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Brief Communication
NAMPT-mediated NADD biosynthesis is
indispensable for adipose tissue plasticity and
development of obesity
Karen Nørgaard Nielsen 1,2,6, Julia Peics 1,6, Tao Ma 1,2,6, Iuliia Karavaeva 1,2, Morten Dall 3,
Sabina Chubanava 3, Astrid L. Basse 3, Oksana Dmytriyeva 4,5, Jonas T. Treebak 3, Zachary Gerhart-Hines 1,2,*
ABSTRACT

Objective: The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance
of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose
plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a
metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NADþ) biosynthesis ex-
emplifies this concept. Indeed NADþ/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in
diet-induced adiposity is unknown. Here we investigated how the NADþ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT)
supports adipose plasticity and the pathological progression to obesity.
Methods: We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences
of adipose NADþ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high
dietary fat burden as well as the transition back to normal chow diet.
Results: Fat-specific Nampt knockout (FANKO) mice were completely resistant to high fat diet (HFD)-induced obesity. This was driven in part by
reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots
were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved
glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals
whereas the improved glucose tolerance persisted.
Conclusions: These findings indicate that adipose NAMPT plays an essential role in handling dietary lipid to modulate fat tissue plasticity, food
intake, and systemic glucose homeostasis.

� 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The efficient storage of dietary calories in adipose tissue is a key
evolutionary advantage honed over millions of years of nutrient scarcity
[1,2]. However, societal advances in the past century have made
cheap, calorie-dense foodstuffs readily available. As a result, some
bioenergetic programs that were once beneficial for survival may now
pose a disadvantage in the context of metabolic disease [1e3]. Under
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normal, healthy conditions, adipose tissue exhibits a remarkable
plasticity and can dynamically accumulate or release lipid stores
depending on nutrient availability and hormonal signaling [4e6]. This
expansion is accomplished through increases in both fat cell number
and size [7] and remodeling of non-adipocyte tissue features such as
vasculature and extracellular matrix [6,8]. However, sustained caloric
excess disrupts this energy balance leading to tissue inflammation,
insulin resistance, and, ultimately, systemic metabolic dysfunction
c Research, University of Copenhagen, 2200 Copenhagen, Denmark 2Department of
n for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic
l Plasticity, Institute of Neuroscience, University of Copenhagen, 2200 Copenhagen,
berg Hospital, Copenhagen University Hospital, 2400 Copenhagen, Denmark

Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B,

, epididymal white adipose tissue; FANKO, Fat-specific Nampt knockouts; Fgf21,
terscapular brown adipose tissue; MR, Magnetic resonance; NADþ, Nicotinamide
y exchange rate; scWAT, subcutaneous white adipose tissue; TG, triglyceride

ry 26, 2018 � Available online 7 March 2018

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zpg@sund.ku.dk
https://doi.org/10.1016/j.molmet.2018.02.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molmet.2018.02.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


[5,6]. Understanding the fundamental systems that govern adipocyte
lipid accumulation versus lipolysis and oxidation could provide valuable
therapeutic insight [9].
An evolutionarily advantageous program fine-tuned to maximize fat
accumulation would be most induced under times of nutrient scarcity
to ensure efficient storage and survival. Conversely, during periods of
caloric excess in which such a system would be superfluous, we
predicted that this program would be decreased. Interestingly, the
expression of the nicotinamide adenine dinucleotide (NADþ) biosyn-
thetic enzyme Nicotinamide phosphoribosyltransferase (NAMPT)
mirrors such a pattern. In mice, adipose Nampt expression has been
found to be decreased in response to high fat diet (HFD) [10,11] and
induced by caloric restriction [12]. In fact, chemical inhibition of
NAMPT has been shown to abolish the beneficial effects of caloric
restriction [13]. NAMPT acts intracellularly to catalyze the rate-limiting
step of the NADþ salvage pathway [14], the main source of adipose
NADþ [15], but can also be secreted extracellularly as an adipokine
[15,16]. Both functions of NAMPT appear to contribute to peripheral
[17] and central [15] control of murine systemic metabolic
homeostasis.
In humans, visceral adipose NAMPT expression and serum NAMPT
levels are positively correlated with several metrics of obesity [18e21].
Conversely, NAMPT levels in subcutaneous adipose appear to be lower
in obese subjects [22e24]. These divergent patterns of NAMPT as-
sociation suggest differing depot-specific NAMPT contributions in
human fat and make it difficult to assign a positive or negative role of
NAMPT in metabolic syndrome. Human genetic studies have provided
little clarity. Whereas NAMPT genetic variation was associated with
increased obesity prevalence in a cohort of Indian children [25],
another study identified a NAMPT variant that was associated with
protection from severe obesity in a French population [26]. These
previous clinical and genetic studies focused primarily on under-
standing the correlative links between adipose NAMPT and metabolic
disease parameters. Here we now seek to determine whether NAMPT
plays a causal role in adipose tissue dynamics and the development of
obesity.

2. EXPERIMENTAL PROCEDURES

2.1. Animals
The Namptf/f mouse model was generated by flanking exon 3 of the
Nampt gene with loxP sites [27]. This line was continuously back-
crossed to the C57BL/6JBomTac background. Female Namptf/f mice
were mated with male Adiponectin-Cre mice [28] (010803, Jackson
Labs), kindly provided by Prof. Karsten Kristiansen. Expression of a
functional pan-adipose Cre recombinase in the floxed model results in
loss of function of the Nampt gene in all adipose depots by deleting
exon 3 and by introducing a downstream frameshift and a premature
stop codon in exon 4. Experimental cohorts were bred using female
Namptf/f mice mated with male Namptf/f, heterozygote Creþ mice. All
experiments were conducted in male mice, and Namptf/f, Cre� mice
were used as controls. A minimum of six mice was included in each
experimental group.
Mice were housed on a 12:12 h light/dark cycle (lights on at 6am, off at
6pm) at room temperature (22 �C) in an enriched environment with ad
libitum access to water and chow diet (1310, Altromin). High fat diet
feeding (D12492, Research Diets) was initiated in 12-20-week-old
mice. Mice were generally group housed but were singly housed for
indirect calorimetry experiments. Whole body composition was
determined by quantitative magnetic resonance (MR) using an Echo-
MRITM-4in1 Body Composition Analyzer (EchoMRI).
MOLECULAR METABOLISM 11 (2018) 178e188 � 2018 The Authors. Published by Elsevier GmbH. This is an open a
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All animal experiments were conducted in accordance with the Danish
Animal Research authorities under license no. 2014-15-0201-00181.

2.2. Indirect calorimetry
Indirect calorimetry was performed using the Phenomaster Home Cage
System (TSE Systems). Briefly, animals were acclimated in training
cages for 3e5 days prior to the measurement. All data were recorded
in 5-minute intervals. Temperature and activity monitoring was con-
ducted using implanted E-Mitters described below. Data collection was
integrated into the TSE software. RER is depicted as rolling averages of
five data points. Energy expenditure is presented as raw values plotted
against either body weight or lean mass.

2.3. Telemetry
Temperature and gross motor activity was measured using G2 E-
Mitters and ER4000 Energizer/Receiver (STARR Life Sciences Corp)
surgically implanted subcutaneously and posteriorly to the inter-
scapular brown adipose tissue (iBAT). Mice were anaesthetized with
2% isoflurane during surgery. Signals from G2 E-Mitters were detected
by ER400 Energizer/Receivers (STARR Life Sciences Corp.) and data
collection was integrated into the TSE software.

2.4. Glucose homeostasis assessments
Mice were subjected to a glucose tolerance test with 2 g/kg lean mass
dextrose (D9434, Sigma-Aldrich) injected i.p. following a 6 h fast in
clean cages. Blood glucose was measured from tail vein blood at
baseline and at 15, 30, 60 and 120 min post-injection using Contour�
Blood Glucose Meters and test strips (Bayer). The glucose tolerance
test was performed at least one week before and after any other
experiment to avoid interference of effects. Plasma insulin was
measured using a kit (K152BZC, Mesoscale).

2.5. NADþ measurements
The assay was performed as previously described [29]. In short, 10e
350 mg tissue was lysed in 400 ml 0.6 M perchloric acid. The su-
pernatant was diluted 100-fold (iBAT) or 400-fold (eWAT and scWAT)
in 100 mM Na2HPO4 (final pH 8.0), and NADþ was measured in 100 ml
of the sample. 100 ml reaction mix (2% ethanol, 90 U/ml alcohol de-
hydrogenase, 130 mU/ml diaphorase, 10 mM resazurin, 10 mM flavin
mononucleotide, 10 mM nicotinamide in phosphate buffer (200 mM
Na2HPO4), pH 8.0) was added, and continuous resorufin accumulation
was measured for 30 min by fluorescence excitation at 544 nm and
emission at 580 nm.

2.6. Gene expression
Total RNA was extracted from tissue using TRI Reagent (T9424,
Sigma-Aldrich) and subsequent isolation using RNeasy Mini Kit
(74106, Qiagen). Reverse transcription was carried out on 500e
1000 ng RNA using the High Capacity cDNA Reverse Transcription kit
(4368814, Applied Biosystems). Gene expression was determined
using SYBR green (PP00259, Primerdesign) based real-time quanti-
tative PCR and normalization to the housekeeping gene 36b4.
Expression data were normalized to the mean of the control group.
Primers are available in Supplemental Table 1.

2.7. Triglyceride assay
Serum triglycerides were determined using a kit (TR0100, Sigma-
Aldrich). Tissue triglyceride content was determined by measuring
glycerol content with Infinity TG Reagent (TR22421, Fischer Scientific)
in saponified, neutralized tissue, achieved by incubating in ethanolic
KOH overnight at 55�C and adding 0.5 M MgCl2.
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Figure 1: Adipose Nampt deficiency is protective against diet-induced obesity. Relative expression of NADþ biosynthesis genes (A) and whole tissue NADþ content (B) in
eWAT, scWAT, and iBAT of male Namptf/f, Cre� (control) and FANKO mice on chow diet. (C) Body weight and composition of male control and FANKO mice on chow diet. Body
weight (D), representative image (E) and body composition (F) of male control and FANKO mice fed a 60% HFD over 9 weeks. Data are expressed as mean � SEM. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001 as determined by unpaired, two-tailed t-test and 2-way ANOVA (HFD-fed groups only).
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2.8. Histology
5-10 mm tissue samples were fixed in 4% paraformaldehyde,
dehydrated in ethanol and xylene, and embedded in paraffin.
4 mm tissue sections were deparaffinized, rehydrated, and stained
Figure 2: NADD biosynthesis is crucial for adipose expansion from high dietary fat
mice. (B) Pictures of eWAT (with testes), scWAT and iBAT (with surrounding white adipo
100 mm). (D) Gene expression of eWAT, scWAT, and iBAT. Mice were on HFD for 11e16
****p < 0.0001 as determined by unpaired, two-tailed t-test.

MOLECULAR METABOLISM 11 (2018) 178e188 � 2018 The Authors. Published by Elsevier GmbH. This is an open a
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using a standard Mayer’s Haematoxylin and Eosin Y (H&E) or
Sirius Red staining protocol. Histological images were acquired
using light microscopy. Adipocyte area was measured using
ImageJ software. Data were collected from 3 H&E-stained
. (A) Weight of eWAT, scWAT, and iBAT of HFD and chow (“C”) fed control and FANKO
se tissue) of HFD-fed male mice and (C) H&E stained histological sections (Scale bar
weeks. Data are expressed as mean � SEM. *p < 0.05, **p < 0.01, ***p < 0.001,
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Figure 3: Loss of adiposeNampt decreases food intake and improves glucose tolerance. (A) Respiratory exchange ratio of male control and FANKOmice on regular chow diet and
during transition to 60% HFD (left panel), and after 9 weeks on HFD (right panel). White areas represent the light phase (6am-6pm) and shaded areas represent the dark phase (6pm-
6am). (B) Energy expenditure relative to body weight (left panel) and lean mass (right panel) after 9 weeks of HFD. (C) Physical activity during light (white) and dark phase (shaded) on
chow or HFD. (D) Food intake on regular chow diet and during transition to 60%HFD (left panel) and after 9 weeks on HFD (right panel). White areas represent the light phase (6am-6pm),
and shaded areas represent the dark phase (6pm-6am). (E) Energy expenditure relative to body weight (left panel) and lean mass (right panel), (F) food intake, (G) plasma insulin levels,
(H) i.p. glucose tolerance test, and AUC, and (I) iBAT gene expression of secreted factors in male mice fed a HFD for 5e6 months. Data are expressed as mean � SEM. *p < 0.05,
**p < 0.01 as determined by unpaired, two-tailed t-test and 2-way ANOVA. In (D), statistical analysis was only performed after HFD introduction.
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Figure 4: HFD-induced metabolic dysfunction in FANKO mice is reversible whereas improved glucose tolerance persists. (A) Respiratory exchange ratio (white areas
represent the light phase (6am-6pm) and shaded areas represent the dark phase (6pm-6am)), (B) body weight, and (C) body composition (C) of HFD-fed male control and FANKO
mice switched from HFD back to chow diet. (D) Plasma insulin levels and (E) i.p. GTT in male mice after 5 weeks back on chow. (F) Weight of eWAT, scWAT, and iBAT of male mice
on HFD and switched back to chow (”C00 ) for 11 weeks. (G) Adipose plasticity of male FANKO mice. Area of the circle represents scWAT mean weight in the groups depicted in
Figures 2A and 4F. (H) Gene expression of scWAT. Sirius red stain of eWAT (I) and iBAT (J) in male control and FANKO mice on HFD or switched back to chow for 11 weeks (Scale
bar 200 mm). Data are expressed as mean � SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as determined by unpaired, two-tailed t-test and 2-way ANOVA. In (B),
(C), and (H), statistical analyses were only performed on groups switched from HFD to chow diet. In (F), statistical analysis was not performed between the two HFD fed groups.
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sections per mouse. Average of 150e200 cells per mouse is
presented.

2.9. Mitochondrial respiration
Mitochondrial respiratory capacity was measured as described else-
where [30]. Briefly, mitochondria were isolated from inter- and sub-
scapular brown adipose tissues of chow fed mice using gradient
centrifugation. Total protein content of the crude mitochondrial fraction
was quantified using BCA assay (23225, ThermoFisher). 2 mg of
mitochondria was loaded into each well of a Seahorse plate and spun
down at 4 �C for 20 min at 2,000 g. The assay was conducted in a
medium containing 125 mM sucrose, 20 mM Kþ-TES (pH 7.2), 2 mM
MgCl2, 1 mM EDTA, 4 mM KH2PO4, and 0.1% fatty-acid-free BSA, with
the indicated substrates and inhibitors.

2.10. Primary adipocytes
Primary preadipocytes were isolated from the stromal vascular fraction
of iBAT and scWAT from 6-weeks-old male Namptf/f mice with or
without ROSA26-CreERT2. Cells were grown in DMEM (31966, Gibco)
with 10% FBS (F7524, Sigma-Aldrich) and treated with 4-
Hydroxytamoxifen (1 mM. H6278, Sigma-Aldrich) for two days before
differentiation. Differentiation was induced by insulin (0.5 mg/ml.
I9278, Sigma-Aldrich) dexamethasone (0.1 mM D4902, Sigma-
Aldrich), rosiglitazone (1 mM. 71740-5, Cayman), T3 (1 nM. T6397,
Sigma-Aldrich) and IBMX (250 mM. I5879, Sigma-Aldrich) for two days
and maintained by insulin and T3 for five days until harvest on day 7.

2.11. Statistical analyses
Data are presented as mean � SEM. Differences between two groups
were evaluated using unpaired, two-tailed t-test. Variables over time
were evaluated with two-way ANOVA. If all groups are not included in
the statistical analyses, this is mentioned in the figure legends.
GraphPad Prism version 7 was used for statistical analyses. p < 0.05
was considered statistically significant.

3. RESULTS

3.1. Adipose Nampt deficiency is protective against diet-induced
obesity
To address the role of adipose NAMPT in the context of obesity, floxed
Nampt mice [27] were bred to animals expressing Cre recombinase
under the control of the adiponectin promoter [28] to produce fat-
specific Nampt knockouts (FANKO). Targeted genetic deletion of
Nampt led to statistically significant changes in the expression of
several NADþ synthesis genes in adipose depots (Figure 1A). However,
Nampt was unquestionably the most enriched among these enzymes
suggesting a predominant role in adipose NADþ biosynthesis
(Supplemental Figure 1A). Accordingly, NADþ levels were markedly
reduced in all three adipose tissues from FANKO mice (Figure 1B).
We observed no change in body weight or fat and lean mass
composition between FANKO and control mice maintained on a chow
diet (Figure 1C). These results are in agreement with the previously
published model of adipose Nampt loss-of-function in which exons 5e
6 were deleted [15]. Moreover, Nampt deletion in preadipocytes did not
impinge on adipocyte differentiation (Supplemental Figure 1BeC).
Given the relatively low lipid content of the chow diet, this is also in line
with our hypothesis that NAMPT primarily plays a role in efficient
storage and handling of excess calories. To this end, we metabolically
challenged FANKO mice and littermate controls with a diet in which
60% of the calories were derived from fat. FANKO mice were
184 MOLECULAR METABOLISM 11 (2018) 178e188 � 2018 The Authors. Published by Elsevier GmbH.
completely resistant to HFD-induced obesity (Figure 1DeE). In fact, the
pattern of weight gain for FANKO mice on HFD was virtually indistin-
guishable from that of chow-fed animals of either genotype. The
striking weight difference between FANKO and control mice on HFD
was entirely attributable to lipid accumulation (Figure 1F). By nine
weeks of HFD, controls showed a 13-fold increase in fat mass whereas
fat mass in FANKO mice was identical to chow-fed animals of either
genotype. Weight gain in FANKO mice was predominantly driven by
age-dependent increases in lean mass (Figure 1F). Together, these
data indicate that NAMPT plays an essential and specific role in adi-
pose by facilitating weight gain in response to dietary fat.

3.2. NADþ biosynthesis is crucial for adipose expansion from high
dietary fat
We next investigated the biological consequences that challenging the
fat-specific Nampt deletion with HFD imposed on the adipose tissue
itself. In control mice, all fat pads were increased in size by HFD
(Figure 2A). FANKO mice had slightly, but not significantly, increased
iBAT size, whereas eWAT and scWAT weights were surprisingly
decreased upon high fat feeding (Figure 2A). Images from represen-
tative HFD-fed FANKO and control mice depict striking differences in
eWAT and scWAT size, whereas iBAT, apart from a reduction in the
amount of surrounding white adipose, did not appear dramatically
altered (Figure 2B). However, histological analysis revealed aberrations
in all three depots (Figure 2C). White fat pads from FANKO mice
exhibited massive fibrosis (Figure 2C), infiltration by non-adipocyte
species (Figure 2C), and reduction in average lipid droplet size
(Supplemental Figure 2A). A similar fibrotic phenotype was observed in
FANKO iBAT (Figure 2C). Brown adipocytes from these mice appeared
larger and possessed more unilocular lipid droplets compared to adi-
pocytes from HFD-fed controls (Figure 2C). Adipocyte markers were
markedly reduced in all three depots (Figure 2D), indicating compro-
mised adipocyte integrity and/or appropriation by non-adipocyte spe-
cies. Adipose tissue function is highly dependent on proper oxygen
availability [31] that can be approximated through the level of angio-
genesis. Expression of the key angiogenic growth factor Vegfa was
reduced, though not significantly, in both white and brown adipose from
FANKO mice, suggesting compromised vascularization (Figure 2D).
When adipose depots are unable to accommodate the burden from
high dietary fat consumption, excess lipids are often pathologically
redistributed to other organs, most notably the liver. Accordingly, we
found that livers of FANKO mice were larger (Supplemental Figure 2Be
C) and more enriched in triglycerides (TGs) compared to those of
controls (Supplemental Figure 2D). However, interestingly, FANKO
mice had reduced TG levels in both quadriceps and gastrocnemius
(Supplemental Figure 2E) and plasma TGs were unaffected
(Supplemental Figure 2F). Together, these data indicate that NADþ

biosynthesis in adipocytes is critical for physiological expansion of
white adipose depots in response to high dietary fat and may play a
more specific role in lipid handling and accumulation. In the absence of
NAMPT, adipocytes are unable to cope with the metabolic burden
resulting in tissue dysfunction and ectopic lipid deposition in liver but
not skeletal muscle.

3.3. Loss of adipose Nampt decreases food intake and improves
glucose tolerance
Severe disruptions in adipocyte biology, including excessive
accumulation of extracellular matrix, can lead to dramatic alter-
ations in systemic energy homeostasis [6,32,33]. To address the
systemic ramifications of fat-specific Nampt deletion, we
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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performed indirect calorimetry on FANKO mice and control litter-
mates under chow-fed conditions and at various stages of a HFD
challenge. We assessed carbohydrate versus lipid substrate utili-
zation by calculating the respiratory exchange ratio (RER) and
observed no genotypic differences in daily RER oscillations in mice
on chow diet (Figure 3A, left panel). However, upon initiation of the
HFD, control animals developed an arrhythmic RER, consistent
with previous work on HFD-induced disruption of circadian phys-
iology [34]. Intriguingly, FANKO mice transitioned to HFD gradually
adopted a sustained RER biorhythm that was completely inverted
compared to the pattern seen in chow-fed mice of either genotype
(Figure 3A).
To gain insight into how FANKO mice were protected from diet-induced
obesity, we measured energy expenditure, physical activity, food
intake, and body temperature in animals on HFD. FANKO mice
exhibited increased energy expenditure when adjusted to body weight
(Figure 3B, left panel). However, given the large disparity in body
composition between the genotypes, the less metabolically active fat
mass of control mice may account for at least some of this difference
[35]. Accordingly, when adjusted to lean mass (Figure 3B, right panel),
FANKO mice had unchanged or slightly decreased energy expenditure.
In agreement with this observation, physical activity was genotypically-
similar on HFD: whereas chow-fed FANKO mice displayed less physical
activity than controls during the dark (i.e. active) phase, as previously
observed in another adipose Nampt deficiency model [15], this dif-
ference was diminished after animals were transitioned to HFD
(Figure 3C).
To directly assess the contribution of brown adipose energy dissipation
in FANKO mice, we measured UCP1-dependent respiration of iBAT
mitochondria in response to several different substrates. Loss of Nampt
dramatically attenuated mitochondrial respiration induced by malate/
pyruvate, glycerol-3-phosphate, and succinate (Supplemental
Figure 3A). Despite the thermogenically inactive mitochondria in iBAT,
FANKO mice maintained body temperature on both chow and HFD
(Supplemental Figure 3B). Whether there are compensatory temperature
defense mechanisms induced to account for FANKO iBAT dysfunction is
not clear. However, such compensation is unlikely to originate from
oxygen-consuming fat free mass (Figure 3B, right panel). Together,
these data suggest that the profound difference in HFD-induced
adiposity between FANKO mice and control littermates was not
directly attributable to adipose or lean mass-driven energy expenditure.
Given that energy output did not seem to be a primary driver of the
weight phenotype, we next examined food intake. We observed no
difference in mice on chow diet. However, upon transitioning to HFD,
FANKO mice immediately reduced their food intake relative to controls
(Figure 3D, left panel), and it remained consistently lower in FANKO
mice after 9 weeks on HFD (Figure 3D, right panel). This reduction was
likely not driven by increased leptin signaling, as leptin expression was
reduced in white adipose depots (Figure 2D). Therefore, the striking
body weight difference in HFD-fed FANKO mice seems to be at least
partially attributable to the combination of reduced food intake and the
inability of adipose to accumulate lipid (Figure 2).
We further examined FANKO mice and control littermates in the context
of a chronic HFD challenge over 5e6 months. Energy expenditure
exhibited a similar pattern as during the short-term HFD and appeared
to be increased when adjusted for total body weight (Figure 3E, left
panel). However, when corrected by lean mass, FANKO energy
expenditure again remained slightly reduced relative to control litter-
mates (Figure 3E, right panel). Interestingly, food intake was now equal
between the two genotypes (Figure 3F), likely indicating that both
groups had reached a metabolic steady state compared to the more
MOLECULAR METABOLISM 11 (2018) 178e188 � 2018 The Authors. Published by Elsevier GmbH. This is an open a
www.molecularmetabolism.com
acute HFD challenge. Given that adipose dysfunction is often followed
by disturbances in glucose homeostasis [33,36,37], we assessed
glycemic control in HFD-fed FANKO mice. Fasting serum insulin levels
were equal between the two genotypes (Figure 3G) but, surprisingly,
FANKO mice were remarkably more glucose tolerant (Figure 3H). To
avoid confounding factors from the divergent fat masses, the dose of
the glucose bolus administered was based on lean mass, which was
comparable between genotypes.
How FANKO mice were significantly more glucose tolerant than con-
trols was not clear. Due to the reduced mitochondrial capacity of
FANKO iBAT and the atrophied, fibrotic nature of white depots in
FANKO mice, adipose tissue seemed unlikely as the tissue accountable
for increased glucose uptake. However, we speculated that adipose
tissue could be indirectly responsible by inducing expression of BAT
secreted factors linked to systemic glucose homeostasis. Indeed, two
such factors, bone morphogenetic protein 8b (Bmp8b) and fibroblast
growth factor 21 (Fgf21) [38,39], were significantly higher expressed
in FANKO iBAT compared to controls (Figure 3I). We hypothesize that
FANKO-mediated defects in adipose during a HFD challenge triggered
the release of soluble factors in an attempt to mitigate systemic
metabolic dysfunction. Skeletal muscle seems a viable candidate for
contributing to the elevated glucose tolerance particularly given the
significantly lower triglyceride content in the FANKO muscles analyzed
(Supplemental Figure 2E). Nevertheless, our findings reveal that loss of
adipose NAMPT profoundly alters the systemic response to high dietary
fat intake by reprogramming patterns of substrate utilization,
decreasing food intake, and improving glycemic control.

3.4. HFD-induced metabolic dysfunction in FANKO mice is
reversible whereas improved glucose tolerance persists
Healthy adipose tissue displays a robust plasticity to expand and
contract in both number and size of adipocytes depending on nutrient
availability [5,6]. To address the role of NAMPT in adipose plasticity, we
transitioned FANKO mice and control littermates back to chow diet
after four months of HFD feeding. Strikingly, after only one day on chow
diet, control animals re-established a synchronous RER oscillation
reminiscent of the RER of chow-fed mice (Figure 4A). Moreover, in the
same time span, FANKO mice shifted to a similar RER rhythm,
completely reversing the HFD-induced inverted pattern. The difference
in amplitude of the RER biorhythm between controls and FANKO mice
was likely attributable to the starkly contrasting size of adipose depots
and thus substrate availability.
Throughout the course of the dietary switch, both genotypes displayed
weight loss that ultimately plateaued 11 weeks after shifting to chow
diet (Figure 4B). However, control mice still retained higher fat mass
and slightly lower lean mass than FANKO animals (Figure 4C). Anal-
ogous to the chronic HFD challenge, FANKO mice switched back to
chow diet maintained similar insulin levels (Figure 4D), significantly
higher glucose tolerance (Figure 4E and Supplemental Figure 4A), and
elevated Fgf21 and Bmp8b expression levels (Supplemental Figure 4B)
compared to control littermates. Consistent with the MR data, fat
depots from control mice were all significantly reduced following the
switch from HFD back to chow diet (Figure 4F). Conversely, in FANKO
mice scWAT significantly increased in size and eWAT showed a ten-
dency towards increasing (Figure 4F) suggesting that NAMPT-deficient
adipose was able to re-establish lipid storage once the burden of high
dietary fat was alleviated. Graphical depiction of white adipose weights
from HFD challenge and transition back to chow illustrates the pivotal
role that NADþ biosynthesis plays in adipose expansion and contrac-
tion (Figure 4G and Supplemental Figure 4C). Moreover, transitioning
animals from HFD back to chow resulted in a normalization of Fabp4
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and collagen expression, as well as a partial macrophage and cytokine
normalization in scWAT (Figure 4H). These findings are consistent with
our results in primary adipocytes in which Nampt depletion had little
effect on differentiation capacity (Supplemental Figure 1BeC). Histo-
logically, we observed marked reversal of fibrosis in white fat depots
from FANKO mice (Figure 4I and Supplemental Figure 4D). Multilocular
lipid storage in FANKO iBAT was partially restored (Figure 4J).
Furthermore, liver weights and TG concentrations of both control and
FANKO mice were indistinguishable after transitioning from HFD back
to chow (Supplemental Figure 4EeF). Taken together, these obser-
vations establish the critical importance of NAMPT for adipose plas-
ticity in specifically handling dietary fat.

4. DISCUSSION

Given the integral role of NADþ in cellular metabolism, it is surprising
that adipose NADþ depletion in FANKO mice, as well as in a previous
Nampt loss-of-function model [15], does not produce more severe
ramifications on adipose biology, fat mass, or body weight. However,
the lower fat concentration of standard murine chow diet may offer an
explanation. In this nutrient state, the primary function of adipose
tissue, energy storage, is not particularly challenged. This is analogous
to studying liver and skeletal muscle metabolism in the absence of
feeding/fasting or exercise regiments, respectively. Accordingly, when
mice were subjected to the stress of a diet rich in fat, animals lacking
NAMPT-mediated NADþ salvage were unable to handle the lipid
burden. The specificity of this lipid-handling requirement was further
underscored when the HFD burden was alleviated and adipose
dysfunction in FANKO mice was largely reversed. In the context of
evolution, we believe adipose NAMPT would have been highly ad-
vantageous for efficiently accumulating fat mass from dietary fat.
However, as evidenced by the significant association between NAMPT
and obesity in humans [18e21], this program may now be a liability
with modern lipid-laden diets.
The complete prevention of diet-induced obesity in FANKO mice
certainly raises the provocative notion that NAMPT inhibitors could be
explored as a pharmacological avenue for weight reduction. Indeed,
NAMPT inhibitors have already been investigated for treatment of
several forms of cancer [40]. However, in light of the detrimental
impact of NADþ depletion on adipose tissue during a HFD challenge
and the central role of NADþ/NADH metabolism [41], direct NAMPT
inhibition does not pose a viable therapeutic option for obesity.
Moreover, NAMPT is expressed across numerous organ systems in
which it plays critical roles in tissue-specific metabolism. For example,
loss of NADþ biosynthesis in skeletal muscle impairs mitochondrial
function, is degenerative, and diminishes exercise capacity [27,42],
whereas overexpression of Nampt in skeletal muscle confers partial
protection from ageing-associated [42] and HFD-induced [43] weight
gain. Nevertheless, future studies identifying how adipose Nampt
deficiency triggers reduced food intake and increased glucose toler-
ance could lead to a more targeted, clinically appealing approach.
Based on our data, one strong possibility is a secreted factor or factors
from NADþ-depleted adipocytes that is meant to counteract the adi-
pose dysfunction in FANKO mice. In this study, we focused on the
expression of factors from brown adipocytes; however, we cannot rule
out white adipocytes or pre-adipocytes as a source [44]. Such factors,
originating from adipose, could potentially be developed into a novel
treatment strategy to facilitate dietary and glycemic control without the
deleterious effects of Nampt deficiency.
Our study raises a number of additional questions requiring further
investigation. Why is food intake only reduced in FANKO mice upon
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transitioning to HFD? Injection of eNAMPT into hypothalami of rats has
previously been shown to increase food intake in rats [45]. However,
these experiments were performed in the setting of a chow-like diet
[45] and male adipose Nampt KO mice do not have different eNAMPT
levels compared to controls [15]. Together with our data, this implies
the existence of an additional factor or mechanism of modulating food
intake that is specific to high dietary fat. It is tempting to speculate that
adipose NAMPT is part of a control system designed to regulate dietary
fat intake based on storage capacity. If the dysfunctional adipose tissue
in HFD-fed FANKO mice is indeed secreting such a signaling factor, an
equally pressing question is what tissues are receiving the signal to
increase glucose uptake? The tissue responsible for increased glucose
tolerance could be ascertained by measuring 2-deoxyglucose uptake
in vivo. Furthermore, can the ability of FANKO mice to store dietary fat
be rescued by supplementation with NADþ precursors like nicotin-
amide mononucleotide (NMN) [15] or nicotinamide riboside (NR) [46]
as has been done in other contexts?
As the current study focuses exclusively on male mice, it does not clarify
whether there are sex-specific differences in the handling of adipose
NADþ depletion in the context of high fat feeding. Still, it is well estab-
lished that adipose tissue biology varies between sexes [47,48] including
the release of secreted factors from the FGF and BMP families [49].
Moreover, in an earlier model of adipose Nampt deficiency chow-fed
female mice were found to be glucose intolerant whereas male adi-
pose Nampt knockouts were indistinguishable from controls [17], indi-
cating that FANKO mice may also handle HFD in a sex-specific manner.
One final consideration is that our FANKOmodel depletes NADþ uniformly
across all adipose depots. What is the contribution of NAMPT function in
white versus brown fat tissues to our observed phenotypes? A brown and
beige fat loss-of-functionmodel using the Ucp1-Cremodel [50] would be
necessary for making this distinction. Nonetheless, our findings here
establish the unequivocal necessity of NAMPT for adipose plasticity
specifically in the context of high dietary fat.
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