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Development of polarization consistent basis sets for spin-spin coupling constant

calculations for the atoms Li, Be, Na, and Mg

Patrick A. Aggelund,1, a) Stephan P. A. Sauer,1, b) and Frank Jensen2, c)

1)Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø,

Denmark
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The pcJ-n basis set, optimized for spin-spin coupling constant calculations using

density functional theory methods, are expanded to also include the s-block elements

Li, Be, Na, and Mg, by studying several small molecules containing these elements.

This is done by decontracting the underlying pc-n basis sets, followed by augmenta-

tion with additional tight functions. As was the case for the p-block elements, the

convergence of the results can be significantly improved by augmentation with tight

s-functions. For the p-block elements additional tight functions of higher angular

momentum were also needed, but this is not the case for the s-block elements. A

search for the optimum contraction scheme is carried out using the criterion that the

contraction error should be lower than the inherent error of the uncontracted pcJ-n

relative to the uncontracted pcJ-4 basis set. A large search over possible contraction

schemes is done for the Li2 and Na2 molecules, and based on this search contracted

pcJ-n basis sets for the four atoms are recommended. This work shows that it is

more difficult to contract the pcJ-n basis sets, than the underlying pc-n basis sets.

However, it also shows that the pcJ-n basis sets for Li and Be can be more strongly

contracted than the pcJ-n basis sets for the p-block elements. For Na and Mg, the

contractions are to the same degree as for the p-block elements.
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I. INTRODUCTION

Accurate calculations of nuclear spin-spin coupling constants are a challenging task, as

the results depend strongly on the employed basis sets, on the quality of the wave function

and on the molecular structure. Previous work on specialized basis sets1–13 has shown

that it is possible to design basis sets, that systematically converge towards the basis set

limit, when calculating nuclear spin-spin coupling constants. This has been done using for

example high-level coupled cluster methods9,13, Møller-Plesset perturbation theory1,4,6,10,11,

multiconfigurational SCF2,3 or density functional theory5,7,8,12. The most complete series

of basis sets, ccJ-pVXZ (X=D,T,Q,5) and pcJ-n (n=0,1,2,3,4), are modifications of the

corresponding cc-pVXZ14 and pc-n15,16 basis sets.

The pcJ-n basis sets follow the notation of the pc-n basis sets, where n denotes the level of

polarization beyond the atomic system. So n = 0 is unpolarized, n = 1 includes a single type

of polarization functions, n = 2 includes two types of polarization functions, etc. Currently,

the pcJ-n basis sets are defined for the first row elements (H and He), the second and third

row p-block elements, but the corresponding elements in the s-block are missing.

The focus of this work is to expand the pcJ-n basis sets also to the elements Li, Be, Na,

and Mg in order to complete this family of basis sets and to investigate if they show the same

behavior as the p-block elements. For that purpose several small molecules containing these

elements will be investigated. The original pc-n basis set will first be uncontracted followed

by addition of tight functions. The needed functions and exponents will be determined, using

the same method as in the development of the pcJ-n basis set for the other elements8. There

it was shown that using the contracted pc-n basis set resulted in an erratic behavior, when

calculating spin-spin coupling constants, and consequently the addition of tight functions

have been done on the uncontracted basis set.

After finding the optimal set of additional tight functions, the basis sets need to be

recontracted in order to reduce the computational time. Of course this also leaves the

basis set less flexible, introducing new errors. The contraction errors can be quantified by

comparing to the inherent error in the pcJ-n basis set. Using the definition of the inherent

error of a pcJ-n basis set as the error relative to the basis set limit, the aim is to find the

contraction to the fewest number of functions, where the contraction error is comparable to

but smaller than the inherent error in the pcJ-n basis sets.
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Two different types of contraction schemes exist, denoted segmented and general con-

traction. In the general contraction every primitive function can occur in every contracted

function, whereas in the segmented contraction every primitive can only occur in one con-

tracted function. The segmented contraction is thus a subset of the general contraction. A

general contraction is the most flexible and can in a semi-automatic way be converted into

a segmented one17, but in the present case we have in analogy with prior work18 used an

explicit search as described in Section V.

In this work both segmented and general contraction schemes have been investigated in

order to find the optimum one. In previous work18 an exhaustive search over all possible

contraction schemes were done for the pcJ-0, pcJ-1, and pcJ-2 basis sets for fluorine. Based

on this a number of reasonable contraction schemes were chosen for the pcJ-3 and pcJ-4

basis sets. Since the number of different contraction schemes increases rapidly with larger

basis sets, a complete search will not be done in this work. Instead, only the contractions

schemes deemed reasonable for the p-block elements will be investigated for Li, Be, Na and

Mg.

As the spin-spin coupling constant is a molecular property, molecular systems have to be

chosen. The basis set contraction error will depend on the chosen molecular system. If this

error is too large for just one system the contraction can be discarded, and thus two small

systems (Li2 and Na2) have been chosen in order to begin the investigation and discard

a large number of possible contraction schemes. Based on this, contraction schemes are

recommended for the pcJ-n basis sets.

II. COMPUTATIONAL DETAILS

The indirect nuclear spin-spin coupling can be expressed in terms of a reduced coupling

tensor KKL
19, given by eq. (1)

KKL = ⟨0|ĥ
DSO

KL |0⟩ − 2
∑
s>0

⟨0|ĥ
PSO

K |s⟩ ⟨s|ĥ
PSO

L |0⟩
T

Es − E0

− 2
∑
t

⟨0|ĥ
FC

K + ĥ
SD

K |t⟩ ⟨t|ĥ
FC

L + ĥ
SD

L |0⟩
T

Et − E0
(1)

Here s denotes the excited singlet states and t denotes the excited triplet states. The

diamagnetic spin-orbit (DSO), paramagnetic spin-orbit (PSO), Fermi-contact (FC), and
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spin-dipole (SD) operators used in eq. (1) are given by equations (2)-(5)

ĥ
DSO

KL =
α4

2

∑
i

rTiKriLI3 − riKr
T
iL

r3iKr
3
iL

(2)

ĥ
PSO

K =α2
∑
i

riK ×∇i

r3iK
(3)

ĥ
FC

K =
8πα2

3

∑
i

δ (riK) si (4)

ĥ
SD

K =α2
∑
i

3rTiKsiriK − r2iKsi
r5iK

(5)

where K and L are the two nuclei, α ≈ 1/137 is the fine-structure constant, riK is the

position of nucleus K relative to electron i, I3 is the 3 by 3 unit matrix, the superscript T

denotes vector transposition, δ (riK) is the Dirac delta function, and si is the electron spin

operator.

The experimental indirect spin-spin coupling is expressed in terms of the indirect nuclear

spin-spin coupling tensor, JKL, given by eq. (6)

JKL = ~
γKγL
2π

KKL (6)

with γK and γL being the gyromagnetic ratios of the two nuclei, and ~ = h
2π
, with h being

Planck’s constant. In experiments in liquid or gas phase, where rapid tumbling occurs, only

the isotropic spin-spin coupling constant can be measured, which is defined as a third of the

trace of JKL.

The calculations of spin-spin coupling constants are in practice done using response

theory20, with the reduced spin-spin coupling constants calculated by Eq. (7)

KKL =
d2E

dMKdML
=

∂2E

∂MK∂ML
+

∂2E

∂MK∂λS

∂λS

∂ML

+
∂2E

∂MK∂λT

∂λT

∂ML
(7)

Here MK and ML are magnetic moments of nuclei K and L, λS and λT are parameters for

the singlet and triplet variations in the electronic state. The derivatives of these parameters

are obtained by solving the response equations

∂2E

∂λS∂λS

∂λS

∂ML

= − ∂2E

∂λS∂ML

(8)

∂2E

∂λT∂λT

∂λT

∂ML

= − ∂2E

∂λT∂ML

(9)
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All calculations in this work have been done with the DALTON program package21,22,

and the B3LYP functional23,24 in order to be consistent with the work done on the p-block

elements18.

All geometries have been optimized using the pc-4 basis sets16, and the pc-n basis sets used

have been taken from the EMSL basis set library25,26. Since only the convergence of a given

pc-n basis set will be investigated, no comparison with experiments will be done. This would

have required additional attention to the molecular geometries, vibrational corrections27,28,

solvent effects29, and the functional used.

The optimization of basis sets is often done using a variational criterion, but no variational 

principle exists for properties other than the energy. In the study of the p-block elements a 

maximization of eq. (10) was used to determine the optimum exponents for the additional 

tight functions8. This was based on the observation that basis set incompleteness usually 

underestimates the contribution of each component, and determining additional function(s) 

that maximizes the sum of absolute values of the four contributions was found to be a useful 

heuristic method for assigning exponents for the additional tight functions.

Jabsolute = (|JSD|+ |JDSO|+ |JPSO|+ |JFC|) (10)

The contraction coefficients used have not been optimized, but are instead taken from

atomic SCF calculations with the B3LYP functional. Only contraction of s- and p-orbitals

have been considered as the polarization functions have been left uncontracted. The expo-

nents are kept fixed at their value from the uncontracted basis sets. In order to determine

the optimum contraction scheme, the contraction error has been defined as the sum of the

absolute errors in each of the four terms of the spin-spin coupling constant. This can then

be compared to the inherent error in the pcJ-n basis sets. The results with the uncontracted

pcJ-4 basis set are taken to be the basis set limit.

III. BASIS SET CONVERGENCE FOR THE PC-N BASIS SET

The molecular system used in this study can be found in Table I. Since some of the

molecules studied include elements from the p-block, a question appeared of whether to use

the pcJ-n basis set for the p-block elements and only optimize the basis set of the s-block

elements, or to start from the pc-n basis set for all elements and then optimize both basis
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Table I: The molecular systems used in this study

LiH, LiF, Li2, NaH, NaF, Na2,

BeH2, MgH2, MgF2
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1
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(a) LiH with pc-n basis on both atoms
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H

1
pc-0

pc-1

pc-2

(b) LiH with fixed pcJ-n basis set on hydrogen

Figure 1: spin-spin coupling constant in Hz for LiH with different basis sets on the

hydrogen. In case (a), addition of tight s-functions were done to both the Lithium and

Hydrogen basis sets, and in case (b) addition were only to the Lithium basis set

sets. An argument for using the first approach is clearly that the number of functions to

optimize is lower, which gives a reduction in computational time. The counterargument is

that we might get an unevenly matched basis set for the molecule since the p-block element

would have more basis functions. The additional basis functions on the p-block element

could overlap with the s-block atom, effectively creating a better set of basis functions for it,

resulting in the need for fewer functions in order to saturate the function space. This effect

would be largest for the small pc-0 and pc-1 basis sets, where few functions are available

on the s-block atom, and a larger effect is to be gained from ”borrowing” functions from

p-block atom(s).

In order to check if the approach with a fixed pcJ-n basis set could be undertaken, calcu-

lations were done on LiH both with and without a fixed pcJ-n basis set for Hydrogen. The
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Table II: Coefficient ratios for the tight s-functions added to the hydrogen basis set.

Basis Exponent Ratios

pc-0+2s 10.5 22.7

pc-1+2s 10.7 23.4

pc-2+2s 11.8 26.5

pc-3+2s 11.8 25.2

pc-4+1s 21.6

results for addition of tight s-functions to the pc-0, pc-1 and pc-2 basis sets are shown in

Figure 1. It is clear that when starting from an already optimized basis set for Hydrogen, a

smaller effect is observed when adding additional tight s-functions. This is due to the fact

that in case (a), two functions are added simultaneously, compared to (b) in which only

one function is added. A thing to note is that the values when two additional s-functions

are added, are similar in the two cases. This is expected since the pcJ-n basis set includes

two tight s-functions for the pc-0,1,2 basis sets, which makes (a) and (b) comparable at this

point. As a test the exponent ratios of the optimized Hydrogen exponents were compared

to the ones found in the p-block elements. From the data in Table II it can be seen that the

ratios are in good agreement with the ones used in the pcJ-n basis set8, namely 12.5 and 25

for pc-0,1,2,3 and 20 for pc-4.

An important thing seen from Figure 1 is that the additional s-functions have a similar effect

in the two cases. In all pc-n basis sets the addition of the first tight s-function yielded ∼ 70%

of the total effect possible by saturating the s-space. The addition of two tight s-functions

yielded ∼ 90-95% of the total effect. The same effect is seen for the pc-3 and pc-4 basis sets.

This was similar in both the case with and without fixed basis set for Hydrogen, and as a

result of this further optimizations were done using the pcJ-n for the atoms, which already

have such a basis set developed.
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(b) MgH2 with fixed pcJ-n for H.

Figure 2: spin-spin coupling constant in Hz for Li2 and MgH2 as a function of added tight

s-functions.

A. Convergence for Li2 and MgH2

In order to exemplify the general trend of the s-block elements, Li2 and MgH2 will be 

used as representative molecules. The spin-spin coupling constants of most of the molecules 

were dominated by the FC term, but the PSO term also had a significant contribution to the 

overall spin-spin coupling constants for systems containing F or Cl. The convergence of the 

basis sets for Li2 and MgH2 with addition of tight s-functions can be seen in Figure 2. From 

Figure 2 it is clear that the number of tight s-functions needed in order to converge decreases, 

as the underlying basis set is increased. For Li2 convergence with respect to s-functions was 
reached when the largest exponent reached a value of about 1 · 107 and for MgH2 convergence 

was reached when the exponent had a value of around 5·107. This means

that to fully converge the basis set with respect to the addition of s-functions, 4-5 functions

are required for the pc-0 basis set, 3-4 for pc-1, 2-3 for pc-2, 1-2 for pc-3, and 1 for pc-4.

To further investigate the basis set convergence, function of higher angular momentum have

to be included, in order to see if the basis sets are sensitive to these. The results from the

addition of the higher order functions can be seen in Figure 3, and it clearly shows that

the spin-spin coupling constants are not sensitive to the addition of tight functions other

than s-functions. This is a different trend than seen in basis set convergence for the p-block
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Figure 3: spin-spin coupling constant in Hz for Li2 and MgH2 calculated with the pc-n

basis sets augmented with additional tight functions. The results for addition of pdfg

functions are indistinguishable from the results with addition of only s-functions.

elements, where functions up to f-type had an effect on the convergence. This difference can

be explained by the lack of p-electrons in the case of Lithium and Beryllium. For Sodium

and Magnesium it can be attributed to the fact, that they contain no valence p-electrons,

and that the underlying pc-n basis sets are sufficient for describing the core p-electrons.

IV. DEVELOPMENT OF PCJ-N BASIS SET

The analysis of Li2 and MgH2 showed that addition of tight s-functions is important, in

order to get a better basis set convergence when calculating spin-spin coupling constants.

As the two example molecules show, the need for additional s-functions decreases, as the

underlying basis set increases in size, and this trend is seen for all molecules studied. How-

ever, care must be taken when choosing how many of these functions should actually be

added in the final basis set. The first s-function should clearly be included, but inclusion of

for example five s-functions to the pc-0 basis set, would double the number of s-functions

in the basis sets for Lithium and Beryllium. This would bring the number of s-functions up

to the level of the pc-2 basis set, which is not desirable in a series of consistent basis sets.

The addition of extra functions increases the computational time, and as can be seen in
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Figure 2, the effect of adding more than two functions is at maximum around 10%. This is

not worth the additional computational time. Furthermore the change in spin-spin coupling

constant when adding more than two s-function, for a given pc-n basis set. For example for

the pc-0 basis set for Li2, the change in spin-spin coupling constant going from two extra

s-functions to the fully saturated s-space is around 7 Hz. This can be compared to an error

of around 20 Hz relative to the fully optimized pcJ-4 basis set. Similarly for the pc-0 basis

set for MgH2, the change in spin-spin coupling constant going from two extra s-functions to

the fully saturated s-space is around 1 Hz, which can be compared to the error of around

11 Hz compared to the fully optimized pcJ-4 basis set.

Analogously to the pcJ-n basis sets, the suggestion is therefore to add two extra tight

s-functions to the pc-0,1,2,3 basis sets and one s-function to the pc-4 basis set, as this seems

like the best balance between efficiency in the calculations, and the accuracy in the series of

underlying basis sets. Figure 3 shows that the addition of extra tight functions other than

s-functions is unnecessary.

The next step in developing a basis set for spin-spin coupling calculations is determining

the exponents to be used. The exponent ratios obtained when adding the extra functions,

determined by optimization of the function in eq. (10), can be seen in Table III. Average

values of the ratios for addition of two s-functions to the pc-0,1,2,3 basis sets are 11.7 and

26.1. The average value of the ratio for addition of a single tight function to the pc-4 basis

set, is 18.7. The values are not far from the values used in the pcJ-n basis set, and the

suggestion is therefore to use the same exponent ratios as for the p-block elements. This will

keep the pcJ-n basis set exponent ratios consistent for the first three rows of the periodic

table, while not changing the overall convergence of the individual basis sets significantly.

V. CONTRACTION OF THE PCJ-N BASIS SET

Contraction of a basis set is a compromise between improving the computational efficiency 

and introducing additional basis set errors. The contraction error must be quantified based on 

calculated values for a selection of molecular systems, and is thus dependent on the specific 

set of reference systems. As mentioned in the introduction, an unacceptable contraction error 

for a single system is sufficient to discard a given contraction scheme. We have in
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Table III: The exponent ratios of the two additional tight s-functions added to the

pc-0,1,2,3 basis set, and the ratios of the one tight function added to the pc-4 basis set,

determined by optimization of the function in (10)

LiH LiH fixed H Li2 LiF

pc-0+2s 11.7 27.5 11.7 27.5 11.9 28.9 10.8 27.5

pc-1+2s 13.3 37.0 13.3 37.0 11.8 27.0 13.3 37.3

pc-2+2s 10.9 21.9 10.8 21.7 11.6 25.5 10.9 21.6

pc-3+2s 11.8 24.3 11.8 24.4 11.8 24.7 11.4 24.5

pc-4+1s 17.8 17.7 17.3 17.7

BeH2 MgH2 MgF2

pc-0+2s 11.1 23.8 11.5 25.3 11.4 23.9

pc-1+2s 11.5 24.8 11.5 24.9 10.7 25.3

pc-2+2s 11.7 25.7 11.9 26.2 12.5 27.4

pc-3+2s 12.3 27.9 11.9 25.2 12.0 26.9

pc-4+1s 18.6 18.6 20.0

NaH Na2 NaF

pc-0+2s 11.5 25.2 11.4 24.8 11.0 22.8

pc-1+2s 11.5 24.9 11.6 25.4 11.7 24.8

pc-2+2s 11.9 25.8 11.8 25.4 12.2 26.8

pc-3+2s 11.9 25.8 11.6 24.2 11.5 22.8

pc-4+1s 19.1 20.0 20.4

addition required that an acceptable contraction scheme must have the property that the 

contraction error does not change significantly upon further uncontraction, to avoid selecting 

a contraction scheme that by error cancellation produce a low contraction error. Contraction 

of basis sets optimized for molecular properties is less straight-forward than for basis sets
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optimized by energetic criteria, and we have used results from previous work for the p-block 

elements in selecting the recommended contraction18.

We will in the following use a notation where contraction will be named according to the 

number of contracted functions, as 1-contraction, 2-contraction and 3-contraction18. The 

number of primitive functions in each contracted function will be given in parenthesis such 

as (n, 1, 1, 1, . . .) for a 1-contraction or (n, m, l, 1, 1, . . .) for a 3-contraction. Here n, m and 

l denotes the number of primitive functions in each contracted function. For a segmented 

contraction the sum of n, m and l must always be equal to the number of primitive functions 

contracted (NC
prim). The first contracted function then includes functions 1 to n, the second 

includes functions n + 1 to n + m and the third includes the functions from n + m + 1 to 

n + m + l. For general contractions every primitive can go into every contracted function, 
with the restriction that n + m + l ≥ NC

prim. The notation with a single parenthesis is 

therefore not unique so instead the notation (n, m, l, 1, 1, . . .)[nstart, mstart, lstart] will be used. 

Here the primitives going into the first contracted function, are the functions from nstart to 

nstart + n, the primitives going into the second contracted function are the primitives from 

mstart to mstart + m, and likewise for the third contracted function.

In order to organize the results, the function with the largest exponent will always be in-

cluded in the first contracted function, meaning that nstart = 1.

In the study of the p-block elements, it was shown that the contractions where the innermost 

functions were left uncontracted and the outermost were contracted, always had a higher 

contraction error than the contractions where the innermost functions were contracted and 

the outermost were left uncontracted18. Therefore only contraction schemes where the out-

ermost functions are left uncontracted are investigated.

A. Contraction of s-functions for the Li2 molecule

The contraction scheme notation is perhaps best illustrated with an example. If we con-

sider the pcJ-2 basis set for Li, it consists of 12 s-functions. The original pc-2 basis set has a

composition of (10s, 4p, 1d) → [4s, 2p, 1d], so the maximum contraction for the pcJ-2 basis

set is to 4 s-functions. The contraction of the s-functions for Li can then use either 1s or 2s

SCF coefficients. The simplest 1-contraction is (9,1,1,1) where the three outermost functions

are left uncontracted. This leads to a contraction error of 196 Hz when 1s-coefficients are
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used and an error of 69 Hz for 2s-coefficients, both well above the inherent error of 2.64 Hz.

While the 1-contraction is unique, a number of different contraction schemes exists for the

2-contraction as both segmented and general contraction are possible. There is also a choice

of which SCF coefficients to use for the two contracted function. In this work the choice

has been to always use the 1s SCF coefficients for the innermost contracted function, and

then use either the 1s or 2s for the other contracted functions. For segmented 2-contraction

the number of different possibilities is quite low and both (1s,1s) and (1s,2s) combinations

of contraction coefficients have been investigated. For general contractions only the latter

of the two combinations have been investigated, since the number of different general con-

tractions grows rapidly with larger basis sets.

Contracting 12 s-functions to 4 s-functions in a segmented 2-contraction, can be done in

seven different ways, when leaving the outermost functions uncontracted, namely (8,2,1,1),

(7,3,1,1), (6,4,1,1), (5,5,1,1), (4,6,1,1) (3,7,1,1) and (2,8,1,1). The corresponding general

contraction can be done in 89 different ways and a search over these possibilities has been

made. Common for all 2-contraction is that their contraction error are all greater than 4

Hz, which is above the inherent error in the pcJ-2 basis set.

For the 3-contractions the choice have been to only look at segmented contraction since

the number of different general contractions is quite large. Furthermore only contractions

employing the (1s,1s,1s), (1s,1s,2s) or (1s,2s,2s) coefficient combinations have been investi-

gated for the Li2 molecule. This leads to contraction errors larger than the ones found for

the 2-contractions. The contraction to 4 s-functions is therefore not feasible.

Contracting to 5 s-functions yields a contraction error of about 79 and 1.5 Hz for the 1-

contraction (8,1,1,1,1), using 1s- or 2-coefficients. Although the result using 2s-coefficients

is lower than the inherent error, it is still too large since the p-functions will likely yield a

similar error. Contracting to 5 s-functions using the general 2-contraction (8,7,1,1,1)[1,3]

with the (1s,2s) coefficients yields an error of 0.013 Hz, which is well below the inherent er-

ror. Similar errors cannot be found using the other general or segmented 2-contractions, as

these all yield contraction errors above the inherent error. The low contraction error might

therefore stem from some random error cancellations, and looking at the contraction scheme

(8,6,1,1,1,1)[1,3] where the outermost function in the second contracted function have been

left uncontracted, yields an error of 16.6 Hz which is a much larger error. The contraction

scheme (8,7,1,1,1)[1,3] therefore does not seem robust and will not be used for the pcJ-2
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basis set for Li.

Going to 3-contraction again yields worse results than the 2-contractions and contracting to 

5 s-functions is therefore not viable.

1-contraction to 6 s-functions gives errors of 25.8 and 0.46 Hz for the 1s- and 2s-coefficients, 

the second of which is well below the inherent error in the pcJ-2 basis set. Similar results are 

seen for both the general and segmented 2-contractions with the best being the segmented 

(4,4,1,1,1,1) contraction, with an error of 0.026 Hz. However, the low contraction error stems 

from random error cancellations as the segmented (4,3,1,1,1,1,1) contraction yielded an error 

of 2.82 Hz. Instead the 3-contraction (4,3,2,1,1,1) with an error of 1.06 Hz has been used, as 

this contraction proved to be the most robust while still having an error below the inherent 

error in the basis set. The maximum contraction of pcJ-2 for Li is thus to 6 s-functions. Using 

the same principles for the rest of the pcJ-n basis sets yields the results shown in Table IV. 

This table only shows the lowest error for each contraction type and level. For most cases 

there are several other combinations that produce a comparable error. Especially for the 

general contraction where there is no immediate pattern to be found.

For the segmented 1-contraction the contractions with 2s coefficients yield lower errors than 

those with 1s coefficients. Another trend seen for segmented contractions is that for the 

smaller basis sets pcJ-0,1 the 1- and 2-contraction yields lower errors than the 3-contraction, 

whereas the 3-contraction becomes better than the others for the pcJ-2,3,4 basis sets. An 

outlier here is the pcJ-1 basis set when contracting to 5 s-functions where the 3-contraction 

shows a slightly lower error than the 2-contraction although both are within the inherent 

error.

When comparing the segmented with the general contractions the latter have the lowest 

contraction error in most cases, but the difference is not that large and in most cases both 

the segmented and general contractions are within the inherent error of the uncontracted 

basis sets. While the segmented seems to become better when a smaller total number of 

primitives are used in the contracted functions, the same is not seen for the general con-

tractions. For example for the pcJ-2 basis set going from 4 s- to 5 s-functions decreases the 

error whereas going to 6 s-functions increases the error again. The same trend is seen for the 

pcJ-0 and pcJ-4 basis sets. This again suggests that error cancellations are responsible for 

the low error when using the general contractions. The recommendation is therefore to use 

the simple segmented contractions instead and these recommendations have been marked in
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Table IV: Contraction errors (sum of the absolute errors of the four contributions in Hz)

for 1- 2- and 3-contractions of s-functions for the pcJ-n (n = 0, 1, 2, 3, 4) basis sets for the

Li2 molecule. Only the contraction with the lowest error in each case is shown

Basis set (Nprimitive) Contraction 1-Contracted 2-Contracted 3-Contracted

[Inherent absolute error] Segmented (n,1,. . . ) Segmented General (n,m,1,. . . ) Segmented

(n,m,1,. . . ) [nstart,mstart] (n,m,l,1,. . . )

pcJ-0 (7s) [12.5] 3s 5.56 (5,1,1) 29.7 (4,2,1) 0.079 (6,3,1)[1,4] -

4s 3.76 (4,1,1,1) 1.46 (3,2,1,1) 1.39 (3,5,1,1)[1,1] 44.1 (2,2,2,1)

5s 0.040 (3,1,1,1,1) 1.14 (2,2,1,1,1) 0.060 (3,4,1,1,1)[1,1] -

pcJ-1 (9s) [1.06] 3s 74.0 (7,1,1) 177 (2,6,1) 20.6 (6,3,1)[1,6] -

4s 3.78 (6,1,1,1) 19.0 (5,2,1,1) 3.13 (5,6,1,1)[1,2] 194 (2,4,2,1)

5s 3.79 (5,1,1,1,1) 0.90 (4,2,1,1,1) 0.60 (3,6,1,1,1)[1,1] 0.39 (2,3,2,1,1)

pcJ-2 (12s) [2.64] 4s 69.0 (9,1,1,1) 6.67 (8,2,1,1) 3.95 (10,2,1,1)[1,5] 22.9 (6,3,2,1)

5s 1.53 (8,1,1,1,1) 3.91 (6,3,1,1,1) 0.013 (8,7,1,1,1)[1,3] 5.47 (3,2,5,1,1)

6s 0.46 (7,1,. . . ) 0.026 (4,4,1,. . . ) 0.32 (3,8,1,. . . )[1,1] 1.06 (4,3,2,1,. . . )

pcJ-3 (16s) [0.49] 6s 0.52 (11,1,. . . ) 0.44 (8,4,1,. . . ) 0.53 (9,10,1,. . . )[1,3] 1.42 (7,3,3,1. . . )

7s 4.16 (10,1,. . . ) 0.62 (2,9,1,. . . ) 0.23 (10,11,1,. . . )[1,1] 0.043 (7,3,2,1,. . . )

8s 10.1 (9,1,. . . ) 0.36 (7,3,1,. . . ) 0.19 (7,10,1,. . . )[1,1] 0.39 (6,3,2,1,. . . )

9s 1.6 (8,1,. . . ) 0.12 (6,3,1,. . . ) 0.26 (5,8,1,. . . )[1,2] 0.58 (2,5,3,1,. . . )

pcJ-4 (20s) 8s 0.71 (13,1,. . . ) 3.61 (7,7,1,. . . ) 0.19 (8,13,1,. . . )[1,2] 0.22 (5,5,5,1,. . . )

9s 4.67 (12,1,. . . ) 0.72 (6,7,1,. . . ) 0.063 (10,11,1,. . . )[1,3] 0.14 (8,3,3,1,. . . )

10s 12.1 (11,1,. . . ) 0.11 (6,6,1,. . . ) 0.099 (12,6,1,. . . )[1,1] 0.0088 (6,5,2,1,. . . )

11s 0.19 (10,1,. . . ) 0.012 (8,3,1,. . . ) 0.15 (11,4,1,. . . )[1,4] 0.84 (6,4,2,1,. . . )

The results marked in bold are the contraction schemes recommended, from the analysis of the Li2 molecule.

bold in Table IV.

B. Contraction of p-functions for the Li2 molecule

The contraction of the p-functions can be considered analogously to the s-function con-

traction, but with only one set of coefficients (2p) less possibilities for contraction schemes

15



Table V: Contraction errors (sum of the absolute errors of the four contributions in Hz) for

1- 2- and 3-contractions of p-functions for the pcJ-n (n = 2, 3, 4) basis sets for the Li2

molecule. The s-functions have been left uncontracted. Only the contraction with the

lowest error in each case is shown

Basis set (Nprimitive) Contraction 1-Contracted 2-Contracted 3-Contracted

[Inherent absolute error] Segmented (n,1,. . . ) Segmented General (n,m,1,. . . ) Segmented

(n,m,1,. . . ) [nstart,mstart] (n,m,l,1,. . . )

pcJ-2 (4p) [2.64] 2p 0.35 (3,1) - - -

pcJ-3 (6p)[0.49] 3p 1.44 (4,1,1) 6.04 (3,2,1) 1.98 (4,4,1)[1,2] -

4p 0.26 (3,1,1,1) 0.55 (2,2,1,1) 0.086 (3,2,1,1)[1,2] -

pcJ-4 (8p) 4p 0.46 (5,1,1,1) 0.0054 (4,2,1,1) 0.030 (4,5,1,1)[1,2] 0.034 (2,2,3,1)

5p 0.079 (4,1,1,1,1) 0.13 (3,2,1,1,1) 0.077 (3,4,1,1,1)[1,2] 0.030 (2,2,2,1,1)

The results marked in bold are the contraction schemes recommended, from the analysis of the Li2 molecule.

exists. However, for the pcJ-n basis sets for Li, Be, Na, and Mg no additional tight p-

functions were added to their underlying pc-n basis sets. The already existing p-function

contraction scheme for the pc-n basis sets could therefore also be used for the pcJ-n basis

sets. This of course will have to be investigated since the pc-n basis sets are not optimized

for calculating spin-spin coupling constants, and the optimal contraction for these basis sets,

might not be the optimal contractions for the pcJ-n basis sets.

The pcJ-0 basis set for Li consists of only one p-function, and can therefore not be con-

tracted. The pcJ-1 basis set consists of three p-functions, and with the condition that the

outermost function are left uncontracted, this only leaves the possibility to do the segmented

1-contraction (2,1). This yields a contraction error of 0.0198 Hz, well below the inherent

error. Results for the remaining for pcJ-n basis sets can be found in Table V.

From this Table it can be seen that the segmented 1-contractions perform reasonably as

they for all basis sets give contraction errors within the inherent error. Because of this the

recommendations, marked in bold in Table V, are the 1-contractions, which are the same

contractions used in the pc-n basis sets. However, for the two larger basis sets, pcJ-3,4 the

contractions are done to 4 and 5 p-functions, respectively. For pc-3 and pc-4 the contrac-

tions are done to 3 and 4 p-functions respectively, which means a slight relaxation of the

16



Table VI: Contraction errors (sum of the absolute errors of the four contributions in Hz)

for 1- 2- and 3-contractions of s-functions for the pcJ-n (n = 0, 1, 2, 3, 4) basis sets for the

Na2 molecule. Only the contraction with the lowest error in each case is shown

Basis set (Nprimitive) Contraction 1-Contracted 2-Contracted 3-Contracted

[Inherent absolute error] Segmented (n,1,. . . ) Segmented General (n,m,1,. . . ) Segmented

(n,m,1,. . . ) [nstart,mstart] (n,m,l,1,. . . )

pcJ-0 (10s) [30.5] 4s 19.4 (7,1,1,1) 123 (6,2,1,1) 333 (8,8,1,1)[1,1] 25.1 (5,2,2,1)

5s 4.17 (6,1,1,1,1) 11.8 (4,3,1,1,1) 17.8 (6,7,1,1,1)[1,1] 229 (3,3,2,1,1)

pcJ-1 (13s) [106] 5s 33.4 (9,1,1,1,1) 609 (8,2,1,1,1) 334 (10,10,1,1,1)[1,1] 26.0 (6,2,3,1,1)

6s 13.7 (8,1,. . . ) 36.9 (2,7,1,. . . ) 0.88 (6,9,1,. . . )[1,1] 4.32 (4,4,2,1,. . . )

pcJ-2 (15s) [43.8] 6s 11.3 (10,1,. . . ) 46.5 (7,4,1,. . . ) 2.92 (10,2,1,. . . )[1,10] 2.42 (5,4,3,1,. . . )

7s 7.63 (9,1,. . . ) 1.43 (6,4,1,. . . ) 2.76 (3,10,1,. . . )[1,1] 2.63 (7,2,2,1,. . . )

8s 17.36 (8,1,. . . ) 2.31 (6,3,1,. . . ) 5.14 (9,2,1,. . . )[1,8] 4.66 (5,3,2,1,. . . )

pcJ-3 (19s) [9.03] 7s 5.56 (13,1,. . . ) 54.9 (10,4,1,. . . ) 9.87 (14,2,1,. . . )[1,5] 12.7 (9,3,3,1,. . . )

8s 1.34 (12,1,. . . ) 2.06 (3,10,1,. . . ) 0.76 (2,12,1,. . . )[1,2] 6.29 (9,2,3,1,. . . )

9s 6.34 (11,1,. . . ) 0.62 (2,10,1,. . . ) 0.61 (2,12,1,. . . )[1,1] 2.21 (7,4,2,1,. . . )

pcJ-4 (22s) 8s 37.2 (15,1,. . . ) 108 (12,4,1,. . . ) 219 (16,2,1,. . . )[1,14] 7.53 (10,5,2,1,. . . )

9s 7.42 (14,1,. . . ) 9.86 (11,4,1,. . . ) 0.19 (11,14,1,. . . )[1,2] 6.37 (9,5,2,1,. . . )

10s 6.15 (13,1,. . . ) 0.58 (4,10,1,. . . ) 0.52 (4,14,1,. . . )[1,1] 0.076 (9,2,4,1,. . . )

11s 11.58 (12,1,. . . ) 0.11 (8,5,1,. . . ) 0.10 (13,3,1,. . . )[1,11] 1.18 (8,4,2,1,. . . )

The results marked in bold are the contraction schemes recommended, from the analysis of the Na2 molecule.

contraction is needed for the larger pcJ-n basis sets.

C. Contraction of s-functions for the Na2 molecule

The contraction of the s-functions for Na2 can be considered in the same way as was

done for Li2. However we now have three sets of SCF coefficients, namely 1s- 2s- and 3s-

coefficients. For 1-contraction all three sets of coefficients have been considered, for the

segmented 2-contraction, both (1s,1s) and (1s,2s) coefficients have been considered, and for

the general 2-contraction only the (1s,2s) have been investigated. This choice has been

17



made to decrease the number of possible contraction schemes to investigate, and based on 

the analysis done on the p-block elements, these sets of coefficients yield the best results18. 

For the segmented 3-contraction the combinations of coefficients (1s,2s,3s) yielded the best 

result, and only contraction schemes using this combination have been investigated. Gen-

eral 3-contractions offer a wide variety of different contraction schemes that increases rapidly 

with larger basis sets. This combined with the fact that general 3-contractions did not seem 

to improve over general 2-contractions for the p-block elements, have led to the omission of 

general 3-contractions in the search for the optimum contraction scheme.

The best contractions for a given contraction type and number of contraction functions can 

be found in Table VI. Considering only the segmented contraction schemes in Table VI, we 

see that for the pcJ-0 basis set, the segmented 1-contraction has the lowest error. However, 

uncontracting the outermost function leads to a larger error, proving that this contraction is 

not robust. Instead, the 2-contraction has been used as this contraction proved both robust 

and had an acceptable error. Looking at the larger basis sets, the segmented 3-contractions 

perform the best as they have acceptably low errors and are robust with respect to uncon-

traction.

If we consider the segmented 1-contraction done with different SCF coefficients, the same 

trend as for Li2 is seen, where the 2s coefficients perform the best.

Looking at the contraction level in which the contraction error gets acceptably below the 

inherent error, there are small differences between the best segmented contraction and the 

general 2-contraction. Again opting for simplicity the segmented contractions are recom-

mended. A study of the performance of the contractions on a larger set of molecules (see 

Section VI), resulted in the need for a slight relaxation of the contraction in some cases. It 

is these contractions that are recommended and they have been indicated in bold in Table 

VI.

D. Contraction of p-functions for the Na2 molecule

The contraction of p-functions for Na2 is analogously to the contraction of s-functions

for Li2 as both 2p and 3p SCF coefficients can be used in the contraction. Since the anal-

ysis done on Li2 showed that segmented 1-contractions were viable, only those contraction

schemes have been investigated for Na2. The results can be found in Table VII, where the
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Table VII: Contraction errors (sum of the absolute errors of the four contributions in Hz)

for 1- 2- and 3-contractions of p-functions for the pcJ-n (n = 0, 1, 2, 3, 4) basis sets for the

Na2 molecule. The s-functions have been left uncontracted

Basis set (Nprimitive) Contraction Segmented 1-Contraction

[Inherent absolute error] 2p coefficients 3p coefficients

pcJ-0 (5p) [30.5] 2p 0.70 (4,1) 85.0 (4,1)

pcJ-1 (7p)[106] 2p 10.8 (6,1) 94.9 (6,1)

pcJ-2 (9p) [43.8] 3p 0.23 (7,1,1) 104 (7,1,1)

pcJ-3 (12p) [9.03] 4p 1.91 (9,1,1,1) 131 (9,1,1,1)

5p 2.13 (8,1,1,1,1) 25.81 (8,1,1,1,1)

pcJ-4 (15p) 5p 1.77 (11,1,1,1,1) 46.7 (11,1,1,1,1)

6p 1.22 (10,1,. . . ) 5.03 (10,1,. . . )

The results marked in bold are the contraction schemes recommended, from the analysis of the Na2 molecule.

recommended contraction schemes are marked in bold.

As the results show, a segmented 1-contraction is also viable for the Na2 molecule, and 

the same contraction as for the pc-n basis sets can be used for all the pcJ-n basis sets except 

for pcJ-3,4 where an uncontraction to one extra function is needed in order to get the basis 

set contraction error acceptably low.

VI. PERFORMANCE OF THE PCJ-n BASIS SET

Having created pcJ-n basis sets for the s-block atoms, a comparison with the pc-n basis

set can be made. In Figure 4 the spin-spin coupling constant of Li2 and MgH2, calculated

with the contracted pcJ-n basis set and with the contracted and uncontracted pc-n basis

sets can be seen. The spin-spin coupling constants are plotted against the number of basis

functions used, as this provides a more fair comparison between the different basis sets.

An erratic behavior of the contracted pc-n basis sets is observed, but most importantly it

can clearly be seen that the couplings converge faster with the pcJ-n basis sets. Generally,

convergence for the molecules studied happens around the pcJ-2 level, which is equivalent
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Figure 4: spin-spin coupling constants for Li2 and MgH2 calculated with the contracted

and uncontracted pc-n basis sets and the contracted pcJ-n basis set.

to a triple zeta basis set, but for some of the molecules convergence is slower than this.

However, a general trend for all molecules is that the pcJ-n basis sets performs much better

than the pc-n basis sets.

In addition to the molecules in Table I, the performance of the pcJ-n basis set has been 

investigated on a larger set of molecules (LiCH3, LiCCH, LiCCF, LiOCH3, LiSCH3, BeF2, 

NaCH3, NaCCH, NaOCH3, NaSCH3, ClMgCH3). As spin-spin coupling constants can vary 

by several thousand Hertz in magnitude, the error at a given level will be reported as a 

percent-wise deviation from the basis set limit. In order to avoid the results getting skewed by 

large percent-wise deviation resulting from small insignificant absolute values, spin-spin 

coupling constants smaller than 5 Hz have been neglected. This results in a total of 30 

coupling constants with the elements Li, Be, Na, and Mg (20 one-bond couplings and 10 more-

than-one bond couplings). The percent-wise mean and maximum absolute deviations for the 

pc-n and pcJ-n series of basis sets for these coupling constants can be found in Tables VIII 

and IX. The uncontracted pcJ-4 basis set has been taken as the basis set limit.

The improvement of the convergence seen in Figure 4 can also be seen in Tables VIII and

IX. Comparing the performance of the basis sets for one-bond and more-than-one-bond

couplings, we see that the two larger basis sets, pcJ-3 and pcJ-4, performs the same for the 

two types of bonds. However, the results for the smaller basis sets shows that they perform
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Table VIII: Percent-wise mean and maximum absolute deviations relative to the

uncontracted pcJ-4 results for 20 unique one-bond spin-spin coupling constants larger than

5 Hz in a test set of 20 molecules (see text for details)

mean absolute deviation maximum absolute deviation

uncontracted contracted uncontracted contracted

pc-n pcJ-n pc-n pcJ-n pc-n pcJ-n pc-n pcJ-n

pc-0 69.4 66.0 68.9 66.6 271.0 313.3 294.6 299.8

pc-1 20.5 11.8 15.5 13.2 66.1 63.1 47.7 87.4

pc-2 10.6 2.9 20.7 3.0 65.5 15.4 144.4 9.2

pc-3 2.2 0.4 4.4 0.5 3.9 2.4 16.0 2.2

pc-4 2.1 (0) 3.4 0.2 3.5 (0) 23.0 1.4

Table IX: Percent-wise mean and maximum absolute deviations relative to the

uncontracted pcJ-4 results for 10 unique 2- and 3-bond spin-spin coupling constants larger

than 5 Hz in a test set of 20 molecules (see text for details)

mean absolute deviation maximum absolute deviation

uncontracted contracted uncontracted contracted

pc-n pcJ-n pc-n pcJ-n pc-n pcJ-n pc-n pcJ-n

pc-0 39.5 17.1 29.7 14.9 90.7 33.5 51.4 33.7

pc-1 22.9 7.5 27.3 10.1 89.8 17.9 65.5 18.9

pc-2 7.2 1.4 31.9 1.3 11.2 4.2 117.8 4.3

pc-3 2.4 0.2 3.9 0.4 3.1 0.6 12.2 1.0

pc-4 0.9 (0) 3.1 0.2 1.3 (0) 8.4 0.8

better for more-than-one-bond couplings. Also, compared to the results for the p-block 

atoms8, similar results for pcJ-2,3,4 are obtained for the s-block. As with the pcJ-n for the
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p-block elements, the pcJ-2 basis set will be adequate for most practical calculations, and 

only in special cases or for very accurate work will it be necessary to go to the pcJ-3 or 

pcJ-4 basis sets.

VII. CONCLUSION

New polarization consistent basis sets for Li, Be, Na, and Mg have been developed,

for calculating spin-spin coupling constants. This has been done by an uncontraction of the

already existing pc-n basis sets, followed by augmentation with tight functions. Analogously

to the pcJ-n basis set for the p-block elements, two additional tight s-functions were needed

for the pcJ-0,1,2,3 and one additional tight s-function was needed for pcJ-4. However,

augmentation of additional tight functions of up to g-type, showed that these were not

needed. This is in contrast to the p-block elements where functions up to f-type were

important. This could be attributed to the fact that no valence p-electrons are found in

the s-block elements, and that the core p-electrons are properly described by the underlying

pc-n basis set.

In order to recontract the new pcJ-n basis sets, a search for the optimum contraction 

scheme for the pcJ-n basis sets for Li and Na has been done. This showed that it was more 

difficult to contract them than the pc-n basis sets without losing the inherent accuracy of the 

basis sets. Similar conclusion were reached in the work done on the p-block elements18. For Li 

the same degree of contraction has been reached for the basis sets pcJ-0,1,4 in both this work 

and for the p-block elements. However for the basis sets pcJ-2,3 it was possible to contract to 

fewer functions than for the p-block elements. For Na the same degree of contraction has been 

reached as for the p-block elements. The recommended basis set contractions for Li was 

expanded to include Be, and likewise the recommendations for Na was expanded to include 

Mg. This works also shows that for calculation of spin-spin coupling constants, there is little 

difference between using a segmented or a general contraction scheme, and the former where 

chosen for simplicity.

The performance of the pcJ-n basis sets for Li, Be, Na, and Mg has been investigated

on a larger test set of molecules at the DFT level of theory. This showed that the pcJ-n

basis set converged to the basis set limit much faster and less erratic than the pc-n basis set.

The pcJ-2 basis sets were able to provide results to within ∼ 3 % of the basis set limiting
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value and should be adequate for most practical calculations. It is possible that the pcJ-n 

basis sets are also suitable for calculating spin-spin coupling constants using wave function 

methods, but that will require an explicit testing.
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