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Abstract
Aims/hypothesis In a recent study using a standard additive genetic model, we identified a TBC1D4 loss-of-function variant with
a large recessive impact on risk of type 2 diabetes in Greenlanders. The aim of the current study was to identify additional genetic
variation underlying type 2 diabetes using a recessive genetic model, thereby increasing the power to detect variants with
recessive effects.
Methods We investigated three cohorts of Greenlanders (B99, n = 1401; IHIT, n = 3115; and BBH, n = 547), which were
genotyped using Illumina MetaboChip. Of the 4674 genotyped individuals passing quality control, 4648 had phenotype data
available, and type 2 diabetes association analyses were performed for 317 individuals with type 2 diabetes and 2631 participants
with normal glucose tolerance. Statistical association analyses were performed using a linear mixed model.
Results Using a recessive genetic model, we identified two novel loci associated with type 2 diabetes in Greenlanders, namely
rs870992 in ITGA1 on chromosome 5 (OR 2.79, p = 1.8 × 10−8), and rs16993330 upstream of LARGE1 on chromosome 22 (OR
3.52, p = 1.3 × 10−7). The LARGE1 variant did not reach the conventional threshold for genome-wide significance (p < 5 × 10−8)
but did withstand a study-wide Bonferroni-corrected significance threshold. Both variants were common in Greenlanders, with
minor allele frequencies of 23% and 16%, respectively, and were estimated to have large recessive effects on risk of type 2
diabetes in Greenlanders, compared with additively inherited variants previously observed in European populations.
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this study.
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Conclusions/interpretation We demonstrate the value of using a recessive genetic model in a historically small and isolated
population to identify genetic risk variants. Our findings give new insights into the genetic architecture of type 2 diabetes, and
further support the existence of high-effect genetic risk factors of potential clinical relevance, particularly in isolated populations.
Data availability The Greenlandic MetaboChip-genotype data are available at European Genome-Phenome Archive (EGA;
https://ega-archive.org/) under the accession EGAS00001002641.

Keywords Genetic association . Genome-wide association study . Greenlanders . Inuit . ITGA1 . LARGE1 . Recessive genetic
model . Type 2 diabetes

Abbreviations
CANHR Center for Alaska Native Health Research
EAF Effect allele frequency
eQTL Expression quantitative trait loci
IHIT Inuit Health in Transition
GWAS Genome-wide association study/studies
ISI Insulin sensitivity index
MAF Minor allele frequency

Introduction

Numerous genome-wide association studies (GWAS) have
been performed to identify genetic factors predisposing to
type 2 diabetes. These studies, mainly performed in
European and Asian populations, have identified around 120
genetic variants associated with risk of type 2 diabetes [1–8].

Until now, GWAS of type 2 diabetes and glycaemic traits
have almost exclusively been performed using an additive

genetic model [1–5]. This model, however, has limited statis-
tical power to detect associations with variants displaying re-
cessive effects [9, 10], unless the effect is very large. Recently,
a GWAS of type 2 diabetes in up to 4040 individuals with type
2 diabetes and 116,246 participants without diabetes from the
UK Biobank applied a dominance deviation model to identify
non-additive association signals [11]. Although no novel sig-
nals were identified, the paper reported a recessive effect on
risk of type 2 diabetes at the previously identified CDKAL1
locus [11], which is in concordance with the findings from the
original discovery [12]. Importantly, given the effective sam-
ple size of around 15,300, this study lacked statistical power to
exclude the possibility that additional alleles with recessive
effects predispose to type 2 diabetes in European populations.

We previously demonstrated the existence of a high-impact
type 2 diabetes risk allele with predominately recessive effect
in the Greenlandic population, despite using an additive genetic
model in the discovery analysis [13]. Notably, however, this
TBC1D4 loss-of-function variant was discovered via analyses
of a type 2 diabetes-related trait, 2 h plasma glucose, on which
it had an extremely large effect, and not via analyses of type 2
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diabetes. Indeed, the study in which that variant was discovered
had very limited statistical power to detect variants with recessive
effects on type 2 diabetes unless they were very frequent and had
very large effects. Here, we aimed to identify additional variants
with recessive effects on risk of type 2 diabetes in the
Greenlandic population by applying a recessive genetic model
to an increased number of Greenlandic samples with type 2
diabetes information.

Methods

Study populations The Greenlandic study sample comprised
individuals from two cohorts selected as part of a general
population health survey of the Greenlandic population during
the periods 1999–2001 (B99, n = 1401) and 2005–2010 (Inuit
Health in Transition (IHIT), n = 3115) and from a cohort of
Greenlanders living in Denmark on whom information was
collected during 1998–1999 (BBH, n = 547) [14, 15]. There
was an overlap of individuals (n = 295) between the IHIT and
B99 cohorts, and these were assigned to B99. Of the 4674
genotyped individuals who passed quality control, 4648 had
phenotype data available. The characteristics of the three co-
horts are shown in electronic supplementary material (ESM)
Table 1. All participants gave informed consent, and the study
was approved by the Commission for Scientific Research in
Greenland (project 2011-13, ref. no. 2011-056978; and project
2013-13, ref. no. 2013-090702), and conducted in accordance
with the ethical standards of the Declaration of Helsinki, sec-
ond revision.

Yup’ik samples for quantitative trait replication came from
the Center for Alaska Native Health Research (CANHR),
which performs studies related to genetic, behavioural, and
nutritional risk factors for obesity and cardiometabolic dis-
eases among Yup’ik people in a community-based setting
[16]. Recruitment of Yup’ik families was initiated in 2003
and continues in 11 Southwest Alaska communities, where
all residents are invited to participate, resulting in a conve-
nience sample. The present study sample comprised 1059
non-pregnant Yup’ik individuals aged 14 years or above at
the time of enrolment. All participants signed informed con-
sent documents, and the study protocols were approved by the
Institutional Review Boards of the University of Alaska and
the National and Alaska Area Indian Health Service
Institutional Review Boards, as well as the Yukon
Kuskokwim Health Corporation Human Studies Committee.

Additional replication analyses were performed on up to
23,776 Danish samples from the Inter99 study (n = 4947)
(CT00289237, ClinicalTrials.gov) [17], from Health2006–
Health2010 studies (n = 4776) [18], from the Danish study of
Functional Disorders (DanFunD; n = 6004) [19], from the
Vejle Diabetes Biobank (n = 6266) [20], and from the Steno
Diabetes Center Copenhagen (n = 1783). Characteristics of the

cohorts have previously been published [6]. The studies were
approved by the appropriate Regional Ethical Committees and
were performed in accordance with the scientific principles of
the Helsinki Declaration, second revision.

Measurements and assays The Greenlandic participants
underwent anOGTT in which blood samples were drawn after
an overnight fast and after 2 h during a 75 g OGTT. Plasma
glucose levels were analysed using a Hitachi 912 system
(Roche Diagnostics, Indianapolis, IN, USA), serum insulin
with an immunoassay excluding des-31,32 split products
and intact proinsulin (AutoDELFIA; PerkinElmer, Waltham,
MA, USA), and HbA1c by ion-exchange HPLC (G7 [Tosoh
Bioscience, Tokyo, Japan] for IHITsamples; VARIANT [Bio-
Rad, Hercules, CA, USA] for B99 samples). The thickness of
visceral and subcutaneous adipose tissue was measured ac-
cording to a validated protocol using a portable ultrasound
scanner (Pie Medical, Maastricht, the Netherlands) with a
3.5 MHz transducer [21]. Serum cholesterol, HDL-
cholesterol and triacylglycerol concentrations were measured
using enzymatic calorimetric techniques (Hitachi 917, Roche
Molecular Biochemicals, Indianapolis, IN, USA). LDL-
cholesterol concentration was calculated according to
Friedewald’s formula. Insulin resistance was estimated by ei-
ther: (1) HOMA-IR [22], calculated as [fasting glucose level
(mmol/l) × fasting insulin (pmol/l)/6.945]/22.5; or (2) the in-
sulin sensitivity index, ISI(0,120) [23], calculated as
[(75,000 + [fasting glucose (mmol/l) × (18 − 2 h glucose
[mmol/l]) × 18] × 0.19 × weight [kg])/120] / ([fasting glucose
(mmol/l) + 2 h glucose (mmol/l)]/2) / log([fasting insulin
(pmol/l)/6.945] + [2 h insulin (pmol/l)/6.945]/2), where log
is the natural logarithm.

In the CANHR Yup’ik study population, blood samples
were collected after an overnight fast. Insulin was measured
with a radioimmunoassay applying an 125I-iodinated insulin
tracer, anti-human insulin-specific antibody and human insu-
lin standards from Linco Research (Winchester, VA, USA).
The Poly-Chem System Chemistry Analyzer (Polymedco,
Courtlandt Manor, NY, USA) was applied to measure HDL-
cholesterol, total cholesterol and triacylglycerols. Fasting
blood glucose was measured on a Cholestech LDX analyser
(Cholestech, Hayward, CA, USA), and glycosylated
haemoglobin was measured on a Bayer HbA1c DCA 2000+
analyser (Bayer, Leverkusen, Germany).

In the Danish samples, plasma glucose was measured by
the glucose oxidase method (Granutest; Merck, Darmstadt,
Germany).

In the Greenlandic and Danish cohorts, type 2 diabetes was
defined based on self-reported type 2 diabetes, fasting plasma
glucose level >7 mmol/l, or 2 h plasma glucose during an
OGTT >11.1 mmol/l. Control individuals were normal glu-
cose tolerant with a fasting plasma glucose <6.1 mmol/l and
2 h plasma glucose during an OGTT <7.8 mmol/l.

Diabetologia (2018) 61:2005–2015 2007

http://clinicaltrials.gov


Genotyping The Greenlandic samples were genotyped using
IlluminaMetaboChip (Illumina, SanDiego, CA, USA), which
contains 196,725 SNPs potentially related to metabolic, car-
diovascular or anthropometric traits [24]. Details about the
genotyping procedure and quality control have previously
been described [25]. In total, 4674 individuals (IHIT, 2791;
B99, 1336; BBH, 547) and 115,182 SNPs passed the quality
control.

Detailed descriptions of the genotyping procedures and
data cleaning of CANHRYup’ik samples have also previously
been published [26]. Briefly, we used the Illumina Linkage IV
panel to genotype 6090 SNPs spanning the entire genome,
with an average genetic distance of 0.58 cM. A total of 5632
autosomal SNPs from this Linkage IV panel passed the qual-
ity control. These SNPs were used to obtain ancestry informa-
tion for the statistical analysis. Additionally, genotyping of
SNPs for replication was performed by the KASPar
Genotyping assay (LGC Genomics, Hoddesdon, UK).

The Danish samples were genotyped by the Illumina
Infinium OmniExpress-24 v1.1 array. Genotypes were called
by the Illumina GenCall algorithm, and variants with a call
rate <98% and Hardy–Weinberg equilibrium p < 1 × 10−5

were removed. Samples were excluded if they were ethnic
outliers, had a mismatch between genetic and phenotypic
sex or had a call rate <95%. Genotype data were imputed
using the Haplotype Reference Consortium (HRC) reference
panel v1.1 [27] at the Michigan imputation server using
MiniMac3 v2.0.1 (https://genome.sph.umich.edu/wiki/
Minimac3) after phasing with Eagle2 v2.4 (https://data.
broadinstitute.org/alkesgroup/Eagle/) [28]. Post-imputation
filtering of SNPs excluded variants with a minor allele fre-
quency (MAF) <0.01 and info score <0.70.

Statistical power simulations To assess the statistical power of
an additive and a recessive model-based test to detect associ-
ation to a variant with recessive effect, we performed a range
of simulations of data from a locus with a type 2 diabetes
effect allele. For each of 540 combinations of effect allele
frequencies (EAFs; EAF values 0.05, 0.1, 0.15, 0.2, 0.25
and 0.3) and effect sizes (ORs ranging from 1.1 to 10 with a
step size of 0.1), we simulated first genotypes for n individuals
and then their diabetes status based on these genotypes. For
the simulation of type 2 diabetes status, we assumed a baseline
risk of type 2 diabetes of 0.1, which we used to randomly
simulate diabetes status for all individuals who were not ho-
mozygous carriers of the effect allele. For homozygous car-
riers of the effect allele, we simulated the diabetes status while
taking both the baseline risk and the effect size into account.
For each combination of EAF and OR, we performed 20,000
simulations, and finally, to estimate the power for the additive
and the recessive model-based tests, we tested for association
using logistic regression assuming each of these models, and
estimated power as the proportion of tests that gave a p value

<4.3 × 10−7 (the Bonferroni-corrected significance threshold
of this study; see below for details). We performed the power
simulations for 2948 individuals to reflect the number of in-
dividuals with type 2 diabetes information available in this
study.

Statistical association analysis For analyses of association in
the Greenlanders, we used a linear mixed model, implemented
in GEMMA software v0.96 (http://www.xzlab.org/) [29]. This
model controls for admixture and relatedness between
individuals as random effects via a genetic similarity matrix,
which we estimated using GEMMA. This control is needed
because the Greenlandic population is admixed with ancestry
from both Inuit and Europeans [30]. With this model, we
achieved an acceptable genomic inflation factor (λ = 1.009;
ESM Fig. 1). In the discovery analyses, we used a recessive
genetic model and applied a study-wide significance threshold
of p = 4.3 × 10−7 corresponding to a Bonferroni correction for
analysing 115,182 SNPs. In all the association analyses, we
analysed data combined from the three cohorts and included
sex, age and cohort as covariates. Prior to performing the
association tests, quantitative traits were quantile-
transformed to a standard normal distribution within each
sex and each cohort. Therefore, for quantitative traits, effect
sizes are reported as β in SD units (95% CI) in the text, and
additionally as trait units in tables, obtained from association
analyses on raw trait values. Effect sizes for association with
type 2 diabetes are reported as ORs in the text, and were
obtained from logistic regression analyses adjusted for age,
sex and ten principal components. We estimated the effect
sizes for the Inuit and European ancestry components using
logistic regression also adjusted for age, sex and ten principal
components with asaMap (https://github.com/ANGSD/
asaMap, accessed 1 August 2017) [31] based on the
estimated admixture proportions.

The Yup’ik cohort was also analysed using GEMMA soft-
ware [29]. Here, however, the genetic similarity matrix re-
quired for the association analysis was not estimated using
GEMMA, as we did in our analyses of the Greenlanders, but
was instead calculated using the genotype data from the link-
age panel merged with the additional genotypes of the SNPs
genotyped for this study.

In the Danish data, association analyses of type 2 diabetes
were carried out by logistic regression adjusting for age, sex
and the first ten principal components. These analyses were
performed on imputed genotype data, taking genotype uncer-
tainty into account, applying the expected count test in
SNPTEST v2.5.2 (https://mathgen.stats.ox.ac.uk/genetics_
software/snptest/snptest.html).

Allele frequency estimation For the SNPs of interest, we esti-
mated allele frequencies for each of the Inuit and European
ancestry components of the Greenlandic population using a
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two-step approach. In step 1, we estimated ancestry propor-
tions for the Greenlandic study individuals as well as 50
Danish individuals. To do this, we applied ADMIXTURE
v1.3.0 (https://www.genetics.ucla.edu/software/admixture/)
[32] to all the SNP data from these individuals, assuming
two ancestral populations—Inuit and Europeans. In step 2,
we estimated ancestral allele frequencies with CIs for each
SNP separately using bootstrap with replacement. We used
1000 bootstrap samples of individuals and, based on each,
we performed maximum likelihood estimation of the allele
frequencies, using the likelihood from ADMIXTURE with
the ancestry proportions fixed to the estimates obtained in
step 1. The CIs were based on the quantiles of these
bootstrap estimates.

In CANHRYup’ik samples, allele frequencies for the SNPs
of interest were estimated using the Mendel program v16
(https://www.genetics.ucla.edu/software/mendel) [33, 34].

Querying results from previous large GWAS of type 2 diabetes
and metabolic traits Additive genetic model GWAS results
were queried online: type 2 diabetes results from the
DIAGRAM Consortium (DIAbetes Genetics Replication
And Meta-analysis; http://diagram-consortium.org) [8],
glycaemic trait results from MAGIC (the Meta-Analyses of
Glucose and Insulin-related traits; www.magicinvestigators.
org) [35], anthropometric trait results from the GIANT
Consortium (Genetic Investigation of Anthropometric Traits;
http://portals.broadinstitute.org/collaboration/giant/index.
php/GIANT_consortium) [36–38], and lipid results from
GLGC (Global Lipids Genetics Consortium; http://
lipidgenetics.org) [39].

Assessment of functional effects and expression quantitative
trait loci To investigate whether the associated variants were
causal, RegulomeDB (http://www.regulomedb.org/, accessed
10 January 2018) and HaploReg v4.1 (http://archive.
broadinstitute.org/mammals/haploreg/haploreg.php) were
applied to assess possible co-localisation of the genetic vari-
ants with regulatory elements, such as transcription factor
binding sites, promoter regions and regions of DNAase hy-
persensitivity. We also used data from the GTEx Consortium
available online to investigate associations between genetic
variants and RNA expression (www.gtexportal.org; accessed
27 January 2018). All 48 tissues with more than 70 samples
were queried. Sample sizes ranged from 80 to 388. Results
were only available for an additive genetic model.

Results

We analysed association with type 2 diabetes for 317 individ-
uals with type 2 diabetes and 2631 participants with normal
glucose tolerance. Using a recessive genetic model on these

Greenlandic data, we identified three loci associated with type
2 diabetes below the study-wide Bonferroni-corrected signifi-
cance threshold (p< 4.3 × 10−7) (ESM Fig. 1). Besides the pre-
viously described TBC1D4 locus [13], these comprised two nov-
el loci, namely the common intron variant rs870992 in ITGA1 on
chromosome 5 (MAF 23%, OR 2.79, p = 1.8 × 10−8) and the
common intergenic variant rs16993330 approximately 25 kb up-
stream of LARGE1 on chromosome 22 (MAF 16%, OR 3.52,
p = 1.3 × 10−7) (Fig. 1, Table 1). However, the LARGE1 variant
did not reach the conventional threshold for genome-wide signif-
icance (p < 5 × 10−8). Similar associations with type 2 diabetes
were observed when adjusting for BMI (data not shown).

The Greenlandic population is admixed with ancestry from
both Inuit and Europeans [30]. Interestingly, the estimated
EAF were considerably higher in the Inuit ancestry compo-
nent for ITGA1 rs870992 (31%) and for LARGE1 rs16993330
(19%), than in the European ancestry component among
Greenlanders (3% and 7%, respectively) and in European
populations (Table 1, ESM Table 2). The allele frequencies
found in Europeans were so low that homozygous carriers
were almost absent. The novel variants in ITGA1 and
LARGE1 had a high impact on risk of type 2 diabetes in
Greenlanders, evident by the estimated effect sizes (Table 1)
and by the higher frequency of type 2 diabetes among homo-
zygous carriers compared with non-carriers (24.9% and
28.9% vs 10%; Fig. 2). To gain further insights into the effect
of the identified loci, we also performed type 2 diabetes asso-
ciation analyses of these assuming an additive model
(Table 1). This led to low p values as well, although none of
them was low enough to pass the Bonferroni-corrected signif-
icance threshold (p < 4.3 × 10−7). Based on genetic data and
functional annotation analyses facilitated by in silico tools, we
were unable to determine whether the identified variants were
causal.

Next, to elucidate the diabetes-related mechanisms under-
lying the association of the novel variants, we analysed
diabetes-related traits in individuals without diabetes from
the Greenlandic cohorts with a recessive genetic model.
Homozygous carriers of ITGA1 rs870992 had nominally in-
creased HbA1c levels (β = 0.13 SD [95% CI 0.027, 0.23], p =
0.012) (Table 2). For LARGE1 rs16993330, the underlying
physiological mechanism seems to be linked to increased fat
accumulation, indicated by higher levels of visceral adipose
tissue (0.29 SD [95% CI 0.076, 0.50], p = 0.0078), larger hip
circumference (0.22 SD [95% CI 0.048, 0.40], p = 0.013) and
waist circumference (0.21 SD [95% CI 0.041, 0.38], p =
0.015) and higher BMI (0.18 SD [95% CI 0.0046, 0.35],
p = 0.045) (Table 2). Furthermore, homozygous LARGE1
rs16993330 carriers had increased insulin resistance, indicated
by higher levels of fasting serum insulin (0.22 SD [95% CI
0.027, 0.41], p = 0.026) and HOMA-IR (0.24 SD [95% CI
0.048, 0.44], p = 0.014), and lower levels of the ISI (−0.21
SD [95% CI −0.016, −0.41], p = 0.034) (Table 2). We then
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performed the analyses of the same quantitative diabetes-
related traits with an additive model and obtained similar re-
sults (ESM Table 3).

We subsequently attempted to validate our findings in an-
other Arctic indigenous population by genotyping the ITGA1
and LARGE1 variants in 1059 Alaska Native Yup’ik.
However, none of the potential associations with diabetes-
related quantitative traits were replicated in this smaller sample
(ESM Table 4), and analysis of type 2 diabetes was precluded
due to the low number of participants with diabetes. A second
line of replication was attempted in a Danish sample of 5220
individuals with type 2 diabetes and 18,556 control partici-
pants. However, we did not observe an association with type
2 diabetes using a recessive model (ESM Table 2). In addition,
the results of a dominance deviancemodel GWAS of European

UK Biobank samples [11] showed no significant rejection of
the additive model for either ITGA1 rs870992 or LARGE1
rs16993330 (p = 0.54 and p = 0.36, respectively) based on
117,775 individuals. We also queried the two variants from
the available summary data from a recent additive genetic
model GWAS of type 2 diabetes [8] and found that the
ITGA1 rs870992 G allele was nominally associated with in-
creased risk of type 2 diabetes, whereas no effect was observed
for LARGE1 rs16993330 (ESM Table 5). Additionally, queries
of results from GWAS of other traits revealed associations of
the ITGA1 rs870992 G allele with increased total cholesterol
and LDL-cholesterol levels, and nominal associations of the
LARGE1 rs16993330 A allele with increased total cholesterol
and triacylglycerol levels (ESM Table 5). Owing to the
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possible inflation of the test statistics, we also included the
quantile of p values for the significant tests in ESM Table 5.

Finally, we queried RNA expression data available online
as part of the GTEx project (www.gtexportal.org/) under the
hypothesis that the newly identified variants in ITGA1 and
LARGE1 could change the expression of regional genes.
Here we observed that the type 2 diabetes-associated ITGA1
rs870992 G allele was associated with increased ITGA1 RNA
expression in nerve, pancreas and smooth muscle tissue in up
to 361 samples, albeit with modest p values (p < 0.0001). No
expression quantitative trait loci (eQTL) associations were
found for LARGE1 rs16993330.

Discussion

Using a recessive genetic model, we investigated the associa-
tion between markers on MetaboChip and type 2 diabetes in a
Greenlandic study population. Besides the established
TBC1D4 locus [13], we identified a novel genome-wide sig-
nificant variant for risk of type 2 diabetes in ITGA1, and a
variant near LARGE1 showing a suggestive association.
Additional analyses of diabetes-related quantitative traits indi-
cated that the LARGE1 variant might increase the risk of type
2 diabetes through accumulation of visceral fat and increased
insulin resistance, whereas these analyses provided no clues to
the mechanistic link underlying the ITGA1 association. This
study demonstrates the value of using the correct genetic
model for identification of disease-associated variants, which
is also supported by simulations showing that, for example,
for a recessive effect allele with a frequency of 0.25 and anOR
of 3 (similar to the ITGA1 variant), the power under an addi-
tive model is less than 20% whereas the power under a reces-
sive model is around 80% (ESM Fig. 2). Moreover, under a
wide range of EAF and ORs, the recessive model has mark-
edly higher statistical power to detect variants with recessive
effects associated with type 2 diabetes.

A possible link between the ITGA1 locus and altered glu-
cose regulation is supported by studies of type 2 diabetes-

related traits. Recently, rs6450057 mapping to PELO, a gene
embedded in intron 1 of ITGA1, was found to be associated
with fasting serum insulin levels in a transethnic GWASmeta-
analysis of 70,000 individuals [40]. Interestingly, this study
found an opposite direction of effect in European and African-
American samples, indicating that rs6450057 is not the causal
variant at this locus. Moreover, another ITGA1 intron variant,
rs6867040, has been associated with fasting plasma glucose
concentrations in 46,262 European individuals [41], and a
recent prepublished GWAS of more than 800,000 samples
showed an independent association between three variants at
the ITGA1 locus and type 2 diabetes using an additive genetic
model [42]. These studies support our findings of a link be-
tween variation in ITGA1 and type 2 diabetes. However, it is
unclear whether it is the same signal, as the identified variants
in the European study do not include rs870992, nor are the
identified variants in high linkage disequilibrium with
rs870992 in Europeans (r2 < 0.1).

Biologically, ITGA1 is an attractive candidate gene,
encoding the α1-integrin subunit, which heterodimerises with
theβ1 subunit to form cell surface receptors that bind collagen
and laminin. Interestingly, α1β1-integrin is the primary col-
lagen receptor used by cultured beta cells, and this interaction
regulates beta cell adhesion, motility and insulin secretion [43,
44]. Moreover, specific interactions between α1β1-integrin
and extracellular matrix have been shown to be critical for
beta cell survival and function [45], and therefore are possibly
also important for glucose homeostasis and risk of type 2
diabetes. Besides the possible effects on beta cell function,
ITGA1 seems to be linked to liver function. Thus, ITGA1
variants have been associated with plasma levels of the liver
enzyme γ-glutamyl transferase [46], and modestly with
ITGA1 protein expression levels in the liver [41]. In mice,
knocking out Itga1 leads to severe hepatic insulin resistance
[47] and altered fatty acid metabolism when they are fed a
high-fat diet [48]. In line with this, we observed a borderline
significant association between ITGA1 rs870992 and in-
creased levels of fasting plasma glucose, which might indicate
altered hepatic glucose regulation in the fasted state. Thus,
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studies of phenotypes reflecting liver function in Greenlanders
would be of great interest to elucidate the biological mecha-
nisms underlying the association between variation in ITGA1
and type 2 diabetes. In eQTL analyses, no effect of the type 2
diabetes-associated rs870992 variant on mRNA expression in
liver tissue was observed. Instead, the variant was associated
with increased ITGA1 expression in three other tissues; how-
ever, this was in the opposite direction to what was expected
from the Itga1 knockout mice. This difference might rely on
the fact that rs870992 is unlikely to be the causal variant and
therefore we cannot conclude that the causal variant acts
through RNA regulation even if our top SNP is significantly
associated with ITGA1 expression.

No previous studies have indicated a link between
LARGE1 and type 2 diabetes in additive model GWAS [8],
nor did we replicate our findings in recessive analysis in a
Danish sample of 5220 individuals with diabetes and 18,556
control participants. This lack of association in European sam-
ples may rely on low statistical power for recessive effects,
due to the low frequency of risk alleles (EAF<10%) in
Europeans (ESM Fig. 2) or due to population-specific differ-
ences in linkage disequilibrium between the identified variant
and the causal variant. It is also possible that the causal variant
behind the observed type 2 diabetes association is Inuit-

specific, similar to the risk variant in TBC1D4 [13].
However, we were unable to pinpoint such a causal variant.
Moreover, the lack of replication of the diabetes-related quan-
titative traits associations in a small sample of Alaska Native
Yup’ik illustrates one of the main challenges with studies of
isolated populations, namely the difficulty of finding appro-
priate replication cohorts in terms of both genetic composition
and sample size. It is, however, also possible that the LARGE1
association represents a false-positive discovery.

LARGE1 encodes the LARGE xylosyl- and glucuronyl-
transferase 1 protein. This protein interacts with α-
dystroglycan and functions as a glycosyltransferase stimulat-
ing glycosylation of α-dystroglycan, which in skeletal mus-
cles connects the cytoplasm with the extracellular matrix as
part of the dystrophin–glycoprotein complex [49, 50]. How
this relates to the observed association with visceral fat accu-
mulation and insulin resistance is unclear; therefore studies
including a more comprehensive coverage of the genome
and a larger sample size are warranted to verify the suggested
associations, and possibly identify the causal variant in the
locus.

In this study, we observed three loci, TBC1D4, ITGA1 and
LARGE1, harbouring variants with large recessive effects on
the risk of type 2 diabetes in Greenlanders, the latter, however,

Table 2 Association of ITGA1 rs870992 and LARGE1 rs16993330 with quantitative metabolic traits in Greenlanders under a recessive genetic model

ITGA1 rs870992 LARGE1 rs16993330

Trait (measured unit) n βSD 95% CISD β p value βSD 95% CISD β p value

Fasting plasma glucose (mmol/l) 3693 0.12 −0.0034, 0.25 0.16 0.059 0.15 −0.028, 0.32 0.19 0.10

2 h plasma glucose (mmol/l) 3437 0.070 −0.063, 0.20 0.36 0.31 0.12 −0.069, 0.31 0.32 0.21

Fasting serum insulin (pmol/l) 3691 0.016 −0.12, 0.16 1.9 0.82 0.22 0.027, 0.41 5.5 0.026

2 h serum insulin (pmol/l) 3437 0.0090 −0.13, 0.15 −5.0 0.91 0.16 −0.037, 0.36 6.6 0.11

HbA1c (mmol/mol) 4626 0.13 0.027, 0.23 NA 0.012 −0.03 −0.17, 0.11 NA 0.67

HbA1c (%) 4624 0.13 0.027, 0.23 0.063 0.012 −0.03 −0.17, 0.11 −0.011 0.67

HOMA-IR 3684 0.053 −0.086, 0.19 0.15 0.45 0.24 0.048, 0.44 0.33 0.014

ISI(0,120) 3404 −0.051 −0.19, 0.088 0.12 0.47 −0.21 −0.41, −0.016 −0.31 0.034

Weight (kg) 4631 −0.045 −0.17, 0.077 −0.59 0.47 0.20 0.031, 0.37 3.4 0.020

BMI (kg/m2) 4626 −0.078 −0.20, 0.047 −0.28 0.22 0.18 0.0046, 0.35 1.3 0.045

Waist circumference (cm) 4594 −0.054 −0.18, 0.068 −0.67 0.39 0.21 0.041, 0.38 3.3 0.015

Hip circumference (cm) 4592 −0.036 −0.16, 0.087 −0.37 0.57 0.22 0.048, 0.40 2.4 0.013

WHR 4591 −0.041 −0.15, 0.073 −0.0040 0.48 0.12 −0.041, 0.28 0.011 0.14

Visceral adipose tissue (cm) 2693 0.0020 −0.15, 0.15 0.031 0.98 0.29 0.076, 0.50 0.73 0.0078

Subcutaneous adipose tissue (cm) 2683 −0.090 −0.24, 0.065 −0.16 0.26 0.20 −0.018, 0.42 0.29 0.070

Fasting serum total cholesterol (mmol/l) 4517 −0.012 −0.13, 0.11 −0.0080 0.84 0.1 −0.058, 0.27 0.13 0.20

Fasting serum HDL-cholesterol (mmol/l) 4652 0.011 −0.11, 0.13 0.028 0.86 0.051 −0.11, 0.22 0.039 0.54

Fasting serum LDL-cholesterol (mmol/l) 3957 −0.014 −0.14, 0.11 −0.018 0.83 0.061 −0.11, 0.23 0.073 0.48

Fasting serum triacylglycerol (mmol/l) 4124 −0.034 −0.16, 0.095 0.0060 0.61 0.15 −0.022, 0.33 0.021 0.088

Analyses were performed using a recessive genetic model. βSD is the effect size estimated from quantile-transformed values of the trait, and β is the
effect size estimated from untransformed values. Values of p were obtained from the quantile-transformation based analyses

NA, not available
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having weaker statistical support. In addition to these loci,
based on a loss-of-function screening of the same population,
we recently identified a variant in ADCY3 recessively associ-
ated with obesity and type 2 diabetes [51]. Variants in all four
loci have effect sizes that are much greater than what has been
reported for TCF7L2, which is the greatest genetic risk factor
for type 2 diabetes among Europeans [1]. Even though the
estimated effects are likely to be inflated by the ‘winner’s
curse’, these variants have the potential to be of clinical rele-
vance by facilitating the prediction of diabetes development in
Greenlandic population. More research is needed to identify
the causal variants, to elucidate the biological mechanisms
underlying the association with type 2 diabetes, and to clarify
whether these novel variants distinguish type 2 diabetes sub-
types with specific aetiology, as demonstrated for TBC1D4
[13]. This additional knowledge could have the potential to
guide choice of treatment for subtypes of type 2 diabetes.

In conclusion, we demonstrate that common alleles with
recessive effects play a role in the genetic architecture of type
2 diabetes in the small and historically isolated Greenlandic
population. These findings reiterate the importance of consid-
ering non-additive genetic models when performing GWAS.
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