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Abstract: Vitamin C (vitC) is important in the developing brain, acting both as an essential antioxidant
and as co-factor in the synthesis and metabolism of monoaminergic neurotransmitters. In guinea
pigs, vitC deficiency results in increased oxidative stress, reduced hippocampal volume and neuronal
numbers, and deficits in spatial memory. This study investigated the effects of 8 weeks of either
sufficient (923 mg vitC/kg feed) or deficient (100 mg vitC/kg feed) levels of dietary vitC on
hippocampal monoaminergic neurotransmitters and markers of synapse formation in young guinea
pigs with spatial memory deficits. Western blotting and high performance liquid chromatography
(HPLC) were used to quantify the selected markers. VitC deficiency resulted in significantly
reduced protein levels of synaptophysin (p = 0.016) and a decrease in 5-hydroxyindoleacetic
acid/5-hydroxytryptamine ratio (p = 0.0093). Protein expression of the N-methyl-D-aspartate receptor
subunit 1 and monoamine oxidase A were reduced, albeit not reaching statistical significance
(p = 0.0898 and p = 0.067, respectively). Our findings suggest that vitC deficiency induced spatial
memory deficits might be mediated by impairments in neurotransmission and synaptic development.

Keywords: Cavia porcellus; memory deficit; hippocampus; synapse formation; monoaminergic
neurotransmitters

1. Introduction

Vitamin C (vitC) deficiency is a surprisingly common nutritional insufficiency affecting around
15% of the Western population [1–3], including subpopulations such as pregnant women and
young children [4,5]. The vitamin is a powerful antioxidant, and crucial in the developing brain,
where antioxidant defenses are still immature and a high cellular metabolism gives rise to increased
levels of reactive oxygen species [6,7]. In the face of dietary depletion, vitC levels in the brain are
maintained at approximately 25% of saturated values—as opposed to more extensive reductions in
most other organs [8,9], suggesting that the nutrient is of high importance in this tissue. Early life vitC
deficiency has been shown to cause impairments in spatial memory, decrease hippocampal volume
and neuron numbers in guinea pigs [10,11], a species dependent on dietary vitC akin to humans [12,13].
However, the molecular mechanisms behind the recorded memory deficits are largely undisclosed.

In addition to being pivotal in maintaining brain redox homeostasis, cerebral vitC
is linked to glutamatergic neurotransmission and protection against glutamate induced
neuronal excitotoxicity [14–16]. VitC is also involved in monoaminergic neurotransmission
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(dopamine, norepinephrine and possibly serotonin; 5-hydroxytryptamine (5-HT)) [16–18]. Though
vitC’s specific role in the brain has not been conclusively elaborated, it acts as a co-factor
donating electrons to dopamine-β-hydroxylase and is suggested to play a role in monoaminergic
neurotransmitter synthesis by keeping the co-factor tetrahydrobiopterin (BH4) in its reduced
form [14,16,18,19]. Furthermore, alterations of synaptic structure and associated proteins and receptors
have been shown to underlie cognitive dysfunction, behavioral changes and memory formation [20–22].
Thus, either through secondary (antioxidant-mediated) or direct effects on neuronal signaling pathways
and dendrite development, vitC deficiency can be speculated to lead to aberrant neurotransmission in
the hippocampus, hereby causing the reported spatial memory deficits in young guinea pigs.

In addition, dendrite development is crucial in establishing and maintaining synaptic contacts
between neurons [21,23], and decreased dendritic arborization and clustering of the excitatory
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype and glutamate receptor
subunit (GluR)1 following ablation of neuronal vitC transport has been shown in vitro, suggesting
vitC to be a key component for neuronal outgrowth and subsequent signal transduction [14].
We have previously shown impaired hippocampal function measured by decreased spatial memory
performance in the Morris Water Maze, in coherence with significantly reduced hippocampal
neuron numbers in guinea pigs subjected to vitC deficiency during early life and until reproductive
maturity [10]. With off-set in these findings, the current study explores the hypothesis that the recorded
memory deficits resulting from vitC deficiency are caused by decreased neuronal signal transmission
by reducing monoaminergic neurotransmitters and/or synapse formation and function.

2. Materials and Methods

2.1. Animals

All experiments were approved by the Danish Animal Experiments Inspectorate under the
Ministry of Environment and Food (2007/561-1298). The behavioral and histological findings from the
in vivo study have previously been published [10].

Briefly, 27, five to six days old female Dunkin Hartley guinea pigs (Charles River Laboratories,
Kisslegg, Germany) were weight-stratified and randomly allocated to receive either 923 mg/kg vitC
diet by analysis (CTRL, n = 15) or 100 mg/kg vitC diet by analysis (DEF, n = 12) (Special Diets
Services, Dietex International Ltd., Witham, UK) [10]. All animals were inspected and handled daily
by trained personnel and allowed ad libitum access to feed, hay (without vitC by analysis) and water.
At 52–53 days of age, the animals were subjected to the Morris Water Maze (MWM) test regime,
as previously published [10]. At 60–61 days of age, the animals were anesthetized with 0.175 mL/100 g
bodyweight Zoletil mix, consisting of 0.465 mg/mL Zoletil-50 (Virbac SA, Carros Cedex, France),
2 mg/mL Xylazin (Narcoxyl, Intervet Int., Boxmeer, The Netherlands), and 1 mg/mL butorphanol
(Torbugesic, ScanVet, Fredensborg, Denmark) and briefly supplemented with carbon dioxide inhalation.
After disappearance of voluntary reflexes, an intracardiac blood sample was obtained and the animal
euthanized by exsanguination [10].

The brain was excised, washed in ice-cold phosphate buffered saline (PBS), and divided
into hemispheres. A subset of the hemispheres was randomly allocated to stereological analyses
(previously published) [10]. The hippocampus was removed from the remaining left or right
hemisphere as determined by randomization, snap frozen in liquid nitrogen and stored at −80 ◦C
until further processing.

2.2. Monoaminergic Neurotransmitters

The analysis of monoaminergic neurotransmitters in the hippocampus was carried out by high
performance liquid chromatography (HPLC) as previously described [24]. All samples were analyzed
in triplicate and in a randomized order.
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2.3. Protein Extraction

The protein was extracted as previously described with some modifications [25]. In short, 40 mg
of frozen hippocampal tissue was excised on ice before adding 500 µL RIPA buffer (50 mmol/L tris
pH 8.0, 150 mmol/L sodium chloride, 1% Triton X-100, 0.5% sodium deoxycholate and 0.1% sodium
dodecyl sulfate) with 1:100 protease inhibitor cocktail (Sigma-Aldrich, Darmstadt, Germany) and
1:100 phosphatase inhibitor cocktail (Sigma-Aldrich, Darmstadt, Germany) and homogenized by
mortar and pestle on ice. The samples were centrifuged for 10 min at 12,000 rpm at 4 ◦C and the
supernatant divided in aliquots and stored at −80 ◦C. In addition, another 10 mg of hippocampal
tissue was excised on ice before adding 250 µL of Tissue Protein Extraction Reagent (T-PER)
(Thermo Fisher Scientific, Waltham, MA, USA) with 1:100 protease inhibitor cocktail (Sigma-Aldrich,
Darmstadt, Germany) and 1:100 phosphatase inhibitor cocktail (Sigma-Aldrich, Darmstadt, Germany).
The samples were centrifuged at 10,000× g for five minutes at 4 ◦C according to manufacturer’s
instructions and the supernatant divided in aliquots and stored at −80 ◦C. Two animals from the
CTRL group were excluded for technical reasons, leaving the CTRL group size at n = 13. Protein
concentrations were determined using a commercial BCA kit according to manufacturer’s instructions
(Merck Millipore, Darmstadt, Germany).

2.4. Western Blotting

The Western blotting procedure was carried out on samples in duplicates and in a randomized
order, as previously described [25]. The amount of protein (determined by a dilution series) was
adjusted to 11.25 µL with ultrapure water before adding 3.75 µL Laemmli buffer (Hercules, CA,
USA) with 1:10 mercaptoethanol (Sigma-Aldrich, Darmstadt, Germany). After denaturing for
10 min at 70 ◦C, the samples were loaded on a 7.5% Criterion™ TGX™ Precast Midi Protein
Gel, 26 well (Bio Rad, Hercules, CA, USA, 15 µL/well) and the electrophoresis was run for
approximately 40 min before transferring proteins to a polyvinylidene diflouride (PVDF) membrane.
Samples were normalized to total protein levels (REVERT™ Total Protein Stain, Li-Cor, Lincoln, NE,
USA). Every blot included positive and negative control samples and a calibrator to account for
inter-membrane variation.

The following antibodies were applied: Anti-monoamine oxidase A (MAOA) (ab126751, Abcam,
Cambridge, UK, 1:2000, 10 µg protein) with IRDye® 680RD Donkey-anti-Rabbit IgG (Li-Cor, Lincoln,
NE, USA; 1:15,000) as the secondary antibody, anti-GluR1 (ab183797, Abcam, Cambridge, UK,
1:1000, 30 µg protein) with IRDye® 680RD Donkey-anti-Rabbit IgG (Li-Cor, Lincoln, NE, USA;
1:15,000) as the secondary antibody, anti-tyrosine hydroxylase (TH) (ab75875, Abcam, Cambridge,
UK, 1:500, 40 µg protein) with IRDye® 680RD Donkey-anti-Rabbit IgG (Li-Cor, Lincoln, NE, USA;
1:15,000) as the secondary antibody, anti-tryptophan hydroxylase (TpH) 2 (AV34141, Sigma-Aldrich,
Darmstadt, Germany, 1:2000, 20 µg protein) with IRDye® 680RD Donkey-anti-Rabbit IgG (Li-Cor,
Lincoln, NE, USA; 1:15,000) as the secondary antibody, anti-post-synaptic-density-protein-95 (PSD-95)
(D27E11 3450, Cell Signaling Technology, Boston, MA, USA, 1:1000, 20 µg protein) with IRDye®

680RD Donkey-anti-Rabbit IgG (Li-Cor, Lincoln, NE, USA; 1:15,000) as the secondary antibody,
anti-synaptophysin (ab8049, Abcam, Cambridge, UK, 1:1000, 20 µg protein) with IRDye® 680RD
Donkey-anti-Mouse IgG (Li-Cor, Lincoln, NE, USA; 1:15,000) as the secondary antibody, anti-neuronal
nuclei marker (NeuN) (MAB377, Merck Milipore, Burlington, MA, USA, 1:2000, 20 µg protein) with
IRDye® 680RD Donkey-anti-Mouse IgG (Li-Cor, Lincoln, NE, USA; 1:15,000) as the secondary antibdy,
anti-glial fibrillary acidic protein (GFAP) (ab7260, Abcam, Cambridge, UK, 1:20,000, 20 µg protein)
with IRDye® 800CW Donkey-anti-Rabbit IgG (Li-Cor, Lincoln, NE, USA; 1:15,000) as the secondary
antibody and anti-N-methyl-D-aspartate receptor subunit 1 (NMDAR1) (ab77264, Abcam, Cambridge,
UK, 1:2000, 20 µg protein) with IRDye® 800CW Donkey-anti-Goat IgG (Li-Cor, Lincoln, NE, USA;
1:15,000) as the secondary antibody. All secondary antibodies were applied for one hour at r/t.

Synaptophysin and NMDAR1 were analyzed using T-PER Tissue Protein Extraction Reagent
(Thermo Fisher Scientific, Waltham, MA, USA) extracted protein and the remaining markers using
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RIPA extracted protein. The subsequent analyses of staining intensity were completed through Image
Studio 5.2 (Li-Cor, Lincoln, NE, USA) by an observer blinded to the experimental groups.

2.5. Statistics

Statistical analyses were performed by GraphPad Prism 7 (GraphPad Software, La Jolla, CA,
USA). Student’s t-test was used for both the neurotransmitter and Western blot analyses. In the event
of nonhomogeneous variances, the data was log-transformed or Welch’s t-test applied. All results
are presented as mean ± SD (standard deviation) or geometric mean (95% confidence interval).
A p-value < 0.05 was considered statistically significant.

3. Results

The current study is an extension of a previously published in vivo study [10]. In brief, the dietary
regimes resulted in ascorbate (Asc; the reduced and active form of vitC) plasma concentrations of
104 ± 34.2 µM in CTRL and 8.5 ± 3.7 µM in DEF, and brain Asc levels of 1256 ± 87.4 nmol/g tissue
and 519 ± 99.6 nmol/gram tissue in CTRL and DEF, respectively. Subjected to the Morris Water Maze
at day 52–53 of age (around the onset of reproductive maturity), DEF animals displayed significantly
impaired performance in the retention test; reduced time spent in platform quadrant, reduced number
of crossings of platform area and increased time to first platform area hit (p < 0.05, p < 0.01 and p < 0.05
respectively), compared to CTRL counterparts. A significantly reduced ability to apply a spatial swim
pattern was seen in DEF animals compared to CTRL. Stereological quantification of the hippocampus
revealed significantly reduced neuron numbers in DEF in all investigated areas (the dentate gyrus,
cornu amonis 1 and 2 + 3) [10].

To detect differences in hippocampal neuronal signaling, monoaminergic neurotransmitters
and selected metabolites were investigated. The results are shown in Table 1. There was a
decreased 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio in the DEF group compared with the CTRL
(p = 0.0093). No other neurotransmitters or their metabolites displayed any differences between
the two groups. Dopamine and dopamine metabolites were found to be below detection limit
(12 nM for homovanilic acid (HVA), 3.6 nM for 3,4-dihydroxyphenylacetic acid (DOPAC) and 10 nM
for dopamine).

Table 1. High performance liquid chromatography (HPLC) detection of monoaminergic
neurotransmitters in the hippocampus.

Group/Neurotransmitter CTRL (n = 15) DEF (n = 12) p-Value

MHPG 0.32 ± 0.09 0.35 ± 0.10 NS
Norepinephrine 2.81 ± 1.07 2.32 ± 0.75 NS

MHPG/Norepinephrine * 0.12 (0.10; 0.14) 0.15 (0.12; 0.19) NS
5-HIAA 0.83 ± 0.16 0.99 ± 0.27 NS
5-HT * 2.07 (1.79; 2.40) 2.2 (1.75; 2.93) NS

5-HIAA/5-HT 0.47 ± 0.12 0.36 ± 0.08 p = 0.0093
HVA ND ND ND

DOPAC ND ND ND
Dopamine ND ND ND

There is a significant decrease in the 5-HIAA/5-HT ratio in the DEF animals. Statistical analysis was performed by
Student’s t-test. Data is displayed as mean ± SD or mean (95% confidence interval), * log-transformed data. NS: Not
significant; ND: Not detectable. MHPG: 3-methoxy-4-hydroxyphenylglycol; 5-HIAA: 5-hydroxyindoleacetic acid;
5-HT: 5-hydroxytryptamine; HVA: Homovanillic acid; DOPAC: 3,4-dihydroxyphenylacetic acid; CTRL: Control
animals; DEF: Deficient animals.

To assess whether the imposed state of vitC deficiency in the brain would result in alteration of
hippocampal protein expression, Western blot analyses were performed on selected markers, including
markers of neuronal maturation (NeuN) and astrocytes (GFAP), as well as more specific markers
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linked to synapse formation and neurotransmission, such as synaptophysin and NMDAR1. The results
from the Western blot analyses are shown in Figures 1–3.

Though the depicted expression patterns may indicate reduced NeuN levels and increased GFAP
levels in DEF animals, this could not be confirmed statistically. Hence no differences were observed in
overall markers of neuronal and glial cells, NeuN and GFAP, respectively, between the two diet groups
(Figure 1).
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Figure 1. Cellular markers in the hippocampus. The figure depicts the Western blot analyses
of the levels of the investigated cellular markers in the hippocampus relative to total protein
levels. The two bands in the NeuN samples are consistent with splice variants (confirmed by the
manufacturer). No differences between the two groups were detected by Student’s t-test. Data is
shown as mean ± SD, SD: standard deviation. GFAP: Glial-fibrillary-acidic-protein, NeuN: Neuronal
nuclei marker. CTRL: Control animals (n = 13), DEF: Deficient animals (n = 12).

To determine the effects of vitC deficiency on the rate limiting enzymes involved in the
metabolism (synthesis and removal) of monoaminergic neurotransmitters, the expression of tyrosine
hydroxylase (TH; linked to dopamine and norepinephrine synthesis), tryptophane hydroxylase 2
(TpH2; linked to serotonin synthesis) and monoamine oxidase (MAOA; linked to the removal of
dopamine, norepinephrine and serotonin) was assessed. No statistically significant difference between
groups could be detected for TH and TpH2. MAOA expression did not reach statistical significance
between groups (p = 0.0844) (Figure 2).
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Figure 2. Monoamine synthesizing proteins in the hippocampus. The figure shows the levels of
markers associated with monoaminergic neurotransmission in the hippocampus as detected by Western
blotting. MAOA may be approaching a decrease in DEF (p = 0.0844), albeit not reaching significance.
The expression of the other investigated markers was not different between groups. Data is displayed as
mean ± SD and analyzed by Student’s t-test. TH: Tyrosine hydroxylase; TpH2: Tryptophan hydroxylase
2; MAOA: Monoamine-oxidase A; CTRL: Control animals (n = 13); DEF: Deficient animals (n = 12).

To evaluate an effect of vitC deficiency on markers of synaptic function (both pre- and
postsynaptic), the expression of synaptophysin, NMDAR1, PSD-95 and GluR1 was investigated
by Western blotting. A significant decrease in synaptophysin in the DEF group was evident
(p = 0.0160), while NMDAR1 approached a decrease in DEF (p = 0.0525) (Figure 3), albeit not reaching
statistical significance.
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Figure 3. Synapse markers in the hippocampus. The figure shows the results from the Western blotting
of markers of synapse formation. Synaptophysin is down-regulated in the DEF group (p = 0.0160), while
N-methyl-D-aspartate receptor 1 (NMDAR1) displays a tendency for down-regulation (p = 0.0525).
Data is displayed as mean ± SD and analyzed by Student’s or Welch’s t-test. *: p < 0.05; PSD-95:
Post-synaptic-density-protein-95; CTRL: Control animals (n = 13); DEF: Deficient animals (n = 12);
GluR1: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit 1.

Expression patterns suggest a NeuN decrease and GFAP increase in DEF, although not
substantial enough to reach a significant difference between groups. To assess if a potential
difference in neuronal expression was reflected in the expression of additional markers adhering
to neuronal function, the expression of synaptic markers NMDAR1, GluR1, synaptophysin and
post-synaptic-density-protein-95 relative to neuronal marker NeuN was calculated (relative expression
= marker/NeuN). Likewise, the GFAP/NeuN expression ratio was compared to assess glia versus
neuron ratio between groups. No statistically significant differences between groups were detected.

4. Discussion

The findings in this study suggest that a vitC deficiency-imposed impairment in spatial memory
may be mediated by alterations in monoaminergic neurotransmitter metabolism and aberrant synapse
formation in the hippocampus [10].

The decreased 5-HIAA/5-HT ratio in DEF animals supports a putative role of vitC in the
metabolism of monoamine neurotransmitters, and that this may subsequently be affected by a state
of deficiency, in this case likely due to a decreased 5-HT metabolism. Investigations in vitC deficient
mice (gulo−/−) found regional alterations (striatum vs. cortex; hippocampus was not analyzed) in the
serotonergic system in the brain [17], supporting that there are effects of vitC deficiency, but that these
may be presented differently within brain areas.

No apparent difference in hippocampal TpH2 expression—the rate limiting enzyme in 5-HT
synthesis [26]—was found between CTRL and DEF groups, in coherence with reports from mice
embryos subjected to vitC depletion (SVCT2−/−) or moderate deficiency (SVCT2+/−) [18]. However
it may be speculated that the decrease in 5-HT metabolism reflects a compensatory mechanism to keep
5-HT levels intact in response to a low 5-HT synthesis. Indeed, TpH2 is primarily expressed in the raphe
nuclei in the brainstem [27,28] from where serotonergic neurons project to the hippocampus [29], hereby
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rendering TpH2 changes to be undetectable in the hippocampus. Serotonergic neurotransmission in
the hippocampus is coupled to several functions including spatial memory [30,31]. An involvement
of vitC in serotonergic neurotransmission, and subsequent deviations due to deficiency alongside
decreased hippocampal neuron numbers could be a likely cause of the observed spatial memory
deficits [10]. Whether additional changes in serotonergic neurotransmission are present—for example,
reductions in the 5-HT1a and 5-HT4 receptors [31,32]—remains to be investigated.

Cortical levels of TH protein have been reported to be decreased in Asc depleted mice embryos
(SVCT2−/−), but not significantly altered in moderately deficient mice embryos (SVCT2+/−) [18].
This is in agreement with the current finding of no effect on hippocampal TH levels during moderate
vitC deficiency, supporting that significant reductions in TH requires extremely low levels of vitC.

The DEF animals displayed a decrease in synapse formation measured as reduced synaptophysin
expression, which was positively correlated with Asc levels in the brain, emphasizing a potential
direct effect of vitC deficiency on these markers. Synaptophysin is an abundant pre-synaptic vesicle
protein involved in regulation of neurotransmitter exo- and endocytosis [33,34] and activity-dependent
synapse formation [35]. The synaptophysin knockout mouse model, Syn−/−, display decreased
learning and memory functions in the object novelty recognition test and MWM [36]. Additionally,
several animal models of pathological brain development and memory deficits display decreased
levels of synaptophysin [37–39], connecting this marker to the establishment of functional neuronal
circuits. DEF animals of the current study displayed significant impairments in the MWM retention
test, corresponding well with this finding.

A link between tyrosine phosphorylation of synaptophysin and long term potentiation (LTP)—the
cellular hallmark of learning and memory—has been proposed, linking synaptophysin with
glutamatergic neurotransmission [36,40,41]. LTP requires the activation of post-synaptic NMDA
receptors (though there are also NMDA-independent forms of LTP) and is essential for spatial
memory [42–44]. Though not reaching statistical significance, NMDAR1 expression may be decreased
by reduced brain Asc status, and reflecting that vitC is important in NMDA receptor-mediated
neurotransmission [16,45]. NMDA receptor activation by glutamate gives rise to downstream
signaling cascades, increasing AMPA receptor insertion at the post-synaptic site [43]. In the current
study, a decrease in the AMPA receptor subunit GluR1 was not detected in DEF, however, in vitro
cultures of mouse neurons, devoid of the sodium-dependent vitC transporter 2, display reduced
GluR1 clustering [14]. The absence of an effect on the GluR1 subunit in the present study could be
due to the moderate state of vitC deficiency and/or represent compensatory mechanisms in vivo.
Phosphorylation of GluR1 has been found to be imperative for LTP and memory retention, but not
learning, in the MWM [46], suggesting that a decrease in GluR1 phosphorylation may govern the
spatial cognitive deficits seen in the vitC deficient animals. Whether this is the case, or if other
hippocampal AMPA receptor subunits, such as GluR2, known to be important for spatial memory [47],
are affected, requires further investigation.

The DEF animals in this study displayed decreased numbers of neurons in all areas of the
hippocampus (the dentate gyrus and cornu ammonis 1 and cornu ammonis 2 and 3) [10]. Thus, a shift
in the expression of synaptic markers relative to NeuN expression was explored to clarify any
differences which could be masked by an underlying (though on its own un-significant) difference in
NeuN expressing cells. The absence of differences in expression patterns relative to NeuN does not
support such changes, nor do they support a putative presence of adaptive mechanisms to counteract,
for example, decreases in neuronal number and/or a decrease in synapse formation. Furthermore, no
alteration in the relative expression of GFAP to NeuN was found in deficient animals, showing that the
cellular ratio between neurons and astrocytes was intact in vitC deficient animals. This finding supports
that the cellular composition within the hippocampus was not affected by the imposed state of vitC
deficiency, however, it is possible that the overall hippocampal volume was reduced in DEF animals
hereby giving rise to the recorded reductions in neuronal number. A consistent reduction in overall
hippocampal volume due to vitC deficiency in young guinea pigs has previously been reported [11].
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Guinea pig specific antibodies of the investigated proteins are not currently commercially available and
this represents a serious limitation of the recorded findings due to potential cross-species differences
in antibody specificity. Although we included positive controls in all cases, the results of the present
study should be verified once antibodies raised against guinea pig target proteins become available.

In conclusion, vitC deficiency-induced spatial memory deficits in young guinea pigs are mediated
in part by disturbances in monoaminergic neurotransmission and decreased markers of synapse
formation. Further exploration is required to disclose the specific mechanisms by which vitC deficiency
affects memory functions in the brain.
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