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Introduction

Cell-free tumor DNA (ctDNA), harboring tumor-specific 
mutations, is released by apoptotic and necrotic tumor cells 
and found in the cell-free fraction of blood (1). Plasma 

derived ctDNA has been recognized as a potential non-
invasive surrogate for tumor tissue biopsies, also known as 
“liquid biopsy” (2). Massively parallel sequencing (MPS) 
studies of ctDNA have revealed that ctDNA is a potential 
marker related to various forms of human cancers (3-5). It 
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can be used as a potential marker to predict disease risk, 
patient outcomes or response to treatment.

As is known, accurate and timely detection of treatment 
responses is pivotal because patients’ survival rates rapidly 
decline with late detection and delayed salvage surgery (6,7). 
The monitoring of treatment response is essential to avoid 
continuing ineffective therapies, to prevent unnecessary side 
effects, and to determine the benefit of new therapeutics. 
Treatment response is generally assessed with the use of 
serial imaging, but radiographic measurements often fail 
to detect changes in tumor burden. For example, patients 
with stage II or III NSCLC (non-small-cell lung cancer) 
undergoing definitive radiotherapy often have surveillance 
CT or PET-CT scans that are difficult to interpret owing to 
radiation-induced inflammatory and fibrotic changes in the 
lung and surrounding tissues. Plasma protein biomarkers 
(AFP, CEA, PSA, and CA15-3) are also commonly used 
in clinical management to reflect treatment responses of 
patients (8,9). However, the application of plasma protein 
biomarkers is limited because of low sensitivity and poor 
clinical correlations. The positive proportion of patients 
for these biomarkers is usually between 50–70% in cancer 
patients. Furthermore, it has also been reported that these 
biomarkers can also be found in lower concentrations in the 
serum of individuals without cancer (10,11). MPS studies 
of multiregional and repeated metastatic tumour biopsies 
analysis have been applied to guide choice and sequence 
of therapy (12,13). However, this is challenging due to 
tumor heterogeneity, which limited efficacy and duration 
of response to treatment. In this case the analysis of 
ctDNA could provide a whole picture of somatic mutations 
in a patient, avoiding the need to perform repeated 
invasive biopsy procedures. Using ctDNA to evaluate 
tumor heterogeneity as a prognostic factor and monitor 
therapeutic response in patients could guide choice and 
therapy. Liver cancer is one of the most common cancers 
and cause of cancer related death in China (14). However, 
studies comparing before and after treatment plasma 
samples of HCC patients to establish the extent of clonal 
heterogeneity captured in ctDNA is extremely limited. 

In this study, we performed a Bayesian clustering analysis 
of preoperative and postoperative plasma samples collected 
from four HCC patients. We detected changes of genomic 
clones between preoperative and postoperative plasma 
samples. We identified reductions in cellular prevalences 
of private mutation clusters between preoperative and 
postoperative plasma samples, which correlated with disease 
status after surgery. In addition, we identified expansion 

and sharing sub-clonality of initially minor clones in plasma 
samples, and located mutation clusters which might be used 
to guide therapy. These results, from four patients with 
HCC, suggested that ctDNA could be used to reflect clonal 
population structures and captures sub-clonal dynamics in 
real time. 

Methods

Data extraction

The study consisted of 4 patients with HCC from the 
Department of Surgery of the Prince of Wales Hospital, 
Hong Kong. These patients were initially recruited for the 
study in reference 1 (15). The maximal dimension of the 
tumor is 13.0 mm for HCC1, 6.2 mm for HCC2, 4.2 mm  
for HCC3 and 6.2 mm for HCC4. In this study, we 
focused on the data from the plasma ctDNA samples of 
the four patients, which were kindly provide by Y.M.D. 
Lo. The study and the protocols used were approved by 
the Institutional Ethics Committee of BGI (NO. BGI-IRB 
15136). Written informed consent was obtained from all of 
the participants when enrolled in the study.

Data processing

Detailed information of the materials and methods was 
described in reference 1 (15). In short, after genomic 
DNA extraction of the 4 HCC patients, the DNA library 
was diluted and hybridized to the paired-end sequencing 
flow cells. DNA clusters were generated on a cBot 
cluster generation system (Illumina) with the TruSeq PE 
Cluster Generation Kit v2 (Illumina), followed by 51×2 or  
76×2 cycles of sequencing on a HiSeq 2000 system (Illumina) 
with the TruSeq SBS Kit v2 (Illumina).

The analysis pipeline included data fi lteration, 
alignment, somatic variants detection, annotation and 
clustering analysis for both preoperative and postoperative 
plasma ctDNA samples (Figure 1). We sorted the bam 
file, and used bedtools (bedtools v2.25.0) to change the 
bam file to fq file (filtered some reads with the same read 
ID) for further analysis. The pipeline started from the 
clean reads generated in the above mentioned step: first, 
the clean reads with a length of 50 bps were mapped to 
the human reference genome (hg19) from the UCSC 
database using BWA (Burrows Wheeler Aligner). Second, 
after removing PCR derived duplications using Picard 
and realigning by GATK (http://www.broadinstitute.org/
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gatk/gatkdocs/org_broadinstitute_sting_gatk_walkers_
indels_RealignerTargetCreator.html), the bam results 
were then used to do variants detection. We also included 
local realignment around indels. Somatic single nucleotide 
variants (SNVs) were identified by applying VarDict (16) 
with a P value threshold of 0.01. We only focused on the 
variants in the exome region in this study. The identified 
somatic variants were directly annotated by Catalogue 
of Somatic Mutations in Cancer (COSMIC) database 
(version 76), dbSNP (human_9606_b150_GRCh37p13), 
and dbNSFP (version 3.2 Academic, http://varianttools.
sourceforge.net/Annotation/DbNSFP) using snpEff 
(snpEff_v4_3p_core) (17) and our own PERL scripts. 
After annotation, we used bam-readcount (version 0.8.0) 
to generate metrics at single nucleotide positions of the 
candidate SNVs, which were used to filter out false positive 
calls. Detailed filtering parameters followed the best 

practice guidelines. The ploidy, tumor content, and absolute 
copy number were estimated using Patchwork with default 
parameters (18).

Clustering using PyClone

After candidate non-synonymous SNVs calling and 
filtering, clonal population structures were identified based 
on variations from plasma ctDNA using Bayesian cluster 
with PyClone (version 0.13.0) (19). PyClone_binomial 
density was used to model read counts. In order to ensure 
convergence, MCMC sampling with iterations of 1,000,000 
was used to approximate the posterior distribution of the 
model. We discarded clusters with fewer than two mutations 
assigned to them. This is mainly to exclude clusters with a 
single mutation, where PyClone gains no power to estimate 
cellular prevalence.

Bam file

Bcftools

VarDict Patchowork

CNV and tumor purity

QC

Raw FASTQ file

Clean reads

Bam data

Somatic SNV

Read count

Mutation cluster

Pyclonee
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Figure 1 Flow diagram of bioinformatics analysis.
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Statistical analysis

To assess statistical significance, we analyzed the number 
of tumor associated SNVs in plasma samples after 
treatment. In addition, the changes of cellular prevalences 
in preoperative and postoperative plasma samples were 
compared, and P values were calculated accordingly.

Results

Identification of somatic variants

We used the above mentioned pipeline to analyze the 
preoperative and postoperative plasma samples obtained 
from all 4 HCC patients. We only retained reads with an 
average mapping quality score of more than 30 (Phred). On 
average, the sequencing depth after removing of duplicate 
reads is 16.75-fold of the human genome in the plasma 
samples for the four HCC patients. 

To reduce false positives, we used the following criteria 
in potential somatic SNV detection: (I) a mutation was kept 
only when the sequencing depth is more than 10-fold; (II) 
a mutation was kept when the variant frequency is more 
than 5%; (III) a mutation was kept only when it is present at 
less than 1% mutant allelic frequency in the paired normal 
sample (PBLs); (IV) only bases with Phred quality scores of 
more than 30 (less than 0.1% probability of a sequencing 
error) were kept; (V) the mutations were non-synonymous 
variants; (VI) we carried out analysis only focusing on 
the mutations which have been previously reported two 
or more times in COSMIC territory (http://www.sanger.
ac.uk/genetics/CGP/cosmic/). This threshold was applied 
in order to lower the false-positive detection rate, and to 

only focus on tumor associated mutations. Finally, a total of  
2,165 candidate non-synonymous SNVs for the 4 patients 
(Table 1) were selected for analysis of the number of tumor 
tissue associated SNVs.

The number of tumor-associated SNVs ranged from 161 
to 410 in the plasma samples of the 4 HCC patients (Table 1).  
In plasma samples, 7.66–15.44% of the tumor associated 
SNVs were detected in tumor tissue before treatment. After 
treatment, 7.50–13.82% of the tumor associated SNVs in 
the plasma samples were detected in tumor tissue. We did 
not detect significant reducing of the number of tumor 
associated SNVs in plasma samples after treatment (Paired 
samples t-tests, P value =0.3736). This suggested that total 
number of mutations cannot reflect the treatment response 
and monitor tumor dynamics in the 4 HCC patients. 
There might be new mutations detected in patients after 
treatment. 

Mutation clusters in preoperative and postoperative plasma 
samples

We used PyClone (19), a Bayesian clustering method 
to group sets of somatic mutations into putative clonal 
clusters. We carried out PyClone clustering analysis 
focusing on all the mutations (both reported/not reported 
in COSMIC). All the mutations were listed in the Table 
(online: http://tcr.amegroups.com/public/system/tcr/supp-
tcr.2018.03.17.pdf). An average of five major clusters were 
identified in the plasma samples of the 4 HCC patients 
(Figure 2). In the preoperative and postoperative plasma 
samples of each patient, we identified mutation clusters 
detected in all plasma samples, and private mutation 

Table 1 Tumor-associated somatic variants in plasma ctDNA samples

Sample Time point No. of SNVs from plasma No. of SNVs seen in tumor tissue (%)

HCC1 Before treatment 248 19 (7.66)

After treatment 207 17 (8.21)

HCC2 Before treatment 298 46 (15.44)

After treatment 304 42 (13.82)

HCC3 Before treatment 410 42 (10.24)

After treatment 360 27 (7.50)

HCC4 Before treatment 161 13 (8.07)

After treatment 177 16 (9.04)

HCC, hepatocarcinoma.
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clusters detected only in one of the plasma samples. 
Each patient has a large mutation cluster detected in 
all plasma samples (cluster 3 in HCC1, cluster 4 in 
HCC2, cluster 6 in HCC3, and cluster 6 in HCC4), 
which contain most of the mutations. We also detected  
10 private mutations clusters: cluster 1, 2 in HCC1, cluster 
1, 3, 4 in HCC4 and so on (Figure 2). Private mutation 
clusters suggested the changes in plasma samples between 
preoperative and postoperative plasma samples. For 
example, mutations with high confidence (mutations with 
sequencing depth of more than 30 and allele fraction >5%) 
in cluster 3 of HCC3 were detected mainly in the plasma 
sample before treatment, while most of these mutations 
were not detected in the plasma sample after treatment.

Cellular prevalence of mutation clusters

Previous studies used PyClone to infer cellular prevalence 
in tumour biopsies and to follow clonal dynamics in 
serially transplanted tumour xenografts (12,20). In this 
study, we used PyClone to estimate cellular prevalences in 
preoperative and postoperative plasma samples of the four 
HCC patients (Figure 3). Cellular prevalence is defined as 
the proportion of cancer cells with the mutation. We used 
PyClone to investigate the changes of estimated cellular 
prevalence in the preoperative and postoperative plasma 
samples.

The cellular prevalence of the plasma samples were 
grouped into putative mutation clusters. For each of the 
4 cases, we observed reductions in cellular prevalence of 
mutation clusters between preoperative and postoperative 
plasma samples (P value <0.001), which reflected the 
treatment responses after surgery (for example, cluster 1, 4 
in HCC1, cluster 1, 5 in HCC2, cluster 2, 3 in HCC3 and 
cluster 1, 2, 5 in HCC4 respectively). 

Notably, several cases contained mutation clusters 
with low (mean of 0.0005–43.27%) prevalences in the 
preoperative plasma samples but high (mean of 20.25–
63.23%) prevalences in the postoperative plasma samples 
(P value <0.001) (Figure 3), implying expansion of initially 
minor clones. Those clones could be recognized as the 
emergence of treatment-resistant clones, which can be used 
as potential targets of therapy. We detected a mutation 
ERBB2-c.G2524C, which only existed in mutation cluster 
2 of the postoperative plasma sample in HCC1. ERBB2, 
commonly referred to as HER2, is amplified and/or 
overexpressed in 20–30% of invasive breast carcinomas. 
ERBB2 (c.G2524A) was one of the first ERBB2 variants to 
be functionally classified (21). This mutation was shown 
to be an activating mutation in an in vitro assay: along 
with other ERBB2 activating mutations, mutation ERBB2 
(c.G2524A) in MCF10A breast cancer cell lines have been 
shown to be sensitive to the kinase inhibitor neratinib. More 
recent evidence showed that HER2 activating mutations 
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confer sensitivity to a host of tyrosine kinase inhibitors 
like Neratinib, Lapatinib, Trastuzumab, which means the 
ERBB2 (c.G2524C) mutation found in cluster 2 of the post 
plasma sample could be used as a target for therapy. In 
patient HCC4, we identified a mutation (ERBB3, c.T2564G) 
in cluster 3 of the post treatment plasma sample (Figure 3). 
A recent study reported a novel c.T2564C mutation located 
in exon 21 of the HER3 tyrosine kinase domain in an 
adolescent patient with a chemotherapy-resistant advanced 
NSCLC (22). Protein alignments indicated the c.T2564C 
mutation was analogous to EGFR-L858R and BRAF-L597V. 
Co-expression of wild type HER2 and HER3-c.T2564C in 
Ba/F3 cells led to sensitivity to afatinib and pertuzumab. 
This observation suggests that mutation cluster 3 in HCC4 
might be used as a potential actionable target. However, 
the mechanism of mutation ERBB3-c.T2564G being an 
actionable mutation still needs further investigation. 

Interestingly, we also identified large major clusters 

(containing an average of 333 mutations in each sample) 
sharing sub-clonality between the preoperative and 
postoperative plasma samples, which suggests the detection 
of direct evidence of residual disease in the form of ctDNA. 
This implicated that after treatment cells containing 
these mutations still exist. The cellular prevalences of 
these mutation clusters ranges between 22.55% and 
27.90% (Figure 3). We identified a mutation in gene ESR1 
(c.A1613C) in cluster 6 of preoperative plasma sample of 
HCC3. ESR1 mutations have been identified in breast 
cancer, endometrial, ovarian and other cancer types. 
Mutations in the ESR1 ligand binding domain have been 
shown to confer resistance to hormone therapy (23,24). 
This evidence has led to an increased use of targeted 
sequencing of the estrogen receptor in breast and ovarian 
cancer. Mutation c.A1613G is one of these ligand binding 
domain mutations, and is commonly implicated in this 
hormone resistance. In this study, c.A1613C mutation 
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was detected in cluster 6 of preoperative plasma sample of 
HCC3. The sharing sub-clonality between the preoperative 
and postoperative plasma samples also suggests resistant in 
patient HCC3 when applying hormone therapy. 

Discussion

In this study, we performed PyClone to investigate putative 
clonal clusters and infer cellular prevalence in plasma 
sample of 4 HCC patients. In total, we identified 21 clusters 
in the plasma ctDNA samples. We also detected serial 
changes in cellular prevalences of mutation clusters in 
preoperative and postoperative plasma samples. We found 
actionable targets in mutation clusters which could be used 
to guide therapy. The results suggest that ctDNA analysis of 
plasma samples can be used to investigate clonal population 
structures and captures sub-clonal dynamics in real time.

We used VarDict (16) to call somatic variants in this 
study. As is known, there are several widely used variants 
callers which were developed to find somatic mutations 
in whole genome sequencing. For example, MuTect (25) 
applies a probabilistic framework (Bayesian statistics) 
to detect somatic mutations and assess confidence in 
them. FreeBayes (26) is haplotype-based software, it calls 
variants based on the literal sequences of reads aligned to a 
particular target, not their precise alignment. VarScan2 (27) 
employs a robust heuristic/statistic approach to call somatic 
mutations that meet desired thresholds for read depth, base 
quality, variant allele frequency, and statistical significance 
(some statistical test like Fisher’s Exact). However, we 
focused on preoperative and postoperative plasma samples 
in this study. We compared the results of several callers, 
Mutect generated too much potential variants in the 
plasma samples compared to variants obtained from tumor 
tissue. The results performed by VarScan2 filtered some 
true variants in the plasma samples when we checking 
reads covering the position (data not shown). It has been 
reported that variant allele fraction in ctDNA can be as low 
as 0.01% (28). The extremely low ctDNA levels may make 
the above mentioned somatic mutation callers less sensitive 
when analyzing plasma samples. In addition, these above 
mentioned tools are not designed to work with sequencing 
data at multiple time points of the same patient. In this 
study, we performed VarDict to detect somatic mutations in 
preoperative and postoperative plasma samples, which could 
identify low allele frequency mutations with high sensitivity. 

The average depth of the plasma samples of the four 
HCC patients is considered low coverage. For the purpose 

of PyClone analysis, less than 1,000 depth is considered 
low coverage. At low depth PyClone is likely to over cluster 
mutations as there is insufficient precision to separate 
clones. Single tumor sample analysis will probably not 
work well though. This is not PyClone specific, but an 
intrinsic issue of clone analysis software. So, in this study we 
focused on multiple samples per patient, and used binomial 
method, which works better and faster for low coverage 
samples. We discarded mutation clusters with fewer than 
two mutations assigned to them. Clusters with fewer than 
two mutations have more uncertainty about the cellular 
prevalence estimates than those with multiple mutations. 
This happens because without clustering PyClone has no 
idea which possible genotype the mutation has. However, 
in clusters with several mutations, the model can share 
information and infer what the common cellular prevalence 
is and by extension associated genotypes for mutations in 
the clusters are. In this study, we did not identify mutation 
cluster appearing as clonally dominant (prevalence ~100%). 
This could be because the founding point mutation was not 
identified due to low coverage or if the founding mutation 
is a larger genomic aberration. Further investigation still 
need to be performed here.

A recent research reported that metastatic breast 
cancer (mBC) patients with high heterogeneity (clonal  
population ≥3) in plasma ctDNA had a significantly worse 
PFS (HR, 2.79; 95% CI, 1.23 to 6.34; P=0.014) (29). In this 
study, we used PyClone to infer putative clonal clusters and 
cellular prevalence in plasma sample of 4 HCC patients. 
The more the clusters, the higher heterogeneity in plasma 
ctDNA. We identified 4 clusters in HCC1, 5 clusters in 
HCC2, and 6 clusters in HCC3 and HCC4. An average of 
five major clusters were identified in the plasma samples 
of the four HCC patients, which is more than metastatic 
breast cancer reported in another research (29). The size of 
the tumor does not appear to be correlated with the number 
of clusters in plasma before surgical resection. We identified 
only four clusters in HCC1 who had the largest tumor  
(13 cm) of the four HCC cases. The results could also be 
used as a prognostic factor to assess tumor heterogeneity in 
plasma ctDNA in the future, which could provide a more 
sensitive way to predict and monitor therapeutic response 
in patients with HCC. Unfortunately, we did not get the 
prognosis of the 4 HCC patients. As for the treatment 
responses of surgery, we found that reductions in cellular 
prevalence of mutation clusters between preoperative and 
postoperative plasma samples (P value <0.001), which 
reflected the treatment responses after surgery (for example, 
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cluster 1, 4 in HCC1, cluster 1, 5 in HCC2, cluster 2, 3 in 
HCC3 and cluster 1, 2, 5 in HCC4 respectively).

Along with the development of next-generation 
sequencing, the research of ctDNA has become a hot spot 
in this field. Our analysis highlights the potential utility of 
clone analysis for tracking therapy effectiveness in real time. 
The clone analysis of circulating tumor DNA (ctDNA) 
could help to establish a more precise target, which could 
make ctDNA an informative, inherently specific, and highly 
sensitive biomarker for HCC.

Conclusions

Our findings provided a more complete picture of the 
liver cancer pathogenesis. The comparison of preoperative 
and postoperative plasma samples showed that ctDNA 
can be used to real-time sampling of clonal evolution in 
patients with hepatocarcinoma. In addition to dynamic 
monitoring of disease progression and response to therapy, 
characterizing of dynamics of genomic clones can be used 
to determine the benefit of new therapeutics and guide 
therapy.
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