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ARTICLE

Highly fractionated chromium isotopes in
Mesoproterozoic-aged shales and atmospheric
oxygen
Donald E. Canfield1,2, Shuichang Zhang1, Anja B. Frank 3, Xiaomei Wang1, Huajian Wang1, Jin Su1,

Yuntao Ye1 & Robert Frei 3

The history of atmospheric oxygen through the Mesoproterozoic Era is uncertain, but may

have played a role in the timing of major evolutionary developments among eukaryotes.

Previous work using chromium isotopes in sedimentary rocks has suggested that Meso-

proterozoic Era atmospheric oxygen levels were too low in concentration (<0.1% of present-

day levels (PAL)) for the expansion of eukaryotic algae and for the evolution of crown-group

animals that occurred later in the Neoproterozoic Era. In contrast, our new results on

chromium isotopes from Mesoproterozoic-aged sedimentary rocks from the Shennongjia

Group from South China is consistent with atmospheric oxygen concentrations of >1% PAL

and thus the possibility that a permissive environment existed long before the expansion of

various eukaryotic clades.
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Atmospheric oxygen has played a key role in structuring the
ecology and biogeochemical functioning of marine eco-
systems through time. For example, expanded ocean

anoxia under lower atmospheric oxygen concentrations1 could
reduce nitrogen availability through higher rates of fixed nitrogen
conversion to N2 by denitrification and anammox2. In addition,
enhanced phosphorus removal by adsorption onto Fe oxides
under expanded ocean anoxia could reduce phosphorus
availability3,4. Either singly, or in combination, nitrogen and/or
phosphorus limitation could have impacted rates of primary
production in the oceans under reduced oxygen levels2–4.

Oxygen limitation might also have impacted the pace and
timing of eukaryote evolution5, with a long-standing view that
critical stages of animal evolution were enabled by increases in
atmospheric oxygen during the Neoproterozoic Era5–8. This idea
was initially conceived under the assumption that atmospheric
oxygen only first accumulated during the Neoproterozoic Era,
allowing only then the evolution of organisms with aerobic
respiration including animals6.

A more modern view recognizes that atmospheric oxygen first
began accumulating some 2400 Ma9, and that various stages of
animal evolution likely had different oxygen requirements10,11.
Thus, early stem-group animals may have lacked complex
multicellularity12,13 and may have had oxygen requirements
closer to their single-celled choanoflagellate sister group. Later
stem-group animals, and crown-group animals, with their com-
plex multicellularity14, likely had higher oxygen demands15, while
large motile animals with high exercise metabolism likely had
higher oxygen requirements still14,16,17. Molecular clock estimates
place the origin of stem-group animals at around 900 Ma18,
the origin of crown-group animals at around 750–800 Ma16,18,
while the early Cambrian Period (541–485.5 Ma) represents the
evolution of widespread animal motility16.

Thus, oxygen availability could have potentially generated a
barrier to animal evolution during several stages, ranging from
the initial development of complex multicellularity in stem-group
animals, to the attainment of motility, and even to episodes
of animal gigantism occurring later in animal evolution17,19. If
oxygen availability generated a barrier to any stage of animal
evolution, one would expect a relationship between increases in
oxygen concentration, lifting the barrier, and a particular stage
in animal evolution and development. Exploring for such a
relationship requires that we know the oxygen requirements for
the various stages of early animal evolution and the history of
atmospheric oxygen concentrations.

The oxygen requirements for early stem-group animals are not
certain as the oxygen requirements of choanoflagellates have not
been explored, but, with a typical choanoflagellate diameter of
5–10 μm20, an oxygen requirement of around 0.1–0.2% atmo-
spheric levels (PAL) might be expected21. Likewise, the oxygen
requirements of early crown-group animals are not known, but
0.36% PAL was calculated as the requirement of a small bilaterian
animal (25 μm wide and 600 μm long) with a diffusional oxygen
supply22. Through experimental studies, the minimal oxygen
requirements for the sponge Halochondria panacea is <2–4%
(PAL)23, and perhaps as low as 0.25% PAL for the sponge Tethya
wilhelma13. To have played a role in early animal evolution,
oxygen, then, should have been around 0.1–0.2% PAL (and
sufficient for single-celled protists) before the development of
complex multicellularity in stem-group animals rising to values
of >0.4% PAL by the time crown-group animals diverged.
Further rises, then, could have paced the attainment of various
stages of animal motility and size.

The question is whether the history of atmospheric oxygen
concentrations supports a relationship to early animal evolution.
The history of chromium isotopes in various marine sediments

presents an intriguing way to probe the history of atmospheric
oxygenation. The basic premise is that the oxidative weathering of
Cr(III) phases on land to Cr(VI) (chromate) generates an isotope
fractionation such that the Cr(VI) is enriched in the heavy isotope
53Cr, leaving the residual Cr(III) 53Cr depleted. In the modern
world, river waters are typically 53Cr-enriched24, as are the
oceans25,26, while weathered soils may be 53Cr depleted24,27.
Therefore, the accumulation of 53Cr-enriched authigenic chro-
mium in marine sediments is a sign of the oxidative weathering
of chromium on land28. The oxidative weathering of Cr(III) is,
however, only indirectly related to atmospheric oxygen, where
the proximal oxidant is MnO2

29, but the rejuvenation of MnO2

requires oxygen. Other processes can also potentially influence
chromium isotope systematics, and these will be discussed below.

The history of chromium isotopes as captured in ironstones
and shales has revealed a general lack of fractionated chromium
through the Mesoproterozoic Era (1600–1000Ma), with the first
indications of large fractionations around 750Ma in the Neo-
proterozoic Era (1000–541Ma)8,30. This absence of fractionated
chromium in Mesoproterozoic-aged rocks implies no or limited
oxidative weathering of Cr(III) on land and atmospheric oxygen
levels of <0.1% PAL based on the oxygen requirements to reju-
venate MnO2 oxides and thus promote the oxidative weathering
of Cr(III)8 (see below and Supplementary Discussion, Oxygen
Concentration Model for further details). Oxygen levels this low
would have likely prevented the emergence of crown-group ani-
mals as explored above (and possibly also protists in the 5–10 μm
range). Furthermore, an increase in chromium isotope fractio-
nation around 750Ma8,28,30 signals a rise in atmospheric oxygen
concentrations to levels sufficient to allow the emergence of
crown animal groups, supporting a relationship between the two.

Subsequently, data from marine carbonates show highly
53Cr-enriched chromium in samples from several formations
ranging in age from 1112 to 970Ma31, suggesting higher oxygen
levels at the Mesoproterozoic–Neoproterozoic boundary than
indicated from previous Cr isotope studies. This study was careful
to evaluate possible sources of late diagenetic 53Cr enrichments,
but one might still argue that carbonate-hosted chromium could
suffer from late diagenetic effects. We report here isotopically
enriched chromium in Mesoproterozoic-aged shales dating back
to 1350Ma. These shales are from the Shennongjia Group of
South China, and document elevated atmospheric oxygen levels
through most of Mesoproterozoic Era; levels likely sufficient for
early crown-group animal respiration, but attained long before
they evolved.

Results
Study location. We explored rocks from the Shennongjia
Group (SG) of South China. The SG represents a series of
Mesoproterozoic-aged sedimentary rocks from the Panxi-Hannan
Belt in the northern margin of the Yangtze Block of the South
China Craton (Fig. 1)32. The SG is housed in a structural dome of
some 1800 km2 and is about 12,000-m thick. It is well exposed in
the Shennongjia National Forest in the mountains of the western
Hubei province, China (Fig. 1). The SG contains 11 formations
and is informally divided into an upper section and a lower
section (Fig. 1), separated by an uplift-generated disconformity
surface32. Overall, the SG represents a series marine platform-
margin deposits, ranging from shallow water to deep water, and
whose sedimentology is described in reference32. We supplement
these descriptions with our own field observations below.

With respect to chronology, the uppermost Zhengjiaya
Formation (Fig. 1) houses andesitic pyroclastic rocks and
metabasalts, whose zircons were dated to 1103 ± 8Ma33 and
1063 ± 16Ma34, respectively, using laser ablation inductively
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coupled plasma mass spectrometry (LA-ICP-MS). The Shicaohe
Formation has a microprobe U-Pb date of 1180 ± 15Ma on
zircons extracted from a volcanic tuff35. This formation was
intruded by mafic dikes with a zircon U-Pb age of 1083 ± 4.6 Ma,
in one case, and a Baddeleyite U-Pb age of 1115 ± 9 Ma in
another36. The Yemahe Formation has been dated to 1215.8 ± 2.4
Ma for zircons extracted from volcanic tuffs36, while a whole-
rock U-Pb date on uranium-rich shales from the upper Taizi
Formation yielded an age of 1332 ± 67Ma32. Detrital zircons
from the Daynping Formation in the lower section of the SG
show a distribution of four peaks in age, the youngest of which,
from two samples, are 1429 and 1459Ma36, providing maximum
age estimates for this formation.

It is suggested that sediments of the SG deposited on a
microcontinent, and that during its final stages of deposition,
the microcontinent assembled as part the South China Craton
(and as part of the super-continent Rodinia) during the last stages
of late Mesoproterozoic Grenville Orogeny33,34. This history is
supported by andesitic pyroclastic and metabasalts at the top of
the SG (the Zhengjiaya Formation) (Fig. 1), where the metabasalts
have a chemistry consistent with an island-arc source33,34

pointing to an active continental margin setting for the SG in
the late Mesoproterozoic Era. Late Mesoproterozoic Era island-
arc-related volcanic rocks are found elsewhere on the Yangtze
block34,37, and a late Mesoproterozoic-early Neoproterozoic
ophiolite is emplaced just south (ca. 40 km) of the SG38,

consistent with continent–continent collision and continental
assembly. The SG is unconformably overlain by Neoproterozoic-
aged sediments Machaoyuan Group (ca. 750–541Ma), which
deposit broadly on the Yangtze Block32.

Field observations. The Zhengjiaya Formation consists of a mix
of black shales and cherts, with intervals of stromatolites and
a conspicuous iron-ore interval. We sampled the black shales
(Fig. 2a), and in thin section (Fig. 2h), they are fine grained, finely
laminated with organic matter, and with quartz silicification.
Where we sampled the Wenshuihe Formation, it consisted of
finely laminated and silicified pyritic black shales (Fig. 2b). The
Taizi Formation has a complex sedimentology. Stromatolites are
found high up in section giving way to dolomite-black shales
units (Fig. 2c), and then to alternating sandstone-black shale
units (Fig. 2d). The sandstone units have both parallel and cross
lamination (Fig. 2e), which we take as evidence for mass flow.
Altogether, we interpret the sandstone-black shale intervals as
black shale background sedimentation truncated by turbidite
deposition. We sampled from both the dolomite-black shale
interval (Fig. 2c) and the sandstone-black shale interval (Fig. 2d).
In thin section, the sediments from the carbonate-rich interval are
composed finely laminated organic matter in a mostly carbo-
nate matrix cement (Fig. 2i). In the lower Taizi, the black shales
are fine grained and finely laminated (Fig. 2f), where laminae are
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often disrupted by recrystallized quartz (Fig. 2j). The Dayanping
Formation, the lowermost formation we sampled, is dominated
by finely laminated dolostones in the lower part, ranging to
finely laminated black shales in the upper regions. We sampled
the black shales (Fig. 2g). All of our samples were taken after
removing weathered materials to expose as fresh a surface as
possible. Neither during our sampling nor during our petro-
graphic observations of thin sections did we observe evidence
for hydrothermal veins or other evidence for fluid flow or
hydrothermal alteration.

Data results. The black shales of the Zhengjiaya, Wenshuihe, and
Taizi Formations have organic carbon concentrations (TOC) of up

to 8–10 wt%, while the Dayanping Formation has much lower
TOC values in the range of 0.33–0.87 wt% (Fig. 3, Supplementary
Table 1). The TOC-enriched shales also house high concentrations
of the redox-sensitive trace metals uranium (U), vanadium (V),
molybdenum (Mo), and rhenium (Re), while the Dayanping
Formation does not (Figs. 3, 4 and Supplementary Table 1). We
also see enrichments in Cr concentration in the same intervals
where TOC and the other redox-sensitive trace metals are enri-
ched (Figs. 3, 4). Highly 53Cr-enriched chromium is found in
those intervals with elevated trace metal concentrations, but
especially those intervals with chromium concentration enrich-
ments and elevated TOC. Values of δ53Cr range up to 0.9‰ in
both the upper and lower intervals of the Taizi Formation (Fig. 3).
In the Zhengjiaya and Wenshuihe Formations, the δ53Cr enrich-
ments are not as great as in the Taizi Formation, but still, they
reach values of 0.36‰ and 0.29‰, respectively (Fig. 3 and Sup-
plementary Table 1), both well above the crustal average of −0.12
± 0.1‰39.

Low TOC portions of Taizi Formation, as well as the low TOC
Dayanping Formation, show little or no enrichment in redox-
sensitive trace metal concentration, and contain chromium with
an isotopic composition within the crustal average range (Fig. 3
and Supplementary Table 1). Rare earth element (REE) plus
yttrium concentrations normalized to post Archean average shale
(PAAS)40 are plotted in Fig. 5 for sediments with elevated δ53Cr.

Discussion
The combined enrichments of the redox-sensitive elements V,
Mo, U, and Re in the TOC-rich sediments of the Zhengjiaya,
Wenshuihe, and Taizi Formations (Figs. 3, 4) are typical for
sediments deposited under anoxic water-column conditions41.
Indeed, the enrichments observed in SG sediments either match
or exceed those reported in other Mesoproterozoic black shales
(Table 1). The trace metal enrichments are also comparable to
(or even greater in some cases) than those observed in modern
sediments from anoxic settings such as the Black Sea, the Saanich
Inlet, and the Peruvian upwelling zone (Table 1). Therefore, we
conclude that water-column anoxia was likely during the
deposition of portions of the Zhengjiaya, Wenshuihe, and Taizi
Formations, but without Fe speciation results, which are unreli-
able for outcrop samples, we cannot be certain as whether the
dominant water-column chemistry was sulfidic, ferruginous, or
nitrogenous. The Dayanping Formation sediments we sampled
were laminated black shales, but with their relatively low TOC
concentrations and lack of redox-sensitive trace metal enrich-
ments (Figs. 3, 4, Table 1), the water chemistry is unclear and
was possibly oxic.

Patterns of PAAS-normalized REE plus yttrium (Fig. 5) show a
mix of lithogenic and authigenic contributions. For example, the
Wenshuihe Formation shows a dominantly lithogenic signal
(Fig. 5b). In contrast, negative Ce anomalies (Supplementary
Figure 1), small negative or negligible Eu anomalies, positive Y
anomalies, and a tendency toward light REE depletions relative
to heavy REE are observed in the Zhengjiaya Formation (Fig. 5a)
for all but one sample and in the lower Tazi Formation (Fig. 5d).
These signatures are characteristic of oxygenated surface sea-
waters42. With a negative Ce anomaly, a positive Y anomaly, but
no obvious heavy REE enrichment, the upper Taizi Formation
(Fig. 5c) seems to display a mixture of a seawater and a lithogenic
signal. Perhaps surprising is the negative Ce anomaly, as this
might not be expected for waters in an anoxic basin, and is not
found, for example, in the deep anoxic waters of the Black Sea43.
However, negative Ce anomalies are found in carbonate-rich
sediments depositing in anoxic waters of the Arabian Sea44, and
in sediments from ancient Ordovician to early Silurian anoxic

100 μm 100 μm

100 μm

a b

c d

e f

g h

i j

Fig. 2 Outcrop photos and thin section photomicrographs of selected
samples. a Outcrop photo of black shales from the Zhangjiaya Formation,
b outcrop photo of shales from the Wenshuihe Formation, c alternating
black shales and carbonates from the upper Taizi Formation, d alternating
sandstones and black shales from lower in the upper Taizi Formantion than
in photo, d, e close-up of sandstone unit from the upper Taizi Formation
showing cross laminations that we interpret as evidence for a mass flow
deposit, f a layer of massive black shale from the lower Taizi Formation,
g shales from the Dayanping Formation, h thin section photomicrograph of
black shale from the Zhengjiaya Formation (sample SZY-5), i thin section
photomicrograph of organic matter layered carbonate-rich sediment from
the upper Taizi Formation (sample TZ-1-3), j thin section photomicrograph
of black shale from the lower Taizi Formation (sample TZ-26). Scale in
photomicrographs, 100 μm
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Fig. 4 The isotopic composition of chromium (δ53Cr) compared with organic carbon (TOC) concentration, Fe concentration, Re/Al, and Cr/Al. As in Fig. 3,
samples are plotted sequentially and relative to stratigraphic position (from top to bottom), but not as function of exact stratigraphic position. The gray
vertical bar in the δ53Cr plot represents the crustal average value39
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settings from Scotland45. Therefore, negative Ce anomalies can
be preserved in sediments depositing in anoxic water columns.
Overall, REE plus Y patterns reinforce the conclusion that
sediments from the SG with 53Cr enrichments exhibit a strong
authigenic component deposited from ancient seawater.

Chromium concentrations are enriched in the same intervals
where other redox-sensitive trace metals are enriched (Figs. 3,4).
Such enrichments might be expected as chromium is very redox
sensitive, and the reduction of Cr(VI)O4

2− to particle-reactive Cr
(III) species has been documented in the water column of modern
nitrite-enriched oxygen-minimum zones (OMZs)46, as well as in
the sulfidic waters of Saanich Inlet, British Columbia47. One might
also expect similar behavior in the modern anoxic Black Sea water
column. Indeed, concentration depth profiles reveal the apparent
reduction of CrO4

2− to Cr(III) and Cr removal from solution in the
oxygen-free, sulfide-free chemocline region47. However, counter
to expectations, dissolved chromium accumulates again in the
underlying sulfidic waters47. This geochemical behavior is not well
understood, but Cr(III) phases may be scavenged in the chemocline
by adsorption onto Mn oxides, with subsequent liberation to
solution in the underlying sulfidic waters as Mn oxides are
reduced47. The liberated Cr(III) may then be stabilized in solution
by dissolved organic complexes47. Overall, and despite the sulfidic
waters, chromium does not apparently accumulate above crustal
average concentrations in Black Sea sediments (Table 1). In con-
trast, chromium does accumulate in the OMZ sediments of the
Peru margin, in sediments of the sulfidic Cariaco Basin, and pos-
sibly also in Saanich Inlet sediments, but to an extent much less
than in Cariaco Basin or Peru Margin OMZ sediments (Table 1).
Therefore, while Cr is highly redox active and accumulates in the
sediments of many modern anoxic water-column settings (Table 1),
it does not accumulate in all of them (see also ref.48). Clearly,
further study is required to understand what ultimately controls the
accumulation of chromium in anoxic marine settings.

Unlike previous analyses of Mesoproterozoic black shales30, we
observe large enrichments in 53Cr in SG sediments. The enrich-
ments follow those in modern sediments depositing in anoxic
waters, both in overall magnitude and in relationship to Cr
concentration enrichment (Fig. 6a). Thus, as for sediments in
modern anoxic environments49, chromium isotopes in SG sedi-
ments reflect the addition of a 53Cr-enriched authigenic com-
ponent to a lithogenic component with low Cr/Al, low Cr/Ti, and
low values of δ53Cr (Fig. 6a, b). Furthermore, as trends in δ53Cr
versus Cr concentration for SG sediments are similar to those
from modern sediments, Mesoproterozoic Era seawater chromate
was also likely enriched in 53Cr by similar amounts to today.
If chromate in seawater during SG deposition was less 53Cr-

enriched than modern seawater, we would expect a shallower
trend in Cr concentration versus δ53Cr, and if ancient seawater
was more 53Cr-enriched, we would expect a steeper trend.

Present seawater displays δ53Cr values ranging from about
0.3 to 1.6‰25,26. Modern seawater chromate also has a typical
surface seawater 53Cr enrichment attributed to a fractionation
of about −0.8‰ associated with chromium removal from these
surface waters25,26. The mechanisms of chromium removal are
not clear, but may be associated with a limited biologically
induced reduction of Cr(VI) to Cr(III) in the productive oxyge-
nated surface waters26. If a similar fractionation applied to Cr
removal into anoxic SG shales, then the most enriched δ53Cr
shale values of 0.3–0.85‰ (Fig. 3) imply removal from seawater
with chromate δ53Cr values of 1.1–1.65‰. This range in δ53Cr
values is similar those in the upper 500 m of modern seawater26.

Previously analyzed Mesoproterozoic-aged black shales from
the Arctic Bay Formation (1100Ma), the Xiamaling Formation
(1390), and the Velkerii Formation (1400) generally lack 53Cr
enrichments30 (Fig. 6a). In contrast to many of the SG shales,
previously analyzed Mesoproterozoic-aged shales also lack
obvious chromium concentration enrichments (Fig. 6a), implying
a minimal authigenic chromium component, possibly explaining
their lack of 53Cr enrichment50. Variability in the extent of
authigenic chromium enrichment from anoxic Mesoproterozoic-
aged depositional environments would be consistent with
observations from modern anoxic environments, where, as dis-
cussed above, chromium concentration enrichments are quite
variable (Table 1). As also noted above, the reasons for this
variability are not well understood, but could relate to the
extent to which chromium (likely as Cr(III)) is re-mobilized to
the anoxic water column as carrier phases are reduced and as
organic ligands accumulate to complex the liberated dissolved
chromium47.

Our findings of highly 53Cr-enriched Mesoproterozoic-aged
shales also contrast with observations from the oolitic ironstones of
the 1450Ma Sherwin Formation, where isotopically fractured
chromium was not found8. It is unclear why the Sherwin Formation
does not contain fractionated chromium. One possibility is that the
Sherwin Formation oolites contain only a small compliment of
authigenic chromium. This is suggested by the linear relationship
between chromium and titanium concentrations in these iron-
stones51, where titanium provides a measure of the lithogenic
component. As another possibility, the reduction of Cr(VI) to Cr
(III), with subsequent immobilization into iron oxides, has an
associated fractionation of about 1.8‰, where the iron-oxide-
hosted Cr(III) is 53Cr depleted relative to the Cr(VI) precursor52.
Since oolites typically form in high-energy environments, they

Table 1 Maximum trace metal concentrations and enrichments Mesoproterozoic shales and modern sediments from anoxic
environments

Formation age Mo Mo/Al Mo/Ti V V/Al V/Ti U U/Al U/Ti Cr Cr/Al Cr/Ti ref

Zhengjiaya 1100 76 25 490 990 330 6400 13 4.3 83 76 34 650 this study
Wenshuihe 1200 36 33 23 270 40 190 6.7 1 4.4 260 38 170 this study
Taizi 1330 107 51 530 1340 520 6700 13 11 103 310 72 880 this study
Dayanping 1400 1.8 0.34 3.6 200 41 370 2.4 0.47 4.5 107 21 270 this study
Velkerri 1400 120 37 420 560 160 2000 12 4.2 48 48 14 160 65,30

Xiamaling 1390 48 8.2 150 820 130 2300 14 2.3 39 65 11 170 30,50

Black Sea (unit 1) 0 121 32 680 180 56 1160 16 5.4 110 63 13 280 66

Peru (OMZ) 0 96 24 95 410 130 2500 34 9.7 202 150 50 1100 67

Cariaco Basin 0 84 14 420 210 35 1000 135 18 350 49,68

Saanich Inlet 0 69 13 200 150 31 510 90 18 270 69

Crustal average 0 1.1 0.13 2.9 97 12 260 2.7 0.33 7.1 92 11 240 70

*Metal concentrations presented in ppm. †Metal ratios presented in ppm/wt%
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should experience minimal reservoir isotope effects as authigenic
chromium is precipitated. This means that high fractionations
should be expressed, and that the isotopic composition of authi-
genic chromium in the oolitic ironstones should be less, and pos-
sibly much less, than the seawater supplying the chromium52.
Therefore, if the chromium in the Sherwin Formation is authigenic,
it likely formed from a chromate reservoir with a more 53Cr-
enriched isotopic composition.

Our results indicate that from 1080 to 1330Ma, Mesoproter-
ozoic seawater contained chromate with a δ53Cr similar to today,
but as mentioned above, oxidative weathering may not be the
only process producing chromium isotope effects. Isotopic frac-
tionation can also occur as Cr(III) is solubilized by a variety of
organic ligands including products of organic matter fermenta-
tion (succinate, acetate, and citrate) as well as oxalate53. Ligand
dissolution liberates Cr(III) both enriched and depleted in 53Cr,
and the extent of fractionation decreases with greater extents of
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dissolution. How these processes may have impacted the ancient
chromium cycle is unclear. Indeed, the potential importance of
ligand-driven Cr(III) dissolution on land before the development
of a substantial terrestrial biosphere is uncertain, but possibly
limited. Organic complexation, however, could have promoted
some remobilization of Cr(III) in organic-rich marine sediments,
where fermentation products accumulate53. Therefore, the TOC-
rich sediments of the SG could have been a source of ligand-
complexed Cr(III) to seawater, but with an uncertain magnitude
and uncertain isotope effects. Even so, ligand-driven Cr(III) dis-
solution does not explain the enrichments of chromium con-
centration in SG sediments and how these enrichments would
be associated with 53Cr enrichments. Also, as highlighted in
ref.53, the process of ligand complexation is unlikely to alter our
view that substantial positive δ53Cr values in marine sediments
reflects the oxidative weathering of chromium on land53.

The serpentinization of ultramafic rocks produces H2O2 that
can oxidize Cr(III) phases54. The process of H2O2 oxidation
leaves a 53Cr-enriched signal in the serpentinized materials55,56,
where greater 53Cr enrichment correlates with greater chromium
loss56 and with greater indications of rock alteration55. The
processes generating this isotope effect are unclear, but one
possibility is that serpentinization liberates isotopically depleted
chromium, leaving 53Cr-enriched chromium behind in the
altered rocks55,56. Another possibility is that early stage serpen-
tinization produces oxidative loss of Cr(III) with no isotope effect,
followed by the addition of 53Cr-enriched seawater chromium
during late-stage seawater alteration56. Such a scenario, however,
does not explain why the greatest 53Cr enrichments in ultramafic
rocks are found in samples most depleted in chromium con-
centration56. In any event, these processes are unlikely to have
influenced the δ53Cr in our SG samples as these samples are all
typical marine sediments and could not have supported serpen-
tinization reactions. Furthermore, as noted above, serpentiniza-
tion seems to liberate chromate to solution with δ53Cr values less
than or equal to the crustal average. Thus, even if serpentinization
occurred locally, as was possible during the deposition of the
Zhengjiaya Formation (with possibly contemporaneous ophio-
liote emplacement, see above), the isotopic composition of any
liberated chromate would have been 53Cr depleted (or the same
as average rock), and could not explain the 53Cr-enriched values
of the contemporaneous SG sediments.

We collected and analyzed outcrop samples and must be mindful
of any possible weathering effects on our chromium isotope
results56,57. Indeed, 53Cr isotope enrichments have been observed
in the most weathered portions of the organic-rich 365Ma
New Albany Shale (NAS)56 and in weathered portions of the
Mesoarchean (2950Ma) Ijzermijn iron formation (IF)57. The 53Cr
enrichments are attributed to the immobilization of 53Cr-enriched
chromate from the weathering fluids by either adsorption onto
Fe oxides (NAS) or by reduction with Fe (II) phases, followed by
incorporation into iron oxides (IF). The TOC-enriched NAS is
closest in sediment type to TOC-rich shales we analyzed, and in
the NAS, δ53Cr correlates positively with enrichments in chromium
concentration. In the NAS, 53Cr enrichments are also found toge-
ther with the complete loss of the redox-sensitive element Re
during the extreme weathering of the shale.

In SG sediments, by contrast, elevated concentrations of Re are
typically found in the same horizons supporting elevated δ53Cr,
elevated chromium concentrations and elevated TOC (Fig. 4).
Therefore, the sediments of the SG are not as weathered as those
of the NAS. We also see the strongest 53Cr enrichments in the Fe-
poor sediments of the lower Taizi Formation (Fig. 4), and overall
we see a negative trend between δ53Cr and total Fe concentration
(Supplementary Fig. 2). This observation is inconsistent with
Fe acting to immobilize 53Cr-enriched chromium during

weathering. The SG sediments are also of high thermal maturity,
so organic matter is an unlikely reductant in the contemporary
conversion of chromate to immobile Cr(III)56. Overall, intervals
of elevated δ53Cr in SG sediments are not compatible with an
origin from modern weathering. These intervals do, however,
correlate with high concentrations of TOC and enrichments in
redox-sensitive trace metals. Therefore, elevated δ53Cr values in
our SG sediments are most parsimonious with an early diagenetic
origin from a 53Cr-enriched seawater source derived from oxi-
dative weathering of Cr(III) on land.

Previous model results suggest that at lack of δ53Cr enrichment
in Mesoproterozoic sediments, and the absence of oxidative
weathering of Cr(III) from soils that these results imply, is con-
sistent with <0.1% PAL of atmospheric oxygen8. This model
result arises from a typical soil weathering environment, a
soil water residence time of about 100 days, and with <20%
conversion of Cr(III) to Cr(VI) during weathering8 (Fig. 7; see
details in Supplementary Discussion, Oxygen concentration
model). In contrast, a significant conversion of Cr(III) to Cr(VI)
during weathering (>80%, Fig. 7), as is more compatible with our
results, occurs at atmospheric oxygen levels of >1% PAL.
Therefore, with available model constraints, our finding of highly
fractionated Cr in Mesoproterozoic SG shales is consistent with at
least 1% PAL atmospheric oxygen. This oxygen estimate is in line
with independent minimum estimates of >4% PAL as required to
explain the geochemical record of units 1 and 3 of the ca. 1390
Ma Xiamaling Formation of the North China Block58,59. Our
current results are further reinforced by highly fractionated Cr
extracted from several carbonate deposits in the time window
from 970 to 1112Ma31 (Fig. 8).

In contrast to previous reports8,30, our findings show that
enriched δ53Cr is a persistent feature of the Mesoproterozoic Era
marine geochemical record (Fig. 8), providing a minimum, rather
than maximum, estimate of atmospheric oxygen levels. Indeed,
our results, combined with previous observations of δ53Cr in
carbonates31, and other minimum estimates of atmospheric
oxygen levels58,59, lead us to conclude that oxygen concentrations

0 2.0

B
ila

te
ria

n 
lim

it

3.0

log t (d)

0.0

0.2

0.4

0.6

0.8

1.0

f C
r(

V
I)

10–1

10–2

10–3 10–4

10–5

Fig. 7 Oxygen model results. Results are redrawn from ref.8 including
interpolated results for oxygen levels of 10−2 PAL and 10−4 PAL, not
presented in the original figure. The x axis presents soil water residence
time, and the blue bar on top represents the range in modern soils. The
y axis represents the fraction of the original Cr(III) in the soil oxidized to Cr
(VI) and the contours represent different levels of atmospheric oxygen in
fraction of PAL. The lower-limit range of oxygen requirements for bilaterian
animals with a simple circulatory system64 is constrained between the
green lines. The lower red circle represents the maximum atmospheric
oxygen concentration as constrained by Planavsky et al.8, whereas the
upper red circle represents the minimum atmospheric oxygen estimate of
the present study

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05263-9

8 NATURE COMMUNICATIONS |  (2018) 9:2871 | DOI: 10.1038/s41467-018-05263-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


of >1% PAL (with >4% PAL at 1390Ma) were a persistent feature
of the Mesoproterozoic Era atmosphere, at least from 1390Ma
and onward. As noted above, oxygen concentrations in this range
were likely sufficient to fuel the metabolism of early crown-group
animals. Therefore, the geochemical record of chromium isotopes
reveals that for prolonged periods of time the atmosphere
contained sufficient oxygen to fuel animal metabolism long before
animals evolved.

We do not imply that the history of atmospheric oxygen is
irrelevant to the history of animal evolution. It seems clear that
the Mesoproterozoic ocean experienced greatly expanded anoxia
compared to today60–62, requiring that atmospheric oxygen
concentrations were much less than current levels. Furthermore,
most modern animals, including both vertebrates and inverte-
brates, could not survive at oxygen levels as low as 1–4% PAL63.
Therefore, it seems likely that increases in atmospheric oxygen
beyond Mesoproterozoic levels were required to support many
animals with the physiological requirements of those living today.
Understanding the history of these increases will be critical to
fully understand relationships between the history of atmospheric
oxygen and animal evolution.

Methods
Trace metals, major elements, and TOC. Samples were crushed to powders with
a diameter <74 µm. Each rock powder was oven-dried overnight at 105 °C. An
aliquot of 2.0 g of sample was precisely weighed and then ignited for 20 min at
1100 °C in a Pt(5%)Au crucible and then re-weighed to determine the loss on
ignition (LOI). Following this, 0.5 g of each ignited sample was precisely weighed
and mixed with Li2B4O7–LiBO2–LiF (4.5:1:0.4, wt %) in an unignited sample-to-
flux ratio of 1:9. The ignited powder and the flux were fused in a porcelain crucible
for 20 min at 1100 °C in a muffle furnace, where the molten mixture was constantly
swirled to completely disperse the flux. Cooled samples were re-weighed, and any
weight lost was made up by adding extra flux. Samples were fused for a second time
over a Meker burner, swirling the molten mixture during heating to ensure
homogenization, and then cast on a graphite mold on a 250 °C hotplate. The
sample was then pressed with an aluminum plunger to create a flattened disk.
Major element concentrations were measured by X-ray fluorescence (Philips
Electronics, PW2404) to determine the concentrations of major element oxides.
Accuracies were tested with shale standard material (GBW 03014) and whole-rock
standard materials (GBW 07109–07112). The relative standard deviation of major
element concentrations was <1.0%.

Homogeneous dried powders of whole-rock samples were also prepared for
trace metal element analysis with high-resolution ICP-MS (Finnigan MAT,
Element I). Powders were dissolved using a tri-acid digestion involving HNO3,
HClO4, and HF. First, 0.5 g of each ignited powder was precisely weighed and
transferred to a teflon crucible. Then, 7–8 ml concentrated HF and 5ml of 50%
HNO3 were added, and the sample was left on a hotplate to dissolve overnight. The
samples were boiled to near dryness on a 250 °C hotplate. After a few minutes of

cooling, 7–8 ml concentrated HF were added again and boiled to near dryness.
Then, 5 ml of 50% HNO3 were added to each dry sample and left on the hotplate to
dissolve overnight. Cooled samples were re-boiled the next day with 1 ml HClO4

until the white smoke completely disappeared. Then, cooled samples were heated
with 5 ml of 50% HNO3 until the solution became transparent. Following this, each
sample was diluted with 5% HNO3 to 50 ml. Trace element concentrations were
measured for all samples from the diluted solutions and the accuracies were tested
with the shale standard (GBW 03014) and the whole-rock standard (GBW
07109–07112). The relative standard deviation of the trace element analyses was
<1.5%.

The concentrations of organic carbon (TOC) were determined on crushed rock
powders, after acid treatment to remove carbonates, by combustion on a LECO CS-
230HC with an uncertainty of <1%.

Chromium isotopes, sample preparation. Bulk samples were powdered in an
agate disk mill, and analyses were performed on 5–30 mg of powdered black shale
and carbonate-rich samples, which were attacked by a concentrated HF-aqua regia
mix on a hotplate at 120 °C overnight.

Chromium separation. Samples were spiked with a 50Cr–54Cr double spike39

aiming for 50Cr/52Cr in the sample-spike mixture of between 0.15 and 0.75. The
bulk samples were spiked during the HF-aqua regia dissolution step, while the
leachates where spiked after the leaching exposure. Spike-sample homogenization
was assured by renewed treatment of respectively dried down fractions by aqua
regia. Chromium was separated in two steps using ion chromatographic separation
schemes on respective extraction columns.

The first step used a pass over anion exchange resin-loaded column. The spiked
samples were re-dissolved in ca. 18 ml of 0.1N HCl together with 0.5 ml of a freshly
prepared 1N ammonium persulfate ((NH4)2S2O8) solution, which acted as an
oxidizing agent. The sample solutions, contained in 23 ml Savillex Teflon beakers,
were placed on a hotplate at 130 °C for 1 h to ensure full oxidation of Cr(III) to Cr
(IV). After the samples cooled to room temperature, they were passed through
anion exchange columns (BioRad) loaded with 2 ml of pre-cleaned Dowex AG 1 ×
8 anion resin (100–200 mesh). The matrix was washed out with 10 ml of 0.2N HCl,
then with 2 ml of 2N HCl and finally with 5 ml of pure H2O (18MΩ MilliQ),
before Cr was collected through reduction with 6 ml 2N HNO3 doped with a few
drops of 5% H2O2. The so-stripped Cr-bearing solution was then dried down at
130 °C.

The second step used pass over cation exchange resin-loaded columns. For this,
the Cr-bearing samples from the anion columns were re-dissolved in 100 μl of
concentrated HCl and diluted with 2.3 ml ultrapure MilliQ water. This solution was
added to the extraction columns loaded with 2 ml of pre-cleaned Dowex AG50W-
X8 cation resin (200–400 mesh). The final Cr-bearing liquid cut was dried down at
130 °C, ready to be loaded for Cr isotopic analysis on the thermal ionization mass
spectrometer.

Thermal ionization mass spectrometry (TIMS). The Cr isotope measurements
were performed on an IsotopX, Ltd. IsoProbe T thermal ionization mass spec-
trometer (TIMS) equipped with eight Faraday collectors that allow simultaneous
collection of the four chromium beams (50Cr+, 52Cr+, 53Cr+, and 54Cr+) together
with interfering 49Ti+, 51V+, and 56Fe+ masses.
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The separated Cr residues were loaded onto outgassed Re filaments using a
loading solution consisting of 1 μl of 0.5N H3PO4, 2.5 μl silicic acid, and 0.5 μl
of 0.5N H3BO3. The samples were analyzed at temperatures between 1050 and
1250 °C maintaining 52Cr beam intensities of between 0.5 and 1 V. One run
consisted of 120 cycles, and every sample was run at least twice. The final δ53Cr
values of the samples were determined as the average of the repeated analysis and
are reported in ‰ with ±standard deviation (2σ) relative to the international
standard reference material NIST SRM 979 as

δ53Cr mð Þ ¼ 53Cr= 52Crsample

� �
= 53Cr= 52CrNIST SRM 979

� �� 1
� �

´ 1000 ð1Þ

The within-run two standard errors of the measurements reported in this
study were consistently ≤0.06‰. The external reproducibility was determined
using average δ53Cr values of double-spiked NIST SRM 979 measured under
the same conditions as the samples on the IsoProbe T. The composition of the
NIST SRM 979 showed an offset of −0.04 ± 0.11‰ (2σ; n= 32) compared to the
0‰ certified value of this standard. This offset stems from the original calibration
of our double spike relative to the NIST 3112a Cr standard, and the observed
offset of 0.04‰ was added to the raw δ53Cr results to account for this discrepancy.
Procedural Cr blanks remained at <15 ng total Cr. These levels are negligible
compared to 0.5–1 μg of Cr processed in the samples. Therefore, no blank
corrections were undertaken.

Data availability. All data reported in this paper are available in the Supple-
mentary Information.
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