone receptors (i; Cck1r, ii; Glp1r, iii; Npyr2 and iv; Ntsr1) in red vs. immunohistochemical detection of YFP in the nodose
ganglion of NaV1.8 reporter mice (Nav1.8-Cre-ChR2-YFP) in green. Asterisks indicate representative NaV1.8 positive cells. Triangles and arrows indicate examples of gut hormone
receptor positive cells and double positive cells, respectively.
and neurotensin. Other receptor subtypes for these ligands including
Cck2r, Npy1,4-6r, and Ntsr2 were only expressed at a low level. The
Sstr4 somatostatin receptor was expressed above noise level. Inter-
estingly, the GIP receptor Gipr was expressed below the detection limit,
thus suggesting that GIP does not exert its function through afferent
vagal neurons. Likewise, the expression of the ghrelin receptor, Ghsr
was also below detection limit in the nodose ganglion, thereby chal-
lenging previous reports that certain effects of these hormones are
dependent upon vagal sensory signaling [50e52]. In support of our
data, accumulating evidence indicates that only hypothalamic neurons
are required for the orexigenic actions of ghrelin [53e55].
As shown above, Nav1.8 ablated mice show a selective loss of un-
myelinated vagal afferents. Below, we characterized the changes in
expression of GPCRs in the nodose ganglion upon Nav1.8-expressing
cells ablation. Ntsr1, Npy2r, and Cck1r were highly enriched in
Nav1.8 neurons as judged by their large reduction in expression upon
ablation (Figure 1B). Npy2r and Ntsr1 were the most downregulated in
ablated animals, indicating their nearly exclusive expression in Nav1.8
cells (Figure 1B). The enrichment was further validated using ISH
combined with immunohistochemistry in reporter mice for Nav1.8
neurons (Nav1.8-Cre-ChR2-YFP) [45]. For instance, Npy2r and Ntsr1
were expressed in 71% and 40% of Nav1.8 cells, respectively
(Figure 1C). In comparison, Cck1r was enriched in a large proportion of
Nav1.8 cells (42%) but was not restricted to Nav1.8 cells (Figure 1C). In
MOLECULAR METABOLISM 12 (2018) 62e75 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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contrast, Glp1r was only slightly and only barely significantly affected
by the ablation (Figure 1B). Double ISH demonstrated that Glp1r was
expressed in only 18% of Nav1.8 afferents (Figure 1C). Moreover,
about half of Glp1r-expressing afferents were Nav1.8-negative (52%)
and appeared to express higher levels of Glp1r mRNA (Figure 1C).
Functional CCK1 receptor was further validated through whole-cell
patch clamp performed on isolated neurons from the nodose. The
neurons showed typical electroresponsive properties of nodose gan-
glion neurons, i.e. single or dual spikes in response to a prolonged
depolarizing current pulse (Figure S2). Pressure application of CCK
(50 nM) from a separate patch pipette positioned close to the neuron
depolarized a subset of neurons 9e38 mV (4 responders, 15 non-
responders), accompanied by an increase in the membrane noise
and shunting of the membrane. Repeated pressure application to re-
sponders resulted in desensitization of the depolarizing response
(n ¼ 3).
Overall, vagal unmyelinated afferents were found to be enriched in the
receptors for only a few select gut peptides.

3.3. NTSR1 is the only gut peptide receptor preferentially
expressed in mucosal afferents
Because Nav1.8-expressing vagal afferents do not exclusively inner-
vate the GI mucosa, but also the GI muscularis and several other
peritoneal and thoracic organs [5], we judged it necessary to further
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 65
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narrow down the identity of vagal afferents enriched with gut peptide
receptors. Specifically, we used double in situ hybridization studies
with Cck1r and Gpr65, which identify non-overlapping population of
vagal afferents preferentially innervating the GI muscularis and mu-
cosa, respectively [56]. Here, we confirmed that very few neurons
coexpressed Cck1r and Gpr65 in the nodose ganglion (Figure 2A).
Importantly, about half of the Cck1r-expressing neurons also
expressed Glp1r and almost all Glp1r neurons were positive for Cck1r
(Figure 2B), whereas Glp1r like Cck1r almost never colocalized with
Figure 2: Double chromogenic in situ hybridization for gut hormone receptors. A, C, E
D, F in situ hybridization for Cck1r in red vs. Glp1r, Npy2r, orNtsr1 in blue. Asterisks indic
positive cells (red or blue) and double positive cells (purple). Bright-field images were c
hematoxylin.
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Gpr65 (Figure 2C). These data are in agreement with the view that
Cck1r- and Glp1r-enriched vagal afferents represent a mixed popu-
lation of unmyelinated and myelinated fibers innervating the GI mus-
cularis rather than its mucosa [56]. More than half of the Cck1r-
expressing neurons also expressed Npy2r (Figure 2D). This is sur-
prising considering that Npy2r neurons were previously described as
unmyelinated neurons innervating the lungs [57]. Nonetheless, we also
found that many Npy2r neurons neither express Cck1r nor Gpr65
(Figure 2E), presumably corresponding to pulmonary vagal afferents.
, and G in situ hybridization for Gpr65 in red vs. Cck1r, Glp1r, Npy2r, or Ntsr1 in blue. B,
ate representative double-labeled cell profiles. Pie charts give the percentage of single
ollected from the nodose ganglion of wild-type mice. Tissue was counterstained with

his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Interestingly, nearly all Gpr65-expressing neurons expressed Ntsr1
(Figure 2G), which also was expressed inw25% of the Cck1r-neurons
(Figure 2F). Neurotensin is normally co-secreted from enteroendocrine
cells with GLP1 and PYY in response to metabolic stimuli [58]. Our data
imply that neurotensin may act in a paracrine manner on vagal un-
myelinated afferents innervating the intestinal mucosa.

3.4. Only few receptors for microbial metabolites are expressed in
vagal afferents
A number of GPCRs function as sensors of diet-derived, nutrient
metabolites, and metabolites generated by the gut microbiota [22].
Whereas these metabolite receptors are known to be expressed on
enteroendocrine cells, their neuronal expression has not been sys-
tematically studied. As shown in Figure 3, only 4 metabolite receptors
were expressed above background in the nodose ganglion. Specif-
ically, Gpr119, Ffar3 (Gpr41), and CaSR were detectable in the whole
nodose ganglion but at relatively low levels (Figure 3A). To our
knowledge, only FFAR3 was previously described in vagal afferents
[59,60]. In agreement with those studies, both qPCR and chromogenic
ISH revealed that the short chain fatty acid receptor Ffar3 was
expressed at low level in very few cells (Figure S3) Interestingly, Ffar3
was not down-regulated in Nav1.8 ablated mice (Figure 3B). The
calcium-sensing receptor (CaSR) and Gpr119 were both expressed
only a little higher than the median (Figure 3A) and were only
Figure 3: Metabolite receptors expression and enrichment in NaV1.8-expressing v
nodose ganglion) of wild-type (WT) mice. The dotted line indicates the median for GPCRs e
dots) in NaV1.8 neurons ablated vs. control mice. Metabolite receptors are shown in red
ablation. (C) in situ hybridization for Gpr35 in red vs Cck1r and Gpr65 in blue. Pie charts gi
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moderately decreased upon Nav1.8 ablation (Figure 3B). ISH for
Gpr119 mRNA confirmed very low levels of expression in the nodose
ganglion compared to other receptors (Figure S3). GPR35, a receptor
for aromatic, acidic metabolites such as the Trp metabolite kynurenic
acid was the most highly expressed metabolite receptor and one of the
most highly enriched GPCRs in NaV1.8 neurons according to the more
than 100-fold downregulation upon ablation (Figure 3A). Double
chromogenic in situ hybridization further demonstrated that Gpr35 was
often coexpressed with Cck1r and almost all of the gastrointestinal
mucosa innervating GPR65 expressing neurons (Figure 3C).

3.5. CB1R and several inflammatory lipid receptors are highly
expressed in vagal afferents
GPCRs also act as molecular sensors of lipophilic hormones and lipids
[22]. Dietary lipids, prostaglandins, and endocannabinoids were re-
ported to acutely enhance the electrophysiological activity of vagal
afferents [61e63]. However, little is known about the mechanisms
underlying lipids sensing in vagal afferents. Here, we found that a large
number of lipid receptors were highly expressed in the whole nodose
ganglion (Figure 4A) and, furthermore, enriched in many Nav1.8-
expressing cells (Figure 4B). These receptors included Cb1r, S1pr3,
Lpar5, and several prostaglandin receptors such as Ptger4, Ptger1,
Ptgir, Ptgdr, Ptger1, Ptgir, and Prgdr were moderately enriched in
Nav1.8 cells (Figure 4B). In situ hybridization revealed that for instance
agal afferents. (A) Expression level of metabolite receptors in vagal afferents (whole
xpression. (B) Volcano plot for the fold change of expression level, for 408 GPCRs (gray
with corresponding names, the size of the dots relate to the expression level prior of
ve the percentage of single positive cells (red or blue) and double positive cells (purple).
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Figure 4: Lipid receptors expression and enrichment in NaV1.8-expressing vagal afferents. (A) Expression level of lipid receptors in vagal afferent (whole nodose ganglion) of
WT mice, the dotted line indicates the median for GPCRs expression. (B) Volcano plot for the fold change of expression level for 408 GPCRs (gray dots) in NaV1.8 neurons ablated vs.
control mice. Lipid receptors are shown in red with corresponding names, the size of the dots relate to the expression level prior of ablation. (C) In situ hybridization of selected lipid
receptors (i; Cb1r, ii; Cysltr2, iii; Ptger4) in red vs. immunohistochemical detection of YFP in the nodose ganglion of NaV1.8 reporter mice (Nav1.8-Cre-ChR2-YFP) in green. Asterisks
indicate representative NaV1.8 positive cells. Triangles and arrows indicate examples of lipid receptor positive cells and double positive cells, respectively.

Original Article
the cannabinoid receptor Cb1r was detected inw65% of Nav1.8 cells,
but also in other neurons (Figure 4C). Thus, these receptors were not
limited to the Nav1.8 positive vagal afferents. In contrast, other lipids
receptors were almost exclusively expressed in Nav1.8 cells. These
included Ptge4, Cysltr2, and Lpar3. For instance, Cylstr2 and Ptger4
were detected in 41% and 88% of Nav1.8 cells (Figure 4C), respec-
tively, and no other cells.
We verified the expression of select highly enriched lipid receptors in
Cck1r and Gpr65-expressing neurons using double chromogenic in
situ hybridization. As a result, we found that Cysltr2, and Ptger4 were
coexpressed with the vast majority of Gpr65 neurons and a large
subset of Cck1r neurons (Figure 5AeD). Cb1r was even more broadly
expressed in almost all Cckar- and Gpr65-expressing neurons
(Figure 5E,F). In summary, vagal unmyelinated afferents supplying the
GI tract were found to be highly enriched in many receptors for
immunomodulatory lipids and endogenous cannabinoids.

3.6. Multiple orphan GPCRs are broadly expressed in vagal
afferents
Unexpectedly, we identified at least 21 orphan receptors that were
highly enriched in the whole nodose ganglion and enriched in Nav1.8
neurons (Figure 6A,B). For the majority of these receptors, their
function(s) in neuronal signaling is unknown and never described
before in vagal afferents. The most highly expressed orphan receptor
was Gpr149 (Figure 6A). In agreement with a recent study [56], we
observed a high expression of Gpr65 in the nodose ganglion.
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Importantly Gpr65 was the second most down regulated GPCR upon
Nav1.8 ablation (Figure 6A,B), indicating that this receptor normally is
highly enriched in Nav1.8-expressing vagal afferents. Here, we further
showed using in situ hybridization that Gpr65 is present in about 35%
of Nav1.8 cells and is not detectable in Nav1.8-negative cells
(Figure 6C). As discussed previously, Gpr65 is a marker for GI mucosal
afferents of unknown functions [56].
Many other orphan receptors (Gpr174, Gpr161, Gpr158, Gpr160,
Mrgprb4, Mrgprx1, Gpr22) appeared highly expressed in the nodose
ganglion and significantly down regulated in ablated mice
(Figure 6A,B). In situ hybridization validated that, among these re-
ceptors, the orphan receptor Gpr161 is expressed in almost all (97%)
of the Nav1.8 neurons (Figure 6C).

3.7. Receptors for classic neurotransmitters and neuropeptides
Numerous neurotransmitters of enteric or epithelial origins are
released in the GI mucosa [64]. Our studies revealed that Gabbr1
encoding the non ligand-binding protomer of the GABA dimeric re-
ceptor was very highly expressed in the nodose ganglion (Figure 7A,B).
In situ hybridization confirmed its high expression level and nearly
ubiquitous distribution across vagal afferents (Figure S3). The Grm7
glutamate receptor was also ubiquitously expressed at relatively high
level in vagal afferents (Figure 7A,B). Interestingly, the Drd2 dopamine
and Chrm4 muscarinic acetylcholine receptor were both enriched in
Nav1.8 neurons (Figure 7B). For instance, Drd2 was detected in about
43% of Nav1.8 cells (Figure 7C). Interestingly, both Drd2 and Chrm4
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 5: Double chromogenic in situ hybridization of lipid receptors. A, C, and E in situ for Cck1r in red vs. Cysltr2, Ptger4, Cb1r in blue. B, D, and F in situ for Gpr65 (a
marker for gastrointestinal mucosa) in red vs. Cysltr2, Ptger4, Cb1r in blue. Asterisks indicate representative double-labeled cell profiles. Pie charts give the percentage of single
positive cells (red or blue) and double positive cells (purple). Bright-field images were collected from the nodose ganglion of wild-type mice. Tissue was counterstained with
hematoxylin.
were often coexpressed with Cck1r, but rarely with Gpr65 (Figure 7D).
Several serotonin receptors were also identified in Nav1.8 cells
(Figure 7A,B), which is interesting as 5-HT is produced from entero-
chromaffin cells, which constitute the largest population of enter-
oendocrine cells of the GI tract. Serotonin signaling via 5-HT3 in vagal
afferents has been studied in the past [11,56], but the action of other
neurotransmitters is poorly documented. Our data demonstrate that
the sensitivity of vagal afferents to classic neurotransmitters is not
limited to serotonin but likely extends to acetylcholine, glutamate,
GABA, and dopamine.
Among receptors for neuropeptides, Crhr2, a receptor for corticotropin-
releasing factor, was the most highly expressed in the whole nodose
ganglion and highly enriched in Nav1.8 cells (Table S1 and Figure S4).
Roughly 75% of Nav1.8 neurons were found to express Crhr2 mRNA
(Figure S4). Using double in situ hybridization, it was further shown
that Crhr2 colocalized with roughly one third of Cck1r- and half of
Gpr65-expressing neurons (Figure S4). Since Crhr2 binding sites are
prominent in the nucleus of solitary tract [65], it is likely that Crhr2may
serve as a presynaptic receptor on vagal terminals. Hence, it is
tempting to speculate that Crhr2 signaling in gastrointestinal vagal
MOLECULAR METABOLISM 12 (2018) 62e75 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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afferents may link stress to the regulation of satiety. Other receptors for
neuropeptides were also enriched in vagal afferents including Kiss1r
and Opmr1 (Table S1). However, these receptors were moderately
enriched in the nodose ganglion compared to Crhr2.

3.8. Additional receptors
The expression profile for GPCRs measured by qPCR and RNA-seq are
given in Table S1. A few other noteworthy receptors that were highly
enriched in vagal Nav1.8 cells included receptors not known to be
involved in gut-to-brain communication such as F2r, Ackr4 and Ednra
(Table S1 and Figure S5). The function of these receptors in neurons
remains largely undocumented.

4. CONCLUSIONS AND PERSPECTIVES

Our current understanding of the molecular mechanisms through
which microbial, neuronal, metabolic, and immune signals released in
the gut influence vagal functions and thereby signaling to the brain and
how these signals interact with each other remains incomplete. In the
past, transcriptional profiling studies for GPCRs through which such
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 69
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Figure 6: Orphan receptors expression and enrichment in NaV1.8-expressing
vagal afferents. (A) Expression level of selected orphan receptors in vagal afferent
(whole nodose ganglion) of wild-type (WT) mice. The dotted line indicates the median
for GPCRs expression. (B) Volcano plot for the fold change of expression level for 408
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signals act have been proven useful to our understanding of enter-
oendocrine cell function [66,67]. In the present study, we provide a
comprehensive picture of the expression and coexpression of GPCRs in
the nodose ganglion focusing on afferent vagal fibers innervating the GI
tract.
The complete RNA expression profile for vagal afferent in Nav1.8 ab-
lated mice and control mice found through RNA-sequencing is given in
Supplementary Table 3. It is implied that genes expressed highly in
control mice and lowly after ablation are enriched in the NaV1.8 fibers.
However, there are potential caveats in this assumption as incomplete
ablation will hinder detection for some genes, and ablation induced
gene regulation could result in false positive and/or negative results.
The ablation procedure has previously been shown to be very effective
[44], and here we also show a strong decrease of genes specific for
unmyelinated vagal afferents (Figure S1). However, we cannot rule out
that some Nav1.8 fibers are still present; likewise, we cannot rule out
potential ablation induced gene regulation. To minimize this potential
caveat, we also examined gene expression in the ganglia of wild-type
mice and performed in situ hybridization for select receptors. Impor-
tantly, the distribution and expression levels for receptors we examined
by qPCR and ISH matched very well with the data deriving from our
RNAseq dataset after ablation, but these caveats should be kept in
mind when interpreting our RNA sequencing dataset.
It should also be noted that transcriptional data do not always corre-
spond to protein levels. However, it is notoriously difficult to generate
specific antibodies towards GPCRs, thus hindering immunohisto-
chemical detection. This may explain that our data are not always
consistent with the literature. For instance, the ghrelin receptor has
been reported to be expressed in vagal afferent using immunostaining
[68]. However, our study failed to detect the ghrelin receptor mRNA.
Alternatively, past studies have successfully characterized the locali-
zation and density of binding sites for several gut peptides in vagal
cells using radioligands and binding assays [69,70]. However, binding
assays do not allow the study of orphan receptors and are not suitable
for the high-throughput screening of a large number of receptors.
Hence, there are few methods available to systematically assess the
protein localization and level of the receptors we identified in this
study.
Many physiological studies have established that vagal afferents
provide the postprandial feedback necessary for meal termination
[71e73]. However, there is ongoing controversy as to the physiological
importance of gut peptides signaling in vagal afferents [74]. Here we
find that vagal afferents expressed relatively few, selected gut peptide
receptors, which are typically low or absent in other types of peripheral
afferents [75], yet abundant in GI tissues [66,67]. For instance, CCK1R
and NTSR1 were enriched in vagal unmyelinated afferents, but not
CCK2R, or NTS2R. Interestingly, the receptor for the other incretin
hormone GIP was not expressed in afferent vagal nerves, indicating
that GIP functions mainly in a classical endocrine manner. The receptor
for ghrelin, a gastric hormone, which exerts its many different func-
tions though the CNS was not expressed in vagal afferents. This
supports the notion that ghrelin does not function through the afferent
vagus nerve but mainly through endocrine mechanisms getting access
GPCRs (gray dots) in NaV1.8 neurons ablated vs. control mice. Orphan receptors are
shown in red with corresponding names, the size of the dots relate to the expression
level prior of ablation. (C) In situ hybridization of selected orphan receptors (i; Gpr65 and
ii; Gpr161) in red vs. immunohistochemical detection of YFP in the nodose ganglion of
NaV1.8 reporter mice (Nav1.8-Cre-ChR2-YFP) in green. Asterisks indicate representa-
tive NaV1.8 positive cells. Triangles and arrows indicate examples of orphan receptor
positive cells and double positive cells, respectively.
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Figure 7: Neurotransmitter receptors expression and enrichment in NaV1.8-expressing vagal afferents. (A) Expression level of selected neurotransmitter receptors in vagal
afferent (whole nodose ganglion) of WT mice, the dotted line indicates the median for GPCRs expression. (B) Volcano plot for the fold change of expression level for 408 GPCRs
(gray dots) in NaV1.8 neurons ablated vs. control mice. Neurotransmitter receptors are shown in red with corresponding names, the size of the dots relate to the expression level
prior of ablation. (C) In situ hybridization of Drd2 in red vs. immunohistochemical detection of YFP in the nodose ganglion of NaV1.8 reporter mice (Nav1.8-Cre-ChR2-YFP) in green.
Asterisks indicate NaV1.8 positive cells triangles indicate neurotransmitter receptor positive cells and arrows indicate double positive cells. (D) Double in situ hybridizations for-for
Drd2 in blue vs. Gpr65 and Cck1r in red (i; iii) or for Chrm4 in blue vs. Gpr65 and Cck1r in red (ii; iv). Pie charts give the percentage of single positive cells (red and blue) and double
positive (purple).
to ghrelin receptors in the CNS [53e55]. Thus, only four specific re-
ceptor subtypes for gut peptides were found to be enriched in vagal
Nav1.8 cells and, importantly, to be coexpressed in a rather clear
pattern, i.e. CCK1R together with GLP1R and the PYY Y2 receptor. In
contrast, NTSR1 was expressed in another population of afferent
neurons together with the orphan receptor GPR65 (Figure 8). Many of
the GPR65 expressing neurons have previously been demonstrated to
also express the 5-HT3 receptor, a ligand gated ion-channel activated
by serotonin (5-HT) released from the enterochromaffin cells [76]. The
enterochromaffin cells have further been described to potentially form
“synaptic-like” contacts with fibers from the enteric nervous system
and being electrically excitable with depolarization leading to serotonin
release [76]. Similar “synaptic-like” contacts between enteroendocrine
cells and enteric nerves have been described [77]. However, our
anatomical data indicates that similar “synapse-like” contacts may not
occur frequently between the axons of vagal afferents and enter-
oendocrine cells (Figure S6).
Consequently, neurotensin emerges as an important gut hormone with
a corresponding receptor (NTSR1) preferentially expressed in the GI
mucosa (paracrine function), while for the other gut hormones CCK,
GLP1, and PYY the hormone has to travel further to reach a nerve with
a corresponding receptor (paracrine/hormonal function). It is note-
worthy that neurotensin immunoreactivity and binding sites are also
very abundant in the nucleus of the solitary tract in the brain stem
MOLECULAR METABOLISM 12 (2018) 62e75 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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[70,78]. Thus, more studies are warranted to establish whether neu-
rotensin acts on vagal terminals located either in the GI tract or the
nucleus of the solitary tract. In the case of ghrelin and GIP, it appears
that these must reach the CNS (classical hormone function).
The ability of unmyelinated afferents to directly respond to proin-
flammatory lipids has been reported in isolated vagal afferents [79,80],
and it is plausible that this mechanism has been preserved during
evolution with the aim of allowing peripheral sensory neurons to detect
infections and tissue injuries. Here, we found that vagal afferents
including those innervating the GI tract are particularly highly enriched
in receptors for leukotrienes, sphingolipids, and prostaglandins
(Figure 8). These receptors have been described in spinal nociceptors
[75], suggesting that they play a key role in responding to noxious
stimuli. However, unlike their spinal counterparts, vagal afferents,
including those innervating the GI mucosa, do not convey pain [18].
Instead, we speculated that the stimulation of vagal unmyelinated
afferents by inflammatory lipids would trigger an efferent response
aimed at containing inflammation and maintaining tissues integrity, a
biological process known as “inflammatory reflex” [81]. This hypoth-
esis is in agreement with our data showing that unmyelinated axons in
the GI mucosa are tightly associated with macrophages rather than
enteroendocrine cells (Figure S6).
Receptors for several classic neurotransmitters were found to be
enriched in vagal afferents including both unmyelinated and
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Figure 8: Schematic overview of GPCRs enriched in gastrointestinal vagal af-
ferents. This study identified several GPCRs preferentially enriched in unmyelinated
vagal afferents (Nav1.8). Identified receptors encompassed a wide range of GPCRs
families including receptors for neurotransmitters, metabolites, lipids, and gut peptides.
We further inferred their localization in neurons projecting preferentially to either the
gastrointestinal muscularis CCK1 and GLP-1 receptor expressing fibers or the mucosa
GPR65 expressing fibers based on Williams and coworkers [7] and our results.
Strikingly, most receptors showed a relatively widespread distribution in both cate-
gories of neurons. Receptors in green (Gas-coupled) and orange (Gaq-coupled) are
anticipated to stimulate neuronal activity. Those in red (Gai-coupled) are anticipated to
inhibit neuronal activity. Nonetheless, the downstream signaling pathways of these
receptors are not known with certainty in vagal afferents. Of note, only receptors found
to be mostly highly enriched in unmyelinated vagal afferents are listed here. For the
purpose of simplification, orphan receptors were not indicated. NTS, nucleus of the
solitary tract.
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myelinated fibers. As mentioned before, mucosal 5-HT can stimulate
the activity of vagal afferents [76]. However, it is unclear what could be
the source(s) of the other identified neurotransmitters and neuropep-
tides. Hypothetically, neurotransmitters deriving from the enteric ner-
vous system including acetylcholine and glutamate could act on vagal
terminals [82]. The aforementioned neurotransmitters and peptides
may also be released within the brainstem and modulate the activity of
vagal afferents at the presynaptic level [65]. Hence, more studies are
warranted to determine whether the receptors for neurotransmitters
and neuropeptides may serve as presynaptic receptors in addition to or
rather than peripheral receptors.
Vagal afferents have been proposed to serve as a relay between the GI
microbiome and brain functions [83,84], presumably in response to the
activation of vagal afferents by microbial metabolites. The fact that
peripheral sensory neurons reside outside the bloodebrain barrier
makes them a particularly relevant target for pharmacological agents
mimicking metabolites. Considering the well-documented interactions
between microbial metabolites and GPCRs [22], we sought to examine
the expression of known or proposed microbial metabolite receptors in
vagal afferents. The most abundant metabolite receptor found in vagal
neurons was GPR35, thus raising the possibility that vagal GPR35
signaling may be involved in the detection of aromatic acids such as
the tryptophan metabolite kynureic acid (Figure 8). Interestingly,
GPR35 was extensively coexpressed both with CCK1R and GPR65, two
markers of GI afferents. However, surprisingly few other metabolites
receptors were identified in vagal afferents, and usually at very low
levels. This included FFAR3, a receptor previously described in a small
subset of vagal afferents [59,60]. Importantly, intact vagal afferents
were shown to be required for FFAR3 effects on metabolism [60]. It is
therefore conceivable that a small number of microbiome-derived
molecules may directly act on GPCRs expressed by vagal afferents.
Nonetheless, most microbial metabolites are unlikely to directly target
vagal afferents. Instead, they may affect afferent vagal nerves through
enteroendocrine cells such as enterochomaffin cells, which are highly
enriched in multiple types of receptors for microbial metabolites [85].
In summary, the unexpected identification of many GPCRs with un-
known ligands and functions in vagal afferents highlights how little is
known about vagal signaling. Many of the genes identified in this study
may be used to generate novel transgenic mice to investigate the
functional neuroanatomy of vagal afferents, for instance, using diph-
theria toxin-assisted ablation tools [86] to determine their exact
functions. Thus, we are hopeful that our data will guide future studies
aimed at addressing the role of GPCRs signaling in visceral afferents in
relation to metabolic and immune sensing, as well as metabolic dis-
eases and their complications.
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