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Abstract. Manipulation experiments are often used to investigate ecological and environmental causal
relationships and to understand and forecast impacts of anthropogenic pressures on ecosystem function-
ing. Such manipulation experiments often use factorial designs, and the data are analyzed using factorial
linear models. Factorial designs build on the fundamental assumption that the treatment factors are inde-
pendent and orthogonal. This assumption is, however, often violated because of variation within and in
particular covariation between the performed experimental manipulations. For example, manipulation of
temperature and precipitation in factorial setups has been widely applied in climate experiments, but
manipulating soil temperature will likely have a strong impact on soil water content. Such dependency
among environmental state variables will violate the assumed orthogonality in a factorial linear model and
may lead to erroneous conclusions. Here, we demonstrate the importance of the assumption of orthogonal-
ity using simulated ecological responses that act on observed soil state variables from a large climate exper-
iment with an apparent orthogonal design. More specifically, we explore the problematic consequences of
analyzing ecological treatments as categorical variables in a linear model. Suitable alternative methods for
the statistical analysis of manipulated ecological experiments are suggested. The key recommendation is to
use the observed effects of the manipulations on the state variables directly in the analysis instead of the
categories of treatments. For example, if soil water content and temperature are manipulated, then it is
essential to measure the water content and temperature in the soil of all the manipulated plots.

Key words: climate change experiments; ecology; linear models; manipulative experiments; orthogonal experimental
design; soil temperature; soil water.
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INTRODUCTION

For over a hundred years, the factorial design
has been the cornerstone in manipulation experi-
ments in the scientific investigation of causal rela-
tionships, and the theory of experimental design
has reached a high degree of sophistication in the

applied scientific areas of agriculture, medicine,
and industry, where the theory mainly was devel-
oped (Cox and Reid 2000). Experimental ecology
has benefitted from developments in the theory
of experimental design and adopted key parts of
the developed terminology and concepts, for
example, orthogonal factors, block- and split-plot
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designs, as well as the standard methods of statis-
tical analysis using linear models. Orthogonal
experimental designs are effective for investigat-
ing the effect of several factors that may interact
(Cox and Reid 2000), and the analysis and inter-
pretation of an orthogonal design are relatively
simple because the main effect and interaction
terms are estimated independently. Therefore, the
orthogonal design is widely used when designing
ecological experiments. However, some of the
fundamental assumptions in the theory may not
hold when manipulating ecosystems, and this
may have important consequences for the design
and analyses of ecosystem experiments.

A general and key property of experimental
manipulations, which becomes critical if data sub-
sequently are analyzed using linear models, is
unit-treatment additivity. This means that effects
of specific treatments are additive and constant
for different experimental units, except for ran-
dom noise (Cox and Reid 2000). The practical
implication of this property is that the levels of
the different treatment factors should be known
without error, that is, without application error,
measurement error, or unknown dependency on
other manipulated factors. The assumption of
unit-treatment additivity is apparent in the design
matrix of linear models and is a critical assump-
tion in both parameter estimation and statistical
inferences using linear models.

In experimental ecology, these basic assump-
tions are difficult to meet because of causal depen-
dency among applied factors or because often it is
not possible to manipulate the studied factors
with sufficient precision, which leads to consider-
able among-replicate variation for the same treat-
ment. For example, it is difficult to manipulate the
in situ soil temperature to a precise soil tempera-
ture, and the temperature manipulation will
additionally perturb other environmental state
variables in the studied ecosystem.

Nevertheless, the data from ecological experi-
ments are often analyzed as if the manipulations
were independent and orthogonal. For example,
the statistical analysis, performed in the large
majority of the more than 100 peer-reviewed sci-
entific publications of our climate experiment,
assumed that the manipulated factors were inde-
pendent and orthogonal, and in our experience,
this is a typical situation for many experiments
with ecological manipulations. The objectives of

the present study were to demonstrate important
consequences of variability and inter-correlation
between treatment levels when making statistical
analyses of climate manipulation experiments
with orthogonal designs and to suggest suitable
alternative methods for the statistical analyses of
such experiments in general.

MATERIALS AND METHODS

Case study
We used observational data of soil tempera-

tures and soil water content from the Climaite
experiment (Mikkelsen et al. 2008) to exemplify
the potential problems and errors in applying
orthogonal analyses to observations from ecosys-
tem experiments. In the Climaite experiment
(Fig. 1), atmospheric CO2 concentration, soil
water content, and temperature were manipu-
lated in an orthogonal split-plot design consisting
of a total of six blocks. Each block included two
octagons, each 6.8 m in diameter, one with ambi-
ent (A) and one with elevated CO2 by free air car-
bon dioxide enrichment. Within each octagon,
drought (D) was applied to half of the octagon by
automatic rainout curtains removing the precipi-
tation during the application time. Correspond-
ingly, warming (T) was applied to half of the
octagon perpendicular to the drought as passive
nighttime warming by automatic roll out curtains
applied at night to reflect the infrared radiation
from the ground and increasing the temperature
in the plots by 0.5–1°C (Arndal et al. 2018). The
design created a total of four treatment combina-
tions within each octagon and, thus, eight treat-
ment combinations within each block involving
the ambient reference (A) and all combinations of
T, D, and CO2 replicated six times, that is, N = 48.
Within each experimental plot, the volumetric

soil water content (0–20 cm soil depths) and soil
temperature (5 cm soil depth) were measured
continuously at 10- to 30-min intervals and
stored at hourly time resolution (for technical
details, see Mikkelsen et al. 2008).
A wide range of biological response variables

have been investigated in the Climaite experiment,
and the results have been reported in >100 peer-
reviewed scientific papers. The findings range
from measurements of responses in plant pro-
cesses, such as photosynthesis (Albert et al. 2011),
the aboveground plant community (Kongstad
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et al. 2012), and belowground root production
(Arndal et al. 2018), to responses in the soil, such
as soil respiration (Selsted et al. 2012), nitrogen
cycling (Larsen et al. 2011), soil fauna diversity
(Holmstrup et al. 2017), and aboveground herbi-
vore fauna (Scherber et al. 2013). The observed
effects include significant responses to individual
factors or combinations of treatment factors as well
as interactions among them or no effects at all.

Data simulations
The strategy chosen in the present study was

to simulate a supposedly a priori known ecologi-
cal process that is affected by the manipulated
drivers, that is, temperature and soil water con-
tent, and then afterward to analyze the simulated
response in an orthogonal mixed-effect linear
model. Since the simulated ecological process is
known, it is possible to compare the statistical
analysis of the simulated ecological responses
using an orthogonal mixed-effect linear model
with the true, known ecological process. For

example, if we know that the ecological process
is independent of a specific driver and the
orthogonal mixed-effect linear model shows a
relationship with the driver, then we may con-
clude that the statistical analysis is flawed.
In the simulations, it is assumed that the eco-

logical responses are only affected by the manip-
ulated drivers, that is, the manipulated soil state
variables. Following this, we simulated the eco-
logical responses to the measured manipulated
soil drivers (soil water content and temperature).
The simulated ecological responses were then
subsequently analyzed, as if we only had infor-
mation of the orthogonal treatments.
If the measured soil temperature and water

content are denoted x1 and x2, respectively, then
the simulated ecological response, y, is modeled
deterministically without any stochastic error, as

y ¼ a x1 þ b x2 þ c x1 x2 þ d, (1)

where a, b, c, and d are constant parameters (Fig. 2).
For example, if soil temperature and water content

Fig. 1. Aerial photograph of the experimental site (split-split-plot design). Notice that the spatial scale of the
variation in heathland vegetation is at the same scale as the experimental blocks.
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in a given plot were measured to be 2 and 3, respec-
tively (x1 ¼ 2; x2 ¼ 3), and ða ; b ; c; dÞ is set to
ð2; 1; 3; 4Þ, then the simulated ecological response
is y ¼ 2� 2þ 1� 3þ 3� 2� 3þ 4 ¼ 29.

We made a total of six different response mod-
els in which we let the parameters, a, b, and c,
vary with different combinations of the values
�1, 0, 1, or 10. For simplicity, all simulated
ecological response models were set up to be
independent of atmospheric CO2 concentrations.

Statistical analysis
The six different simulated ecological response

models were analyzed as if we only had informa-
tion of the orthogonal treatments (Fig. 2) in a
mixed-effect linear model with fixed effects tem-
perature (T), drought (D), and CO2 and their

interactions (T 9 D, T 9 CO2, D 9 CO2, and
T 9 D 9 CO2). The random effect was specified
as block/CO2/T/D, reflecting the used split-split-
plot design of the experiment, and analyzed
using the nlme library in R (Pinheiro et al. 2013).

RESULTS AND DISCUSSION

In principle, the three manipulation factors in
the study were applied independently and, as
mentioned above, a prerequisite for analyzing the
responses by linear models is that the factors are
independent and additive. However, a number of
interactions are inherent, such as the passive
nighttime warming technique causing simultane-
ous reduction in soil moisture due to increased
evaporation related to increased temperature, but

Fig. 2. Conceptual figure of the treatments (squares), the manipulated soil state variables (octagons), and the
simulated ecological response (circle). The treatments were assumed to be both independent and orthogonal,
whereas the observed manipulated soil state variables were not.
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likely also related to reduced dew formation dur-
ing nighttime due to the coverage by the reflective
curtains used for nighttime passive warming.
Although the reduction of soil moisture in
warmed plots was small, it was consistent and
statistically significant (Holmstrup et al. 2017).
For some biological responses, even such minor
changes in soil moisture may be important and
therefore must be accounted for when trying to
unravel the mechanistic interactions between
organisms and the environment. In the present
example, some of the soil moisture reduction is
confounded with the temperature effect when the
ecological responses are analyzed in an orthogo-
nal linear model. Such secondary effects of one
driver on other drivers are widespread in ecosys-
tem manipulations, for example, (1) if plant den-
sity is augmented, then soil water content is
expected to decrease, while the local air humidity
is expected to increase and, again, will be
included as an effect of the temperature and not
of moisture, or (2) in elevated CO2 plots, increased
plant water use efficiency may cause soil water
content to increase if plant biomass remains con-
stant (Albert et al. 2011).

The average measured soil water content in
the period 15 June 2007–22 June 2007, that is, the
last week of the six-week drought treatment in
2007, and soil temperature in the period October
2006–October 2007 of the different Climaite plots
are shown in Fig. 3. The drought treatment (D)

was effective, although there were three plots out
of 24 with relatively high soil water content,
whereas the temperature treatment was less
effective with a large overlap among the soil tem-
peratures of the control and the temperature
treatment plots (T). The mean and standard devi-
ations of the effect of the treatments on the
underlying soil state variables are shown in
Table 1. The sample covariance of the measured
soil temperatures and water contents was 0.272,
which, however, did not differ significantly from
the assumption of independence (two-sided
t-test [n = 48]: P = 0.23). When viewed together,
it is clear from Fig. 3 that the sizable variance in
soil temperature and marked covariance among
the manipulated soil state variables had the
consequence that treatments were neither
independent nor orthogonal.
In our synthetic data simulation, when the eco-

logical response was analyzed using the orthogo-
nal mixed-effect linear model, the results
deviated distinctly from the known ecological
process under which the ecological response data
were simulated (Table 2). Particularly, the simu-
lated effect of temperature was only significant
when either the effect of D was removed
(Table 2, b = 0) or when the effect of T was set
ten times higher than the effect of D (Table 2,
a = 10, b = �1). In addition to the simulation
shown in Tables 2 and 3, we also did multiple
simulations where the observed temperature
effect caused by the treatment (as shown in
Table 1) was gradually increased. We wanted to
see at which level model 3 (Table 2, a = 1, b = 1,

Fig. 3. The measured soil temperature (October
2006–October 2007) and volumetric water content
(during the final week of drought treatment in 2007) at
the four different combinations of the temperature and
drought manipulations. Blue: �T �D, red: �T D,
green: T �D, orange: T D.

Table 1. Mean and standard deviation of the manipu-
lated drivers, that is, the soil state variables: soil
temperature and water content, in the Climaite
experiment.

Soil state variable Treatment Mean SD

Soil temperature �T 10.85 0.29
Soil temperature T 11.20 0.31
Soil water content – 13.15 1.96
Soil water content D 5.84 3.10

Notes: Soil temperature reported here was measured in
degree Celsius from October 2006 to October 2007, and soil
water content was measured as volumetric soil water content
during the final week of drought treatment in 2007 (n = 48).
The covariance matrix of measured soil temperatures and

water contents was
0:118 0:272
0:272 20:24

� �
.
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c = 0) would come out significantly for the T
treatment. The simulations showed that only
when the T effect was enhanced by at least 5°C
(with SD kept as in Table 1), did the orthogonal
mixed-effect linear model show a significant
effect of T in more than 95% of the simulations of
model 3 (Appendix S1: Fig. S1). This highlights
the fact that weaker treatment effects disappear
in combination with stronger treatment effects
when the experimental effects are not orthogo-
nal. Similarly, the simulated interaction effects
between temperature and drought were not sig-
nificant in the analysis using the orthogonal
mixed-effect linear model (Table 2, c 6¼ 0). If the
simulated data set of the response variable was
log-transformed, the same qualitative statistical
result was obtained (not shown).

To show the effect of lack of orthogonality, we
also ran the orthogonal mixed-effect linear model
on the six different simulated responses after

forcing the treatments of temperature (T) and
drought (D) to be both constant and orthogonal,
that is, by using the observed means (Table 1).
Now the effect of T remains significant in all
cases where a = 1 or 10 and interactions come
out significantly when c 6¼ 0 (Table 3).
One of the important features of the orthogo-

nal design is that the main effects and interaction
terms are estimated independently. However,
this is clearly not the case in the present example,
where even large effects of temperature are
masked by the drought treatment. Consequently,
the statistical analysis using the orthogonal
mixed-effect linear model can lead to acceptance
of erroneous zero hypotheses.
In general, all estimated P-values will be

biased either upwards or downwards if the eco-
logical experiment is analyzed with a linear sta-
tistical model if treatments are not independent
and orthogonal. For example, even when the

Table 2. Parameter settings used in the simulations (a, b, c, d = 1000) and the estimated coefficients of the different
factors and their interactions, when simulated response data were analyzed using the orthogonal statistical design.

Model a b c T D T:D CO2 CO2:T CO2:D CO2:T:D

1 1 0 0 0.52 (0.0069) �0.18 (0.24) �0.14 (0.52) 0.19 (0.30) �0.38 (0.11) 0.03 (0.90) 0.31 (0.30)
2 0 �1 0 0.68 (0.60) 8.41 (0.0000) �1.10 (0.55) 1.00 (0.56) �0.64 (0.73) �2.04 (0.27) 1.89 (0.47)
3 1 �1 0 1.20† (0.36) 8.23 (0.0000) �1.23 (0.50) 1.18 (0.49) �1.02 (0.58) �2.01 (0.27) 2.20 (0.39)
4 1 �1 �1 1.64† (0.92) 100 (0.0000) �8.61† (0.70) 8.96 (0.66) �2.40 (0.92) �22.48 (0.32) 18.14 (0.57)
5 10 �1 0 5.84 (0.0102) 6.65 (0.0018) �2.45 (0.36) 2.88 (0.27) �4.44 (0.12) �1.77 (0.51) 4.97 (0.19)
6 10 �1 �10 10.27† (0.94) 924 (0.0000) �76.29† (0.71) 80.59 (0.67) �18.28 (0.93) �206.44 (0.33) 164.41 (0.58)

Notes: The corresponding P-values are shown in parentheses, where coefficients in bold are significantly different from zero.
In line three and five, we a priori know that there is an effect of both soil temperature (a 6¼ 0) and water content (b 6¼ 0),
whereas there is no interaction effect (c = 0), but the statistical analysis suggests that there only is an effect of water content. In
the last four columns, the effect of CO2 and its interaction effects with D and T are shown; note that there are clear patterns of
the effect of CO2, even though the simulated ecological responses were set a priori to be independent of CO2. The a priori
expected coefficients, if treatments of temperature (T) and drought (D) were fully orthogonal, are simulated in Table 3.

† Coefficients should have been different from zero according to a priori expectations.

Table 3. Parameter settings used in the simulations (a, b, c, d = 1000) and the estimated coefficients of the differ-
ent factors and their interactions, when treatments of temperature (T) and drought (D) were forced to be fully
orthogonal using the mean data of soil temperatures and soil water contents reported in Table 1, and simulated
response data were analyzed using the orthogonal statistical design.

Model a b c T D T:D CO2 CO2:T CO2:D CO2:T:D

1 1 0 0 0.402 (0.000) 0.013 (0.63) �0.043 (0.28) 0.085 (0.040) �0.082 (0.088) �0.043 (0.28) 0.073 (0.20)
2 0 �1 0 �0.037 (0.25) 0.177 (0.000) �0.018 (0.65) �0.013 (0.68) 0.066 (0.15) �0.019 (0.63) �0.044 (0.44)
3 1 �1 0 0.332 (0.000) 0.108 (0.001) 0.054 (0.19) 0.004 (0.90) �0.021 (0.62) 0.049 (0.23) �0.053 (0.36)
4 1 �1 �1 �3.39 (0.000) 1.79 (0.000) 0.127 (0.001) 0.015 (0.57) �0.040 (0.24) 0.030 (0.36) �0.065 (0.16)
5 10 �1 0 3.33 (0.000) 0.135 (0.001) 0.012 (0.81) �0.004 (0.92) 0.003 (0.95) 0.011 (0.82) �0.066 (0.35)
6 10 �1 �10 �33.8 (0.000) 16.8 (0.000) 0.471 (0.000) �0.003 (0.90) 0.001 (0.98) �0.057 (0.093) 0.018 (0.70)

Notes: The corresponding P-values are shown in parentheses, where coefficients in bold are significantly different from zero.
The generated response data were added a small amount of stochastic noise (Normal (0, 0.05)).
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simulated ecological response was assumed to be
independent of CO2 and without any random
noise, all the estimated CO2 effects were positive
(Table 2). Consequently, if there had been a posi-
tive effect of CO2, then the estimated P-value
would have been downward biased relative to
the correct P-value and, oppositely, if there had
been a negative effect of CO2, then the estimated
P-value would have been upward biased.

Spatial variation and ecosystem representation
In addition to the above-mentioned situations

where interactions and indirect effects of the treat-
ment factors compromise the orthogonality
assumptions, situations exist where spatial and
temporal variation at a site makes the strict
assumptions of orthogonal and independent
factors even more difficult. Representative or
comparable sampling is always a challenge in
field-scale experimentation, but sound conclu-
sions on the effect of a given treatment are criti-
cally dependent on comparisons of comparable
entities. Lack of comparability among samples
may increase the apparent variability and noise
and thereby prevent differences among treat-
ments to be recognized. More importantly, in the
context of orthogonality a lack of comparability
can compromise the assumptions behind the sta-
tistical analysis. If, for example, a soil water
manipulation treatment leads to uneven spatial
distribution of soil moisture and field measure-
ments of soil moisture fail in capturing this aspect
of the treatment, the results using a standard
treatment level may lead to erroneous results.
Many physical and biological characteristics of
ecosystems, such as soil type, soil stratification,
vegetation patterns, and microtopography, may
directly interact with key climate treatments, for
example, temperature and water.

Another challenging example is the spatial
scale of variability in vegetation. In some vegeta-
tion types, for example, heathland vegetation,
the scale of the spatial variation is in meters,
which is comparable to the plot size of many
manipulated ecological experiments (Fig. 1), and
in some vegetation types like forests, the spatial
variation even exceeds the plot size. Conse-
quently, if vegetation type is not included as a
variable in the analysis of such experiments, then
possible effects of the vegetation may be con-
founded by effects at the plot level and lead to

erroneous conclusions. Distance is not the best
indicator of the spatial variation in spatially
aggregated vegetation with repetitive patterns,
and the notion of blocking may need to be recon-
sidered in manipulated ecological experiments. It
is therefore recommended to critically assess the
characteristics of possible spatial variation within
the experimental area.

Conclusions—recommendations and alternatives
We recommend measuring the effect of the

manipulations directly for all the manipulated
state variables with high precision and accuracy,
and if the assumptions of unit-treatment additivity
and orthogonality cannot be upheld, then analyz-
ing the experimental data using the underlying
variation of the manipulated state variables as the
explaining factor for the observed ecological
response. To our knowledge, there is no formal test
of orthogonality, and instead, we recommend to
visually inspect plots of the manipulated state vari-
ables (like Fig. 3) in order to determine whether
the assumption of orthogonality can be upheld.
If the conclusion is that the assumption of

orthogonality cannot be upheld, then the statisti-
cal analysis can be done using simple regression
models or more advanced process-based models.
Furthermore, the full characterization of all the
manipulated state variables also allows a more
flexible experimental design with an augmented
number of replicates at typical levels of the state
variables or where threshold effects of the eco-
logical response are expected.
For some ecological responses, it may be rele-

vant to analyze time series data rather than rely-
ing on static data in a problematic spatial
blocking design. Using time series data, it is possi-
ble to analyze the change of the measured ecologi-
cal response variable, for example, population
growth, instead of measuring the absolute level of
the ecological response variable, for example,
population size. This has the advantage that
changes in state variables are expected to be less
sensitive to large internal variability in plot char-
acteristic features and histories compared to the
absolute values of the states. Consequently, if
the plot size is relatively large compared to the
observed ecological response, then it is a reason-
able assumption to analyze the change in ecologi-
cal responses in each plot as if they were
independent experimental units. This assumption
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of independence may be tested by plotting the
residual variation of the time series.

Another promising method for analyzing
manipulated ecological experiments is structural
equation models (SEM) in which causal relation-
ships with a high degree of certainty can be speci-
fied from the manipulations to the underlying
variation of the ecosystem, and where the ecologi-
cal response is modeled as causal relationships
from the underlying variation of the ecosystem (as
outlined in Fig. 2). Structural equation models
allows testing for the effect of the manipulations
as well as possible interdependence among the dif-
ferent manipulations on the underlying variation
of the ecosystem. More importantly, SEM does not
assume orthogonality of the manipulations, and
since the underlying variation of the manipulated
ecosystem is measured directly, the assumption of
unit-treatment additivity is met. For example, in a
recent study SEM was used to model the effect of
soil physical conditions (temperature and mois-
ture) on the biodiversity of soil fauna (Holmstrup
et al. 2017). By using a traditional statistical
ANOVA model including all treatments and their
interactions, the authors did not find significant
effects of any of the three treatments (temperature,
drought, or CO2) on biodiversity, which was a
counterintuitive result because soil moisture is a
critical environmental factor for abundance and
function of many soil invertebrate taxa (Rapoport
and Tschapek 1967). The reason for lack of signifi-
cant drought effects may be related to the con-
founding effects of temperature and CO2 on soil
moisture, but may also be related to high variabil-
ity of the particular field site and limited statistical
power (n = 6). Using SEM gave more degrees of
freedom to test the general hypothesis that soil
moisture is, indeed, important for many species of
soil animals and that this factor expectedly would
be reflected in the biodiversity. The SEM showed
that there was a significant relationship between
soil moisture and the biodiversity of certain func-
tional groups, but also that elevated atmospheric
CO2 had indirect effects on biodiversity through
increased litter C:N ratio. The add-on effect of
using SEM was, therefore, that more mechanistic
understanding may be revealed as compared to
traditional factorial analysis.

In conclusion, the common current practice of
analyzing ecological experiments with categori-
cal treatment variables in linear models, with the

implicit assumption of independence and ortho-
gonality, will, in our opinion, most likely lead to
erroneous conclusions. Instead, we recommend
applying more regression type statistical models,
such as SEM, in the analysis of manipulated
ecological experiments.
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