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Photon Energy Dependent Micro-
Raman Spectroscopy with a 
Continuum Laser Source
Stefan Krause   , Marc H. Overgaard & Tom Vosch   

We present a method for continuous, photon energy dependent micro Raman spectroscopy. A narrow 
excitation line is selected from a continuum laser by an acousto-optic tunable filter (AOTF) plus an 
additional monochromator (MC). Automation of laser, AOTF, MC and tunable long pass filters enables 
us to continuously scan the wavelength over the full visible range while synchronously acquiring 
Raman spectra over a photon energy range from 1.85 eV to 2.83 eV. We demonstrate the applicability 
of our method on a well-studied sample, reduced graphene oxide (rGO), where we measure the Raman 
scattering over the whole visual range and use the photon energy dependence of the D, G and GS band 
as verification for the method we present here. We complement this set of data with additional results 
from a Ti:sapphire laser source, covering the 1.75 to 1.41 eV range. From the full photon energy range of 
1.41 to 2.83 eV, we noticed a small deviation from linearity for the dispersion of the D band.

Besides the typical photon energy (~ν4) dependence of the Raman signal1, many materials2–4 as well as nano-
materials, such as quantum dots5,6, carbon nanotubes7–11, semiconductors12, semiconducting nanowires13,14 and 
graphene15,16 show resonances at specific photon energy ranges accompanied by strong enhancement of the 
Raman signal by several orders of magnitude2,3,9,16–19. Accurate determination of these resonances requires light 
sources with large tunable energy ranges and narrow emission lines. Commonly used gas lasers (Ar+, Kr+, HeNe 
…) provide only a few distinct emission lines within the visible range not capable of covering photon energies in 
a quasi-continuous way. Although tunable sources like dye lasers, Ti:sapphire lasers and OPOs are available, they 
usually require realignment to change the wavelength over a large spectral range. Here we demonstrate a solution 
by applying a continuum laser source which can provide a continuous emission spectrum typically ranging from 
3.1 eV (400 nm) to 0.517 eV (2400 nm). Selection of the desired excitation energy (2.83 to 1.85 eV) for the Raman 
measurement was here achieved by sending the laser continuum output through an AOTF and an additional 
monochromator (MC). The power demanding NIR range from 1.75 to 1.41 eV was covered with and additional 
Ti:sapphire laser which was sent through the monochromator as well. In combination with tunable long pass fil-
ters, this approach enables for recording Raman signals in the best case from approximately 200 cm−1 while con-
tinuously scanning the photon energy. To demonstrate our method, we used rGO, which provides a good Raman 
signal over the whole visible range20–22. The well-characterized Raman bands of rGO in the literature act as a good 
reference to validate our new method23,24. The reduced graphene oxide (rGO) was synthesized according to the 
method from Eigler et al. and recently used as an ink for printing semitransparent electrodes25,26.

Results and Discussion
Besides having sufficient intensity, a Raman spectroscopy light source should offer a spectral narrow emission 
line. Therefore, gas ion lasers are typically used since the underlying atomic transitions provide very sharp laser 
lines. Unfortunately, these gas lasers only provide fixed photon energies which prevent continuous scanning of 
the energy in Raman spectroscopy.

In recent years, continuum laser sources have become available and offer an alternative possibility delivering a con-
tinuous spectrum. Implementing AOTFs and MCs enables to select a specific photon energy. This approach delivers 
laser tuning in steps only limited by the MC (~0.1 nm for 600 grooves/mm grating). Due to typical light scatter levels 
(10−4–10−6) in commonly used MCs, suppression of the undesired photon energies might not be sufficient27. These 
residuals can be further suppressed by applying double MCs or simply sending the laser light twice through a single 
MC as performed in this work. The scanning of the excitation energy can easily be achieved by turning the MC grating 
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which is usually equipped with a stepper motor. The continuous sweep of excitation energy requires also an adaptation 
of the long pass filters in case of monitoring low wavenumber Raman bands. This adaptation is accomplished by tunable 
long pass filters whose transmission depends on the incidence angle of the incoming light.

In the present experiment, six different tunable filters are used to cover the full visible and parts of the NIR 
range. Figure 1A shows a schematic representation of the experimental setup. A continuum laser (SuperK 
EXTREME EXB-6 with SuperK SELECT AOTF wavelength selector) was integrated into a confocal microscope 
to cover the visible excitation range. The SuperK SELECT provides a laser line of about 3.5 nm full width at half 
maximum (see Fig. 1B dashed line). The light is sent twice through a Czerny-Turner-type MC (Acton Research 
SP300i) with a blazed grating of 600 grooves/mm and a focusing length of 0.3 m resulting in an adjustable laser 
line of 0.3 nm full width at half maximum and a minimum step size of about 0.12 nm (see Fig. 1B solid line). For 
measuring Raman spectra in the NIR range (1.75 to 1.41 eV) a Ti:sapphire laser is used and sent through the 
monochromator as well for cleaning up the laser line. The laser light is then reflected on a 30:70 beam splitter 

Figure 1.  (A) Scheme of the experimental setup consisting of a continuum laser (CL) with acousto-
optic tunable filter (AOTF) or a Ti:sapphire laser, monochromator with tunable grating (TG), confocal 
microscope, photodiode (PD), tunable long pass filter (TLP) and spectrometer. (B) Measured laser line width 
without (dashed) and with (solid) monochromator. (C) Consecutive laser spectra for the smallest available 
monochromator step widths and monochromator steps as a function of laser peak positions giving a slope of 
about 8.5 steps/nm.
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(XF122 Omega Optical) and focused onto the sample by an oil immersion objective (Olympus, UPLFLN 100× 
NA = 1.3). According to the laser output the intensity varies between 0.25 to 0.5 kW/cm2 in the visible range 
for the continuum laser and between 30 to 200 kW/cm2 in the NIR range for the Ti:sapphire laser (see support-
ing information). The Raman signal is collected by the same objective. Afterwards, the remaining laser light is 
blocked by a tunable long pass filter chosen according to the actual excitation range (VersaChrome Edge tunable 
long pass filters, 448 nm to 501 nm, 501 nm to 561 nm, 561 nm to 628 nm, 628 nm to 704 nm, 697 nm to 805 nm 
and 783 nm to 905 nm, Semrock) and mounted on a home-buildt rotational stage while the Raman signal is 
acquired with a spectrograph (Princeton Instruments SPEC-10:100B/LN_eXcelon CCD camera, SP 2356 spec-
trometer, 300 or 1200 grooves/mm). Wavelength calibration of all measurement ranges was performed with a 
neon spectral lamp (6032 Newport). This includes also correction of the tilting influence of the tunable filters. The 
silicon peak of the substrate at 520 cm−1 served as a reference point in all spectra since it is more accurate than the 
MC determined excitation energy. A 10:90 beam splitter provided the signal for laser power correction which was 
acquired with a photodiode power sensor (S120VC Thorlabs). Synchronization of laser, monochromator, tunable 
long pass filters, spectrograph and photometer was accomplished by self-written LabVIEW routines.

As compared to standard Raman instruments with fixed laser sources the clear advantage of our approach is 
the flexibility in choosing variable excitation energies over a broad range from theoretically 400 nm to 2400 nm. 
The light source can be tuned in steps of 0.12 nm as mentioned above. The most limiting factor for applications 
is the comparably low available excitation power (up to 0.5 kW/cm2, see Fig. S1 supporting information) which 
requires long exposure times of up to several 100 seconds. Measuring higher resolution Raman spectra (for exam-
ple with 1200 grooves/mm gratings and above) will be even more time consuming, since the signal of a Raman 
band will be spread over more pixels. However, searching for resonances in materials like CNTs should be facili-
tated by the versatility of the proposed method. In addition, one must be aware that a tunable laser source always 
requires either a separate precise determination of the current photon energy or a reference Raman signal, which 
in our case is given by the silicon peak.

We demonstrate the feasibility of our Raman scanning approach on a sample of rGO synthesized according 
to the method from Eigler et al.25. rGO as well as graphite and graphene show strong Raman signals making 
these samples ideal for our demonstration. Particularly suitable are the D and G bands, which arise from bond 
stretching of pairs of sp2 atoms and the breathing modes of sp2 atoms21,22. The sample was prepared by oxidizing 
graphite flakes in concentrated sulfuric acid and permanganate under careful cooling. Subsequently, the resulting 
graphene oxide was spin coated onto a silicon wafer and reduced with a 1:1 mixture of trifluoroacetic acid and 
hydroiodic acid. The vapor generated the reduced graphene oxide26.

Raman spectra for visible excitation light were recorded for 150 s in the range from 2.83 eV to 2.20 eV and 
for 200 s in the range from 2.20 eV to 1.85 eV. The spectra are shown in Fig. 2. Additional Raman spectra for 
NIR excitation from 1.75 eV to 1.41 eV can be found in Fig. S2 in the supporting information. The assignment 

Figure 2.  Raman spectra of rGO in the energy range from 2.83 eV (bottom) to 1.85 eV (top).
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of the bands was done based on the nomenclature by Heller et al.28. The shoulder of the G peak, becoming more 
pronounced at excitation energies below 2.5 eV, is historically and more commonly referred to as D’, but we will 
use in this manuscript GS instead22,29–31. Besides the pronounced peak of the silicon substrate at 520 cm−1 the D 
and G band are present at about 1370 cm−1 and 1590 cm−1 for the highest photon energy16,22. At this energy, the 
D feature has an amplitude about twice as much as the G feature. In addition, the 2D and D + GS are visible at 
2695 cm−1 and 2935 cm−1, respectively. Depending on the transmission profile of the tunable long pass filters that 
we used, a maximum transmission window of approximately 200 cm−1 to 3700 cm−1 was achieved for specific 
photon energies, while a minimum transmission range of 500 cm−1 to 2300 cm−1 was achieved over the whole 
2.83 eV - 1.85 eV energy range. The latter can be seen for example as some of the higher wavenumber 2D and 
D + GS bands are cut-off at specific energies.

As previously reported, the position of the disorder-induced D band shows a photon energy dependence with 
a shift of about 50 cm−1/eV21,22,32–34. We applied Lorentzian fits to the D and G peak features to determine the peak 
positions and compare them to the literature. The peak positions are shown in Fig. 3A as a function of photon 
energy. In agreement with previous studies on carbon materials, the D band features a shift from 1374 ± 5 cm−1 at 
2.83 eV to 1297 ± 5 cm−1 at 1.41 eV21,32–34. Based on a linear fit to the data, we obtained a shift of (51.5 ± 0.5) cm−1/
eV, in agreement with the literature33. However, precise inspection of the D-related data in Fig. 3A show a system-
atic deviaton from a linear energy dependency which can be best fitted by a parabolic function. A similar trend 
can be seen in the data from Pócsik et al. which, however, has not been further discussed32. In addition, the G 
band is not expected to show a significant dispersion as was demonstrated for microcrystalline graphite and in the 
framework of Kramers-Heisenberg-Dirac theory based calculations28,32. Nevertheless, as shown here in Fig. 3A 
and in other studies, the G feature seems to shift with decreasing photon energy from 1585 ± 5 cm−1 at 2.83 eV to 
about 1600 ± 5 cm−1 at 1.85 eV35,36. We interpret this apparent shift as a consequence of the overlap between the G 
band and the defect induced GS band with increased amplitudes of GS at lower photon energies28,37–41. This causes 
an apparent shift of the Raman frequencies when fitting the spectra with only one Lorentzian peak. This is also 
consistent with findings from King et al.36. To verify this, we acquired spectra with higher resolution (spectrom-
eter grating with 1200 grooves/mm) and by using more intense gas lasers (75–125 kW/cm2, approximately 100 
times higher intensity than the CL). Three representative spectra for 2.54 eV (blue), 2.28 eV (green) and 1.96 eV 
(red) are shown in the range between 1500 cm−1 and 1700 cm−1 in Fig. 3B). From the spectra, it is obvious that G 
and GS are overlapping, which results in an apparent photon energy dependent shift when fitting with only one 
Lorentzian peak35,38.

Conclusion
We introduced a novel approach of continuous scanning Raman spectroscopy based on a continuum laser source 
which enables Raman spectroscopy over the whole visible (and essentially also NIR) range. Applying our method 
to chemically reduced graphene oxide25,26, we acquired consecutive Raman spectra excited over the full visible range 
(438–672 nm) and parts of the NIR range (710–880 nm). Analysis of Raman spectra by fitting the D and G band with 
single Lorentzian functions revealed good literature agreement with the observed energy dispersions of both bands. 
The shift of about (51.5 ± 0.5) cm−1/eV for the D band is in good agreement with literature. However, a so far not so 
often discussed minor deviation from a linear dispersion is observed. Furthermore, we can attribute the apparent shift 
of the G band to an overlap of G and GS 21,32. For the presented method, the spectral resolution with respect to the laser 
linewidth and step size, is determined by the utilized diffraction grating of the monochromator and can be adapted to 
the specific material under investigation. Finally, more powerful continuum laser sources than the one we used, will 
result in a reduced integration time per spectrum. Given the application of Raman spectroscopy in all fields of materials 
sciences, we believe that our approach can add versatility and easy access to photon energy dependent Raman spectra.

Figure 3.  (A) Dispersion of D band and the two overlapping bands G and GS as a function of excitation energy. 
The black dash-dotted line serves as a guide to the eye. The black solid line represents a linear fit to the D band 
dispersion. The black dashed line represents a parabolic fit to the D band dispersion. (B) Three representative 
high-resolution sections of the Raman spectra for different photon energies (blue: 2.54 eV, green: 2.28 eV, red: 
1.96 eV) showing the overlapping G and GS band. The spectra were normalized to the maximum value of the G 
band. The amplitude of GS decreases with increasing photon energy.
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