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 Searching for Novel Fungal Biological 

Control   Agents   for Plant Disease Control 
Among Endophytes    

    David B.   Collinge    ,     Hans J. L.   Jørgensen    , 
    Meike A. C.   Latz    ,     Andrea   Manzotti    ,     Fani  

 Ntana    ,     Edward C.   Rojas     and     Birgit   Jensen    

  Abstract 

 There are increasing efforts aiming to utilise endophytes as biological control   
agents   (BCAs) to improve crop production. However, reliability remains a major 
practical constraint for the development of novel BCAs. Many organisms are 
adapted to their specific habitat; it is optimistic to expect that a new organism 
added can find a niche or even out- compete those adapted and already present. 
Our approach for isolating novel BCAs for specific plant diseases is therefore 
to look in healthy plants in a habitat where disease is a problem, since we 
predict that it is more likely to find competitive strains among those present 
and adapted.  In vitro  inhibitory activities often do not correlate with  in planta  
efficacy, especially since endophytes rely on intimate plant contact. They can, 
however, be useful to indicate modes of action. We therefore screen for  in planta  
biological activity as early as possible in the process in order to minimise the 
risk of discarding valuable strains. Finally, some fungi are endophytic in one 
situation and pathogenic in another (the mutualism  – parasitism   continuum). 
This depends on their biology, environmental conditions, the formulation   of 
inoculum, the health, developmental stage and cultivar of the host plant, and 
the structure of the plant microbiome  .   
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   2.1     Introduction 

 It is a major challenge to increase crop yields worldwide in a sustainable manner. 
Th ere is an increasing wish to reduce the use of pesticides  , the application of inor-
ganic fertiliser   and the need for irrigation  , as these factors deplete natural resources 
and can have negative eff ects on the environment  . We need to meet the challenges of 
climate change  , as well as world population growth and other demographic factors, 
such as urbanisation and economic growth. Th e combination of these factors results 
in increased demand for both water resources and meat, hence of plants as food and 
fodder. Together, these many factors place high demands on agriculture, motivating 
research eff ort to improve yields in a sustainable manner: the global challenge is to 
produce more food from less agricultural land with reduced inputs. 

 Plant diseases reduce yield and profi tability, both in terms of direct losses, product 
quality and indirectly through inputs into the crop. However, the grower has many 
practical tools for combating plant diseases, including cultural practices such as 
crop rotation  , fertilisation, pruning, irrigation   and tillage  . Chemical control agents 
are also of seminal importance for many diseases: these can be directly antimicro-
bial  , e.g. fungicides  , or act as inducers of plant defence responses and therefore dis-
ease resistance, e.g. benzothiadiazole   (BTH, Bion ® ) and probenazole  . However, there 
are increasing problems with fungicide resistance in many important pathogens, 
which means that some available fungicides have become ineff ective for specifi c 
diseases (Lucas  et  al. ,  2015 ). Furthermore, the number of approved fungicides is 
being reduced due to side eff ects, e.g. accumulation in the environment  , confl icts 
with medicinal use (Berger  et  al. ,  2017 ); at the same time few new products are 
being developed and approved. 

 Another important strategy is the use of disease resistance. Th is can be achieved 
through conventional plant breeding   by introducing resistance genes from within 
the same plant species (e.g. from landraces  ) or closely related plant species. Eff ective 
sources of disease resistance are often unavailable for conventional plant breeding 
programmes, especially for necrotrophic pathogens. Resistance can also be achieved 
through biotechnological approaches, e.g. genetic engineering  , to add genes which 
encode either antimicrobial   agents or regulators of defence mechanisms (Collinge 
 et  al. ,  2010 ,  2016 ). More recently, an increased understanding of the biology of 
microbial pathogenicity has led to new breeding technologies, which can manipu-
late pathogens, for example, by host- induced gene silencing   (HIGS) or by using gene 
editing   techniques (site- directed mutation), e.g. CRISPR- Cas9   (Nowara  et al. ,  2010 ; 
Collinge,  2018 ). Even the combination of these approaches is insuffi  cient to con-
trol many important diseases of key crops and, furthermore, there is a reluctance 
to use the new breeding technologies in some parts of the world (Collinge,  2018 ). 
Th ere is a need to be innovative in fi nding new approaches, especially since many 
important pathogens are well able to adapt to, and can therefore overcome, both 
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disease resistance and pesticides   (e.g.  Zymoseptoria   tritici ,  Phytophthora   infestans ; 
Lucas  et al. ,  2015 ). 

 An underdeveloped and underutilised means of disease control is biological 
control  . Biological control is defined as direct or indirect inhibition of a disease 
or the pathogen   causing the disease, by another organism (antagonist) or group 
of organisms. Biological control is seen as an increasingly attractive tool to com-
plement the more traditional control strategies both in organic and conventional 
agriculture. Furthermore, biological control can be especially useful when used 
in organic agriculture  , as well as in systems where disease resistance is unavail-
able in the host and where fungicide resistance is prevalent in the pathogen 
populations. Some biological control organisms (BCAs) can even supplement 
fertilisers   to stimulate plant growth (Coleman- Derr and Tringe,  2014 ; Jensen 
 et al. ,  2016a ). The exploitation of beneficial microorganisms and the manage-
ment of the plant microbiome   can contribute to these needs, both through bio-
logical control such as by stimulation of host growth. Although development 
of a product may be achieved without understanding how it works, there are 
many fascinating fundamental questions about the nature and physiological 
mechanisms underlying plant– microbe interactions which beg study (Latz  et al .,  
2018). There are also potential risks associated with biological control such as 
the negative consequences of introducing organisms into new habitats and pro-
duction systems which need to be considered before permitting the use of a new 
biological control agent  . For these reasons, the regulation of commercialisation 
of novel BCAs is stringent, and therefore expensive (Anon,  2009 ). 

 As a division of the plant microbiome  , endophytes represent a largely unex-
ploited source of organisms with potential for the biological control   of pests and 
pathogens and for helping plants adapt to abiotic stress. One of the main drawbacks 
of biological control is inconsistency under variable environments. Since the endo-
phyte is inside the plant, it is potentially better protected from the external environ-
ment   and, therefore, we consider it likely that at least some endophytes will prove 
to be more reliable BCAs than epiphytic phyllosphere   or rhizosphere   organisms. 
Here, we provide a resumé of current knowledge of the similarities and diff erences 
between commensal, mutualistic and pathogenic interactions between plants and 
microorganisms, with emphasis on diff erent approaches for isolating and studying 
endophytic fungi. We favour an ecological approach, namely isolating BCAs from 
plants which are coping with a stressful environment. We isolate from diff erent 
plant organs (and mutants), to which BCAs can be returned and utilised for plant 
disease control. Another approach being taken, which we do not address here, 
is to try to manipulate microbiomes rather than using individual organisms, e.g. 
by manipulating agricultural practice and choice of cultivar. Th is is the particular 
focus of studies using bacterial microbiomes (Finkel  et al. ,  2017 ), but we predict an 
increase in studies on fungal microbiomes will follow.  
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  2.2     What Is an Endophyte? 

 Endophytes ( endo   =  within,  phyto   =  plant), a term coined by the father of plant 
pathology Anton de Bary in 1886, are now defi ned as microorganisms capable of 
colonising inner parts of plants without causing disease symptoms (Schulz and 
Boyle,  2005 ; Kusari  et al. ,  2012 ; Wani  et al. ,  2015 ). Th e plant is not host to a single 
microorganism, but hosts many diff erent microorganisms simultaneously; collect-
ively, these are termed the endomicrobiome  . Th e endomicrobiome is diverse and 
comprises, e.g. archaea (Moissl- Eichinger  et al. ,  2018 ), bacteria (Furnkranz  et al. , 
 2012 ; Aguiar- Pulido  et  al. ,  2016 ) and diverse fungi including both ascomycetes 
(Newsham,  2011 ) and basidiomycetes (Weiß  et  al. ,  2016   ; Hardoim  et  al. ,  2015 ), 
as well as some endophytic oomycetes   (Ploch and Th ines,  2011 ). We have much 
to learn about the individual microorganisms and their interactions in ecological 
communities of microorganisms comprising the endomicrobiome. 

 A specifi c organism might be endophytic in one situation and saprotrophic, epi-
phytic or even pathogenic in others (Hardoim  et al. ,  2015 ; Mukherjee  et al. ,  2012 ). 
In the latter case, there is the issue of whether it is possible to distinguish whether 
an organism is endophytic or a quiescent or latent pathogen   (Louarn  et al. ,  2013 ; 
Zeilinger  et  al. ,  2016 ; Lofgren  et  al. ,  2018 ). Indeed, the term endophyte covers 
diff erent ecological strategies (latent pathogen  , benefi cial symbiont, commensal 
passenger) used by diff erent organisms in diff erent situations (species or growth 
conditions), which result in what we observe as the endophytic habit (Schulz and 
Boyle,  2005 ). It can be diffi  cult to assign a particular interaction one of these specifi c 
biological terms and this situation is encompassed by the concept of ‘mutualism  – 
parasitism   continuum’ (Müller and Krauss,  2005   ; Schulz and Boyle,  2005 ). 

 Diff erent strains of specifi c taxa (e.g.  Fusarium   oxysporum ) can be endophytic 
BCAs or pathogens on the same host. Quite closely related taxa can include both 
pathogens or endophytes (Fravel  et al. ,  2003 ; Ma  et al. ,  2010 ). Some organisms are 
pathogens of one host, and endophytes in another closely related host species, and 
can thus exhibit diff erent roles, ranging from latent pathogens   or endophyte to 
pathogen  , e.g.  Colletotrichum    spp. and  Fusarium  spp. (De Silva  et al. ,  2017 ; Lofgren 
 et  al. ,  2018 ). In contrast,  Ramularia   collo- cygni  is an endophyte in wheat   but a 
pathogen in barley   under certain physiological conditions or genetic backgrounds 
(McGrann  et al. ,  2014 ,  2016 ).  Fusarium graminearum  is a pathogen of small grain 
cereals, but apparently an endophyte in other species of grass (Lofgren  et al. ,  2018 ). 
What we do not know is whether they are commensals, deriving nutrition or other 
benefi ts without causing measurable harm (i.e. quiescent pathogens), and there-
fore technically not symbionts   according to our narrow defi nition, or whether they 
are, in fact, benefi cial symbionts in these alternative hosts. Furthermore, some 
pathogens arguably exhibit an endophytic growth habit in the fi rst part of the infec-
tion cycle and cause disease later, e.g.  Zymoseptoria   tritici  (formerly  Septoria   tritici  

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108607667.003
Downloaded from https://www.cambridge.org/core. Copenhagen University Library, on 18 Jun 2019 at 08:59:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108607667.003
https://www.cambridge.org/core


29

29SEARCHING FOR NOVEL FUNGAL BIOLOGICAL CONTROL AGENTS

(anamorph)  Mycosphaerella   graminicola  (telomorph)) (Shetty  et al. ,  2003 ; Sánchez- 
Vallet  et al. ,  2015   ). Indeed, it is perhaps useful to exclude the potential pathogens 
from the defi nition and confi ne the term to organisms that, in a specifi c situation, 
have a mutualistic or at least commensal relationship with their host. An adapted 
version of Koch’s postulates   can be useful to exclude organisms which cause disease 
when reintroduced into the host (Card  et al. ,  2016 ). 

 Genotype can also be important, thus many strains of  Fusarium   oxysporum  are 
endophytic, but possession of some ‘B chromosomes’ can confer pathogenicity (Ma 
 et al. ,  2010 ). Does the plant decide whether the organism is a pathogen   or endo-
phyte by the way it reacts to the colonising organism or is the interplay more com-
plex? Interestingly, there is increasing evidence to suggest that some eff ectors   play a 
role in competitive fungal– fungal interactions (Rovenich  et al. ,  2014 ). Furthermore, 
some endophytes can not only induce resistance but, at least in some cases, suscep-
tibility to pathogens (Houterman  et al. ,  2008 ; Kurose  et al. ,  2012 ). Th us, the same 
endophyte may infl uence diff erent interactions in opposite ways.  

  2.3     How Do We Find Endophytes? 

 Th ere are two major approaches to identifying endophytes in a plant: cultivation- 
dependent   (e.g. isolation) and cultivation- independent   (e.g.   metagenomics  ) 
methods. Each approach has advantages and disadvantages ( Figure  2.1 ). It is 
important that the tissue from which endophytes are isolated is fresh and shows 
few or no visible disease symptoms. To ensure that organisms isolated are endo-
phytic and not epiphytic, the tissue needs to be surface sterilised. Th is is especially 
important for roots and tubers. Th is can be achieved in several ways (e.g. alcohol, 
sodium hypochlorite treatment) and there is a compromise between using too harsh 
a treatment, which penetrates the tissue killing the microorganisms within, and too 
gentle a treatment, which allows too many epiphytic or rhizospheric organisms to 
survive (Busby  et al. ,  2016b ). Standardising these conditions before working with a 
new species or tissue is highly recommended as harsh treatments can reduce fungal 
survival inside the tissue or mild treatments can result in false positives.    

 Clearly, if an organism is to be used in crop production, it has to be cultivable. 
Many endophytes are not. In order to increase the chances of isolating, hence 
cultivating and utilising endophytic microorganisms, the growth media can be 
supplemented with plant extracts. Th is has been shown to increase the number of 
endophytes recovered (Eevers  et al. ,  2015 ; Murphy  et al. ,  2015 ). In our experience, 
plant- extract- complemented media do not improve yield or diversity   in the isola-
tion of endophytes from cereals (Latz  et al. , unpublished). However, diff erent fungi 
have more or less specifi c requirements for the media that they will grow on, and, 
furthermore, the isolation process itself may inhibit the growth of some fungi, since 
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antimicrobial   compounds can be induced and/ or released from the host tissues on 
damage. Moreover, diff erent microorganisms grow at diff erent rates and some will 
simply be outcompeted by others. As this is especially a problem with bacteria out-
competing fungi, antibacterial compounds may be incorporated in media when the 
target endophyte is fungal, although this may not itself be without negative eff ect. 
Low nutrient   media can favour slow- growing fungi in relation to fast- growing fungi 
and bacteria. In conclusion, isolation- based approaches have little value in quan-
titative fl oristic diversity assessments, but they remain our only door to fi nding 
potential biocontrol   agents  . Additionally, it is important to standardise diff erent 
techniques and growth media for isolation in each case. Once isolated, the fungi 
can be identifi ed by morphological traits combined with marker gene sequencing 
(typically the ribosomal genes). 

     Metagenomics   as a methodology can be used to obtain a more objective and 
quantitative, although still descriptive, assessment of the endophytic fungal 
microbiome    in situ  (Diaz  et  al. ,  2012 ; Tian  et  al. ,  2015 ; Abdelfattah  et  al. ,  2016 ; 
Sapkota  et al. ,  2017 ). Th e information obtained may even be used as a guide for 
choosing specifi c media for targeted isolation of specifi c taxa that appear to be 
enriched in the microbial community. For fungal endophytes (and indeed most 

Endophytic community characterisation

DNA extraction from
plant tissue and 

fungal meta-
barcoding

Identification of 
isolates by 

morphology and 
amplification of ITS 

regions 

Optimise 
isolation 

media aiming 
for specific 
organisms

Optimise 
primer 

specificity for 
fungal DNA

Culture dependent Culture independent

 Figure 2.1      Endophytic community characterisation using culture- dependent and culture- 
independent methods. Both methods can be optimised in order to obtain a more accurate 
description of fungal microbiome  .  
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eukaryotes), the most common way to perform a fungal community analysis 
is to amplify parts of the ribosomal genes, for example, the internal transcribed 
spacer (ITS)- 1 (Nicolaisen  et  al. ,  2014 ) or ITS- 2 (Hertz  et  al. ,  2016 ; Gdanetz and 
Trail,  2017 ), followed by deep- sequencing and bioinformatical analyses in order 
to investigate the composition of the endophytic communities without the need to 
isolate living fungi from the host plant. Th e main challenge with this approach is 
fi nding primers which recover most of the fungal diversity   without creating phylum 
biases, while at the same time avoiding targeting the host genome. Th is has been 
a constant problem, especially in polyploid species such as wheat  . Many pairs of 
primers have been suggested using  in silico  analysis, but no real comparison has 
been performed on DNA samples (Toju  et al. ,  2012 ). Compromises will therefore 
be necessary! 

 Shot-gun metagenomics or whole metagenome shotgun sequencing concerns 
deep sequencing of the mixed genomes of the organisms present in the sampled 
material (Aguiar- Pulido  et al. ,  2016 ; Kaul  et al. ,  2016 ). Th is approach, initially applied 
for the study of bacterial endomicrobiomes (Bulgarelli  et al. ,  2012 ; Lundberg  et al. , 
 2012 ; Hardoim  et  al. ,  2015 ), eliminates the bias unavoidably introduced when 
selecting amplifi cation primers since the sequencing process itself is objective. 
Th e technique is, however, currently more expensive, both in terms of the chem-
ical process and in the need for computing time during bioinformatics analysis; 
huge amounts of sequence data are generated, which have to be analysed. Th us, the 
quality of the genome sequence databases is a constraint on the quality of the ana-
lysis: although the number of sequenced genomes in the databases increases with 
time, the extent and quality of annotation of the sequences in them lags, and a large 
proportion of the data therein are not yet assigned to specifi c organisms. 

 A third approach, metatranscriptomics  , uses RNA as the substrate for sequencing, 
i.e. gene transcripts rather than the genome (Aguiar- Pulido  et al. ,  2016 ; Kaul  et al. , 
 2016 ). Th is means that the results refl ect the physiological activity of organisms and 
therefore give more information about the actual plant microbiome   interactions, 
and not just an image of the microbial communities within the plant (Kaul  et al. , 
 2016 ). Th is approach will also indicate which gene families participate in or are 
necessary for the endophytic lifestyle, for example, genes involved in hormone 
production or action, eff ector proteins and specialised metabolites   (see below). 
Th e value of the analysis depends on the choice of physiological conditions; an 
important component of the microbiota   may have latent infection periods and may 
therefore be unrepresented in the results. 

 It should, at least to some extent, be possible to combine these approaches in 
order to use amplicon sequencing   and whole metagenome sequencing   (and 
metatranscriptomics  ) to identify endophytes with desired traits (functions or e.g. 
metabolites  ), and chose, or even design, isolation methods tailored to their real or 
perceived needs, if such interesting organisms are indeed culturable. Depending 
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on the stamina of the researcher, the classical microbiological approach can easily 
yield 40– 120 fungal taxa per sample, e.g. (Comby  et al. ,  2016 ; Kernaghan  et al. ,  2017 ; 
Kosawang  et al. ,  2018 ), and amplicon sequencing approaches typically reveals 200 
or more within a study (Nicolaisen  et al. ,  2014 ).  

  2.4     What Do Endophytes Do to the Plant? 

 Endophytes can support growth and health of the host plant via diff erent physio-
logical mechanisms. Th us, some fungal endophytes can stimulate abiotic stress 
tolerance (e.g. drought   and salt stress) and plant growth by altering hormone 
balance (see below) or nutrient   acquisition (Zeilinger  et  al. ,  2016 ). Superfi cially, 
it may seem surprising that some endophytes do this, but there is no need to 
look for a more complicated reason for why this is, than that a happier plant can 
support a higher biomass   of a specifi c endophyte. In other words, in an ecological 
sense, the endophyte may fi nd a safe niche within the host tissue (protection and 
reduced competition for nutrients), while improving the plant’s performance 
under specifi c stress conditions. Survival and proliferation of the endophyte may 
simply depend on growth and survival of the host. Th ese are by no means uni-
versal properties of endophytes, and the majority may only be neutral commensal 
passengers which do not measurably infl uence their host. Furthermore, the ability 
to stimulate plant growth is by no means exclusive to endophytes as plant growth- 
promoting   organisms are also found among rhizosphere   microorganisms and 
mycorrhizal   fungi.  

  2.5     How Do Pathogens and Endophytes Differ? 

 Evidence coming from overlapping transcription profi les of endophyte-  and 
pathogen  - colonised plants indicates a level of similarity between the host 
response to colonisation and infection, at least at the initial stages of both types of 
interactions (Guimil  et al. ,  2005 ; Schäfer  et al. ,  2009   ; Zamioudis and Pieterse,  2011 ). 
In other words, at least some endophytes can induce plant immune responses 
through microbe- associated molecular patterns (MAMPs) that are recognised by 
the plant in a similar way to those produced by pathogens (Latz  et al. , 2018). It has 
long been speculated that, as for pathogens (Lo Presti  et  al. ,  2015 ), one strategy 
used by endophytes to avoid detection is to supress plant immunity using eff ectors   
(Sánchez- Vallet  et  al. ,  2013   ; Rovenich  et  al. ,  2014 ), and this can even result in 
induced susceptibility to pathogens (e.g. Kurose  et al. ,  2012 ; Busby  et al. ,  2016a ). So, 
what are the actual diff erences between endophytes and pathogens? Is the inten-
tion of the pathogen necessarily bad, or is it just a question of compatibility, i.e. 
expression of genes often associated with pathogenicity such as those encoding cell 
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wall degrading enzymes? Th e fact that at least some organisms can behave as an 
endophyte in one situation and as pathogen in others suggests that there is: (1) a 
continuum from benefi cial to harmful (and vice versa); and (2) no simple answer to 
the question ‘How do pathogens and endophytes diff er?’ 

 Th e complexity of the mechanisms of recognition and response to fungi can 
be illustrated with a pathogen  - related example, which may be predicted to apply 
to endophytes too:  chitin   is a MAMP   where analyses of plant– microorganism 
interactions have demonstrated several layers of interaction (signal and reaction, 
counter- reaction, new signal and so on).  Passalora   fulva  (formely  Cladosporium   
fulvum ) is considered to be a pathogen of tomato   which displays an initially endo-
phytic lifestyle (traditionally considered to be biotrophic by some authors) in the 
apoplast   without making specifi c infection structures. Several seminal studies have 
demonstrated multiple layers of protection used by this pathogen to avoid being 
recognised by the host or to counter the triggered immune response:  (1) Fungal 
eff ectors   (chitin- binding lectins  , including Avr4  ) coat the hyphal surface and act as 
inhibitors of the plant defence enzyme chitinase (van den Burg  et al. ,  2006 ). (2) Th e 
eff ector Avr4 is recognised by the host receptor Cf4   (a resistance gene) triggering 
immunity (i.e. ETI). Th e CERK receptor- like protein kinase   (3)  binds chitin 
fragments released by host chitinase to enhance the induced immunity, but (4) the 
pathogen produces the eff ector Ecp6   to scavenge chitin fragments (de Jonge  et al. , 
 2010 ; Malinovsky  et al. ,  2014 ).  

  2.6     Hormones in Plant– Endophyte Interactions 

 It is well established that hormones, such as abscisic acid   (ABA  ), auxins   (e.g. indole 
acetic acid, IAA  ), brassinosteroids, cytokinins (many), ethylene  , gibberellins  , 
jasmonates (JAs), salicylic acid   (SA) and strigolactones are important for plant 
development and modulation of plant defences against pathogens (Pieterse  et al. , 
 2012 ; De Vleesschauwer  et  al. ,  2013 ; Großkinsky  et  al. ,  2016   ; Ma and Ma,  2016 ). 
Pathogens (and presumably also endophytes) modulate hormone levels using sev-
eral mechanisms. Th us, they can (1) stimulate the host to increase or decrease the 
production of specifi c hormones; (2) produce and degrade hormones themselves; 
(3) insert biosynthetic genes for phytohormones   into the host chromosomes; and 
(4) produce molecules which emulate hormone action. Examples are emerging that 
many hormones, e.g. auxins (Hilbert  et al. ,  2012 ), JAs, gibberellins (Schäfer  et al. , 
 2009   ; Jacobs  et  al. ,  2011 ), ABA (Peskan- Berghöfer  et  al. ,  2015   ), ethylene (Khatabi 
 et al. ,  2012 ) and SA (Alonso- Ramírez  et al. ,  2014   ) play a role in regulating the ability 
of endophytes to colonise the host tissue. 

 Several hormones are involved in regulating the establishment and mainten-
ance of infections with the model root endophyte  Serendipita   indica  (formerly 
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 Piriformospora   indica ) which can form associations with many important crop 
plants, e.g. wheat  , barley   and tomato   (Weiß  et  al. ,  2016   ), and model plants, i.e. 
 Arabidopsis    (Stein  et  al. ,  2008 ) and  Brachypodium  (Ye  et  al. ,  2014 ).  Serendipita 
indica  is considered to be a root endophyte, although it does induce necrosis at the 
site of colonisation.  Serendipita indica  has been developed as a model endophyte 
through the combination of wide host range and its positive eff ects on many hosts. 
Experimentally, a fairly well annotated genomic sequence and molecular genetic 
tools are available, since the fungus can be cultured on artifi cial media (Zuccaro 
 et al. ,  2009 ,  2011 ). Studies in  Arabidopsis  using the JA  - insensitive host mutants  jai1  
and  jar1  demonstrated that  S. indica  lost the ability to supress host immunity. On the 
other hand, mutants involved in gibberellin signalling, a  della  mutant in which gib-
berellin levels are high and the  ga1– 6  mutant (impaired in biosynthesis), exhibited 
higher and lower levels of infection, respectively, compared to the wild- type plants 
(Jacobs  et al. ,  2011 ). Th e eff ects of auxin   on  S. indica  infection were studied in barley 
(Hilbert  et al. ,  2012 ) using gene silencing to compromise auxin production in the 
fungus:  these strains showed reduced rates of early infection of barley roots, but 
overall levels of infection were unaff ected. JA signalling is often related to ethylene   
signalling and it has been shown that ethylene production is induced by  S. indica  in 
 Arabidopsis  and barley (Khatabi  et al. ,  2012 ).  Arabidopsis  mutants with increased 
ethylene production and ethylene- induced defence mechanisms were more sus-
ceptible to  S. indica  infection.  S. indica  treatment of barley resulted in the induction 
of the expression of genes involved in the metabolism of several hormones including 
the biosynthesis of auxins  , brassinosteroids and gibberellin as well as ABA   respon-
sive genes (Schäfer  et al. ,  2009   ). Th e possible contribution of hormones produced 
by the fungus was not taken into account in this study, as described above. However, 
other studies have demonstrated hormone production by fungi (Hilbert  et al. ,  2012 ; 
Khan  et al. ,  2012 ; Waqas  et al. ,  2015 ). 

 Th e eff ects of altered hormone levels are both subtle and complex; indeed, 
the same hormones can stimulate defence or pathogenicity in interactions with 
diff erent pathogens, and diff erent hormones can modulate each other’s eff ects by 
complex crosstalk (Pieterse  et al. ,  2012 ). Most studies address individual hormones 
in isolation. In some cases, the concerted action (crosstalk) between hormones, e.g. 
IAA   and gibberellins   (Waqas  et  al. ,  2012 ), has been demonstrated. Indeed, some 
endophytes and other benefi cial fungi (and bacteria) produce or induce the pro-
duction of specifi c plant hormones to modulate this crosstalk for their benefi t and 
often also for the host plants’ benefi t (Schäfer  et al. ,  2009   ; Evangelisti  et al. ,  2014 ; 
Gutjahr,  2014 ). Techniques have been developed that allow monitoring of several 
hormones simultaneously (Kojima  et al. ,  2009 ; Ionescu  et al. ,  2017 ). Only by doing 
this, ultimately, it will be possible to unravel the roles, eff ects and the mode of action 
of hormones exploited in the interactions between endophytes and plants under 
diff erent physiological conditions. We still have much to learn!  
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  2.7     Effectors in Plant– Endophyte Interactions 

 Eff ectors are traditionally defi ned as pathogen   proteins introduced into the 
host cell in order to repress host defence (plant immunity). Indeed many, espe-
cially hemibiotrophic/ biotrophic fi lamentous pathogens such as the oomycete   
 Phytophthora   infestans  and ascomycete  Blumeria   graminis , have a huge arsenal of 
eff ector proteins for this purpose (Ahmed  et al. ,  2016 ). Plants need to defend them-
selves from attack and, taxonomically, endophytes are often related to pathogens, 
producing the same MAMPs   (that can trigger defence, MTI or MAMP  - triggered 
immunity) (Collinge  et al. ,  2016 ). It is necessary for endophytes to avoid triggering 
the induction of plant defences, and eff ector proteins are among the tools needed 
to do this, indeed candidate eff ectors are now being found in some endophytes. 
For instance,  S. indica  uses a battery of eff ectors   to suppress host defences (Jacobs 
 et  al. ,  2011 ; Rafi qi  et  al. ,  2013 ), although the expression of many defence- related 
genes is induced (Schäfer  et al. ,  2009   ). Studies comparing plant responses to patho-
genic and endophytic organisms do indicate that both are recognised in the same 
manner. However, they may diff er in induction of the full defence response, because 
the endophytic organisms lack some unidentifi ed pathogenic determinants (Wani 
 et al. ,  2015 ; Xu  et al. ,  2015 ). Th us, although the process of initial recognition is the 
same for both endophyte and pathogen, downstream regulatory mechanisms 
must be diff erent. Th e question is therefore, what are these mechanisms? Are they 
determined by the endophyte or the plant, or more likely by crosstalk between the 
two (Kusari  et al. ,  2012 )?  

  2.8     Specialised or Secondary Metabolites 
in Plant– Endophyte Interactions 

 It is well known that plants produce compounds, termed specialised (trad-
itionally termed secondary) metabolites  , collectively known as phytoalexins   or 
phytoanticipins  , to prevent or restrict the growth of fungi within the tissue (Ludwig- 
Müller,  2015   ; Rook,  2016 ). On the other hand, many pathogens produce phytotoxins 
to facilitate infection, i.e. metabolites toxic to plants. Many endophytes are also 
capable of inducing plant- based production of specialised metabolites upon col-
onisation. Th ese metabolites have roles in competition between microbes and in 
some cases communication (Kusari  et al. ,  2012 ; Dupont  et al. ,  2015 ). Th e diversity   
of specialised metabolites produced in plant– microbe interactions is enormous and 
the range includes alkaloids  , polyketides  , terpenoids  , phenylpropanoids  , fl avonoids  , 
steroids  , quinones  , xanthones  , benzopyranones  , tetralones  , cytochalasines   and 
enniatines  . Despite the inherent limitations in trying to study chemically diverse 
compounds simultaneously, the technologies of metabolomics for the study of the 
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entire cellular diversity of these metabolites has improved substantially in recent 
years (Tenenboim and Brotman,  2016 ). A major role for these metabolites is to help 
one or the other partner in competitive interactions with other organisms they 
encounter, these can be: (1) other microorganisms they compete with; or (2) their 
hosts. Specifi c compounds play an important role in plant– endophyte communi-
cation and therefore in the establishment of a successful interaction (Kusari  et al. , 
 2012 ). Specialised metabolic pathways of host plant and endophyte can interact in 
many ways (Kusari  et al. ,  2012 ). Th e metabolism of the host plant and/ or endophyte 
can be infl uenced by the other partner (Ludwig- Müller,  2015   ):  (1) the endophyte 
may induce host biosynthetic activity; (2) the host can induce endophyte biosyn-
thetic activity; (3) the host and endophyte may share parts of a specifi c biosynthetic 
pathway and thus each may contribute partially to producing novel specialised 
metabolites; and (4) both the host and/ or the endophyte may metabolise products 
made by the other partner. 

 Compared to other types of microbial interactions, our knowledge of the 
metabolites   from endophyte interactions is both rudimentary and of great interest as 
a source of new metabolites with industrial potential, not least for the pharmaceut-
ical   industry (Kusari  et al. ,  2012 ). Many studies have demonstrated that pathogens 
adapted to a particular host are well capable of dealing with the phytoalexins   and 
phytoanticipins   produced in their host (Rook,  2016 ). Th is is apparently also true for 
endophytic fungi. For example, the majority of isolated oat root endophytes were 
resistant to the phytoanticipin avenicin, a saponin (i.e. terpenoid derivative) (Carter 
 et al. ,  1999 ). Th is raises an issue: one of the strategies for achieving transgenic dis-
ease resistance against pathogens is to move the biosynthetic apparatus for spe-
cifi c phytoalexins and phytoanticipins to plant species where the pathogens have 
not evolved to overcome them. Th is may have undesirable negative eff ects on the 
endophytic microbiome   of the recipient since the natural endophytes adapted to 
a particular species would not be adapted to the phytoalexins and phytoanticipins 
originating from the gene donor, and this potential negative eff ect should be looked 
for when using this plant protection strategy. 

 It is also well known that many fungi produce specialised metabolites   to give them 
a competitive advantage in interactions with other fungi or their hosts. Where these 
metabolites are measurably toxic for the host, they are termed phytotoxins. By def-
inition, an organism behaving as an endophyte does not produce phytotoxins while 
exhibiting this lifestyle since this defi nes the necrotrophic phase of a fungal infec-
tion (Howlett,  2006 ). Endophytes may nevertheless produce secondary metabolites   
for their own benefi t, e.g. to suppress the plant’s defence system (which represents 
a conceptual overlap with hormones) or growth of competitors within the plant. 
In the case of the ryegrass   endophyte  Epichlöe   festucae , a massive host response 
was induced at the level of induced gene expression, and much could be attributed 
to the production of specialised metabolites at the expense of primary metabolism 
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(Dupont  et  al. ,  2015 ). Th e presence of several diff erent endophyte species can 
lead to metabolite production by endophytes and/ or host, because of competi-
tion (Kusari  et al. ,  2012 ). For example, the specialised metabolite production (spe-
cifi cally polyketide biosynthesis), diff ered in the endophyte  Alternaria   tenuissima  
depending on the presence of another endophytic fungus,  Nigrospora   sphaerica , 
in an  in vitro  system where the former inhibited growth of the latter (Chagas  et al. , 
 2013 ). Sometimes, the metabolites shift the balance in the mutualistic interaction, 
turning the endophyte into a pathogen   (Schulz and Boyle,  2005 ). Specialised 
metabolites produced by endophytes can be used by the host. For example,  Epichlöe  
species produce ergot alkaloids   which protect the plant against herbivores (Schardl 
and Phillips,  1997 ).  

  2.9     Selecting Endophytes as Potential BCAs 

 Many researchers use high- throughput  in vitro  methods to screen for potential 
biocontrol   agents   by isolating cultivatable organisms and test for their potential as 
BCAs. Typically,  in vitro  confrontation assays (dual culture) are performed to look 
for the ability of the potential BCA to inhibit growth of the target pathogen   directly, 
i.e. direct antimicrobial   activity (Zachow  et al. ,  2008 ; Furnkranz  et al. ,  2012 ; Gdanetz 
and Trail,  2017 ; Kosawang  et al. ,  2018 ) before moving on to  in planta  assays. Th e  in 
vitro  approach is often successful as evidenced by numerous reports of seemingly 
successful identifi cation of new BCAs where this approach was employed. However, 
drawbacks of using this  in vitro  approach are: (1) they often do not correlate with dis-
ease control effi  cacy  in planta ; (2) the mechanism of induced resistance   cannot be 
discovered in the absence of the plant. So, even if the  in vitro  approach is seemingly 
successful, it is not known how many potentially eff ective strains were discarded in 
the screening process. Despite these drawbacks,  in vitro  testing   is often used for high- 
throughput screening of existing collections. In contrast to the  in vitro  approach, and 
in common with others (Schisler and Slininger,  1997 ; Comby  et al. ,  2016 ; Zhao  et al. , 
 2017 ; Kernaghan  et al. ,  2017 ), our approach is ecological or niche- based: to look for 
novel fungal BCAs in the habitat where they can interact with pathogens ( Figure 2.2 ). 
Specifi cally, the idea is to look for more healthy plants (i.e. less stressed) in these 
habitats to test the hypothesis that these plants manage better due to the presence 
of a biocontrol microorganism in their microbiome  . In other words, our thesis is that 
endophytes isolated from the environment   where they are intended for use are more 
likely to be adapted to these specifi c environmental conditions (e.g. water availability, 
temperature, UV radiation  , competing organisms, etc.).    

 Th ere are relatively few examples of benefi cial endophytic fungi identifi ed using 
niche- based screening strategies (Lugtenberg  et al. ,  2016 ; Kernaghan  et al. ,  2017 ; 
Zhao  et al. ,  2017 ). On the other hand, there are several examples of eff ective fungal 
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BCAs from other microbiome   components. An antagonistic isolate of  Cladosporium   
cladosporioides  was isolated from a sporulating colony of  Venturia   inaequalis  and 
was shown to be as eff ective as fungicides   for the control of apple scab in the fi eld 
(Köhl  et  al. ,  2014   ). Th e fungus  Clonostachys   rosea  was originally isolated from 
 Fusarium   - infected barley   roots (Knudsen  et  al. ,  1995 ) and control of seed- borne 
and root- infecting diseases was demonstrated in the fi eld (Jensen  et  al. ,  2000 ). 
However, the exceptions prove the rule:   C.  rosea  is also eff ective in controlling 
diseases in carrot (Jensen  et al. ,  2004 ; Koch  et al. ,  2010 ), Chinese cabbage (Møller 
 et al. ,  2003   ), oak (Knudsen  et al. ,  2004 ) and strawberry (Mamarabadi  et al. ,  2008 ), 
as well as foliar diseases in cereals (Jensen  et al. ,  2016a ), demonstrating that it is 

3. Identification

1. Sampling

5. In planta screening 
under controlled 

conditions

6. Field trials 2. Isolation

4. Colonisation efficiency 
and mass inoculum 

production

7. Potential biocontrol 
endophytes

 Figure 2.2      Th e process of discovery of biocontrol   endophytes: 1. Sampling healthy plants 
in areas under disease pressure. 2. Isolation on artifi cial media from surfaced sterilised 
tissues (wheat   glume). 3. Molecular identifi cation of isolates using ribosomal genes. 
4. Colonisation effi  ciency and mass production tests can reduce the number of potential 
isolates, as well as detect latent pathogens  . 5. Screening of endophytes against diseases in 
small  in planta  assays provides a better observation of potential candidates. 6. Successful 
isolates can be tested in fi eld conditions on larger- scale experimental units in order to 
assess fi eld consistency. 7. Potential biocontrol endophytes can enter an industrial phase or 
mass production and marketing or continued biological studies about their mode of action 
and ecological signifi cance. (A black and white version of this fi gure will appear in some 
formats. For the colour version, please refer to the plate section.)  
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competitive in habitats other than those it was isolated from. Another example is 
fungal root endophyte  S. indica , which also exhibits a broad host range and acts as 
an eff ective BCA against several diseases (Franken,  2012 ; Card  et al. ,  2016 ). 

 Having isolated the organisms, a common approach is to design assays for bio-
logical control  , which resemble the conditions where the potential BCAs will be 
used. Th is is done by screening the organisms  in planta  against pathogens under 
controlled conditions with an adequate number of replications since BCAs tend 
to show variable effi  ciency. However, for some pathosystems, large- scale  in planta  
screening may not be feasible, for example due to the limited availability of material 
or timescale for bioassays (Kosawang  et  al. ,  2018 ). Small- scale fi eld experiments 
may be performed to assess the development of disease symptoms and optimise 
time points and application methodologies. Field trials at diff erent locations with 
larger plots are necessary to determine eff ects on yield and pathogen   infection. For 
some diseases, artifi cial inoculation coupled with environmental manipulation 
(e.g. irrigation  ) may be necessary since natural infection is unpredictable (e.g. for 
 Fusarium    head blight; Rojas  et al. ,  2018 ). 

 Th e information acquired will help in developing protocols for improving the reli-
able use of endophytes. It is also biologically interesting to record the endophytic 
lifestyle under controlled/ sterile conditions, to confi rm they are not latent plant 
pathogens of the test or other crop, and confi rm that they are not potential human 
pathogens (see  Section 2.11 ).  

  2.10     Exploiting Endophytes as BCAs 

 Once biocontrol   has been demonstrated, it is very important to study the 
mechanisms used by the organisms to reduce disease, i.e. mode of action. 
Interactions between plants and microbes are complex and there is currently 
no way of predicting whether a particular BCA will have a positive or negative 
influence on the ability of a specific pathogen   to cause disease (Busby  et  al. , 
 2016b ) and therefore we need to test for effect. The mechanisms contributing 
to biological control   include antibiosis    , parasitism  , competition and induced 
resistance   (Hardoim  et al. ,  2015 ; Ludwig- Müller,  2015   ; Jensen  et al. ,  2016b ; Card 
 et  al. ,  2016 ). Can individual mechanisms contribute in concert in a particular 
three- way interaction among plant, pathogen and antagonist? It is believed that 
components of microbial communities (e.g. rhizosphere   and endosphere) also 
stimulate plant growth and thereby can act to control disease by strengthening 
the plant (Card  et  al. ,  2016 ). It is generally believed that the most important 
mechanisms employed by endophytic BCAs are antibiosis   and induced resist-
ance. We address the mechanisms employed by endophytic BCAs in more detail 
elsewhere (Latz  et al. ,  2018 ). 
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 An important potential advantage for an established endophyte is that it is 
better protected from the external environment   than microorganisms applied to 
the phyllosphere   or rhizosphere   (Schulz and Boyle,  2005 ). Since endophytes are 
inside the plant, we can predict that some can provide eff ective and robust means 
for controlling disease, assuming that any eff ect as a BCA depends on it being an 
endophyte. 

 What comes out must be put back to be of use! It may not be easy to introduce 
the endophyte into a new plant and considerable developmental eff ort should be 
expected for potential products both to ensure reliable inoculation and stable eff ect 
under various environmental conditions. Th e challenge is greatest for fi eld use 
(especially for foliar applications) and rather less for controlled conditions (green-
house). Seed treatment is very attractive since it requires no further action by the 
grower. Th is may also be achieved by introducing the endophytic BCA to the fl owers 
during pollination. Genetic variation in the host is also an important factor aff ecting 
endophyte colonisation and is an important aspect which needs to be addressed 
(Busby  et al. ,  2016b ; Kroll  et al. ,  2017 ). Once introduced to the host, some endophytes 
can be transmitted through the seed, e.g.  Epichlöe    spp. (Rodriguez  et al. ,  2009 ; Card 
 et al. ,  2016 ). Some BCAs can be used as seed treatments, and can provide sustained 
control against root and even foliar infections. For example the protection aff orded 
by  S. indica  in barley   suggests maintenance of eff ects for weeks (Waller  et al. ,  2008 ). 
Aerial parts –  leaves and fl owers –  are more sensitive to variation in environmental 
conditions, in particular, humidity and UV light can pose problems.  

  2.11     Concerns for the Use of Endophytes 

 Th ere is clearly an ecological risk in moving endophytes between continents and 
it is not possible to predict a problem in advance. Th us, eff ects on natural micro-
bial communities may possess a risk of causing trophic imbalance. Botanists and 
horticulturalists have moved many plant species and plant products, presum-
ably with their accompanying microbiomes, for centuries apparently without ill 
eff ect. Occasionally, a catastrophe occurs, and plant pathology text books name 
the worst cases where pathogens have spread from an important introduced plant 
species to a native species with devastating eff ect. Th e mechanisms behind this 
are often obscure (Woolhouse  et al. ,  2005 ; Giraud  et al. ,  2010 ). An intriguing story 
has emerged with the relatively new disease ash   dieback   caused by the ascomycete 
fungal pathogen    Hymenoscyphus   fraxineus    in European ash ( Fraxinus   excelsior ). 
Th is disease emerged in the 1990s in the Baltic region and has subsequently spread 
west (McKinney  et al. ,  2014 ). Th e pathogen was fi rst identifi ed some 10 years after 
the disease was discovered and it was subsequently found that this is a natural 
endophyte or perhaps a weak pathogen in ash leaves of the eastern Asian species 
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 Fraxinus mandchurensis . Perhaps native endophytes can be found which could be 
used to combat this disease (Kosawang  et al. ,  2018 ; Lahiri  et al. , 2019, Chapter 15)? 

 Th at an endophyte can fi nd a new host and become a pathogen   after intercon-
tinental transfer represents one risk, and it is clear that intercontinental transfer 
should in general be avoided or at least evaluated carefully. Are there other risks? 
Potential BCAs, including endophytes, should be tested thoroughly to ensure they 
are not pathogenic or otherwise harmful to the environment  . Not easy! Th ey may 
be present naturally in low amounts, but what happens if they are present in large 
quantities after application for agronomic purposes? One criterion could be to 
ensure that the BCA cannot persist for long in the environment in the absence of the 
host. However, there is a balance here. Should the product be diffi  cult to use and 
ineffi  cient, arguably it would be less attractive to the market than a more persistent 
(aggressive BCA). Whereas a non- persistent product may be attractive to the sup-
plier, who could sell more, this option is less attractive to the grower. 

 A prerequisite for an endophytic BCA is that it should not be pathogenic towards 
humans (or allergenic or produce mycotoxins  ), even the immunocompromised, as 
it is very unlikely that these would be approved as products during the registration 
process. An early identifi cation can be useful and with the ease of molecular identi-
fi cation, known human (and plant!) pathogens can be dropped from further study 
(Alabouvette  et al. ,  2012 ). A simple screen for pathogenic potential is to compare 
the growth in culture of the isolated endophytes at ambient temperature, where 
they would be used as BCAs or stimulants, with growth at 37°C or thereabouts. 
Ideally, growth should be prolifi c at the lower temperature as this would be useful 
for product formulation   and production, but not at the latter temperature (Köhl 
 et al. ,  2011 ). 

 Finally, there is a myth that something natural is intrinsically safer than some-
thing that is artifi cial. Like other fungi, a BCA may produce mycotoxins   or other 
harmful metabolites   (Alabouvette  et al. ,  2012 ). Th e grass endophytes  Epichlöe    spp. 
are a case in point, and considerable eff ort has been put into developing mycotoxin- 
free  Epichlöe  BCA products (Card  et al. ,  2016 ). Part of the development of a poten-
tial BCA for use should therefore include checking for the production of potentially 
harmful metabolites. 

 Th e legislation concerning the use of BCAs in the EU follows the Registration 
of Biological Control Agents (REBECA) policy   (Anon,  2009 ; Ehlers,  2011 ), and the 
Organisation for Economic Co- operation and Development (OECD) has provided 
guidelines to help harmonise legislation (Alabouvette  et  al. ,  2012 ; OEDC,  2012 ). 
Currently there is an illogical discrepancy in the legal frameworks for using benefi -
cial microorganisms in agriculture in some (mostly OECD) countries: an organism 
can be sold as a biofertiliser   or biostimulant without addressing BCA activity, but 
all BCAs are subject to an extensive registration process and this is hampering the 
development of products (OEDC,  2012 ; Villaverde  et al. ,  2014 ; Anon,  2016 ).  
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  2.12     Perspectives and Further Research 

 It is becoming increasingly clear that biological control   will have to play a larger role 
in the plant protection programmes of the future. However, we still have much to 
learn. BCAs are often trickier to use than chemicals or disease resistance, but they 
can off er control solutions or contribute where chemicals and disease resistance are 
unavailable. We see an increasing role for endophytes in the BCA armoury. Th ere are 
several areas which need to be focused on in order to achieve this; for example, the 
biology of the microorganisms concerned, including the potential for developing 
crops producing useful metabolites  . Another important area concerns the develop-
ment of reliable delivery systems for endophytes to the crop. Examples of delivery 
can include the ability to infect seed via the fl ower, seed coating or spraying the crop. 
Finally, we need a better understanding of the eff ects of host genotype and role of 
environment   on specifi c disease risks. Most of all there are many exciting biological 
questions to be answered about the recruitment of endophytes, and concerning the 
nature of the interactions of endophytic microorganisms with each other, with other 
microorganisms in the plant (pathogens and the classic symbionts  , e.g. mycorrhiza  ) 
and with the physiology of their hosts. 

 Consortia   are combinations of organisms which can grow together giving an 
improved eff ect against a specifi c disease or perhaps several diff erent benefi cial 
eff ects. Small consortia can be designed to combine diff erent microorganisms with 
diff erent targets; for example, combining  Clonostachys   rosea  with  Metarhizium   
brunneum  or  Beauveria   bassiana , which target fungal pathogens and insect 
pests, respectively (Kapongo  et al. ,  2008 ; Keyser  et al. ,  2016 ;). Consortia   off er both 
advantages and disadvantages. 

 Advantages: 

     1.     Th ey may be designed to provide a combination of diff erent modes of action to 
give broad- spectrum eff ect against several pathogens.  

     2.     Organisms with diff erent environmental optima may be combined to secure 
an eff ect under diff erent environmental conditions.   

  Disadvantages: 

      1.     Companies prefer single strains due to diffi  culties in approval.  

     2.     Th ey may not always give an enhanced eff ect (Xu  et al. ,  2011 ).   

 With the predicted 20% human population growth over the next 30  years, the 
eff ects of urbanisation and climate changes, global agricultural productivity needs 
a boost. Simultaneously, this boost must be implemented under higher environ-
mental standards and global sustainability goals. Plant pathogens, pests and abiotic 
stress are agricultural challenges where microbiomes and specifi cally endophytes 
have shown potential for contribution to the alleviation of crop loss and stimulation 
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of crop yields. Our responsibility is to provide alternatives and to ensure that these 
achieve the potential by translating laboratory results into improved crop produc-
tion globally.  
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