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Sensing and regulation of cell volume – we know so much and yet understand so
little: TRPV4 as a sensor of volume changes but possibly without a volume-
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ABSTRACT
Cellular volume changes lead to initiation of cell volume regulatory events, themolecular identity of which
remains unresolved. We here discuss experimental challenges associated with investigation of volume
regulation during application of large, non-physiological osmotic gradients. The TRPV4 ion channel
responds to volume increase irrespectively of the molecular mechanism underlying cell swelling, and is
thus considered a sensor of volume changes. Evidence pointing towards the involvement of TRPV4 in
subsequent volume regulatory mechanisms is intriguing, yet far from conclusive. We here present an
experimental setting with astrocytic cell swelling in the absence of externally applied osmotic gradients,
and the lack of evidence for involvement of TRPV4 in this regulatory volume response. Our aimwith these
new data and the preceding discussion is to stimulate further experimental effort in this area of research
to clarify the role of TRPV4 and other channels and transporters in regulatory volume responses.
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Introduction

Maintenance of cell volume is a homeostatic imperative
for cells of most origins [1] and cellular responses suited
to restore cell volume are set in motion in response to
conditions causing cell swelling or shrinkage. Despite the
widespread phenomenon and the numerous situations in
which cell and tissue volume is compromised during
physiology and pathophysiology, the molecular mecha-
nisms governing cell volume homeostasis remain dis-
puted and/or undefined. While many of the suggested
volume regulatory (transport) mechanisms appear to
sense volume changes, rather than aberrant changes in
surrounding osmotic pressure, a few bona-fide osmo-
sensing channels and transporters, i.e. BetP, ProP and
OpuAhave been discovered [2–6]. Thesemembrane pro-
teins sense changes in the osmolarity of the surrounding
fluid via alterations in membrane properties/protein-
lipid interactions and/or by changes in the intracellular
K+ concentration, although direct effects via changes in
the hydration state of the proteins cannot be excluded
[7]. Despite the fact that abruptly arising, large osmotic
challenges rarely, if ever, occur within mammalian tissue,

a convenient, and therefore common, manner of investi-
gating volume regulatory responses is by introduction of
excessive non-physiological osmotic challenges of up to
250 mOsm [8–16]. It is, in addition, not unusual that
hyposmotic challenges of this magnitude are experimen-
tally obtained by a dilution of the physiological test solu-
tion with distilled water [13–15,17]. Although this
experimental approach is intended to simply change the
osmotic pressure, the ionic strength will be diminished.
This dilution thus causes drastic changes within the ionic
equilibrium potentials, associated with a shift in the
membrane potential and, in addition, the driving forces
for a range of ion channels and transporters. These side
effects are predicted to introduce serious confounding
elements into the experimental set-up and may thus
skew the outcome. We recommend that mannitol is
included in the control solution (equiosmolar replace-
ment of NaCl) and its subsequent removal will thus
reduce the osmolarity without affecting the ionic strength
[9,18,19].

A range of studies imply a requirement for aquaporins
(AQPs) for activation of volume-sensitive ion channels,
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and possibly regulatory events, to take place [10,20,21]
(Fig. 1). However, as AQPs are required to translate an
abruptly introduced osmotic challenge into swift cell vol-
ume changes, the non-physiological experimental
approach of introducing large osmotic gradients favors
such conclusions [8,9,19,22]. In most physiological
settings, the buildup of osmotic gradients will necessarily
occur gradually with increased transmembrane transport
activity and will represent the rate-limiting factor for cell
swelling – rather than the osmotic water permeability
(and hence AQP expression) of the cell membrane. Of
interest, with a few exceptions such as pyramidal neurons
[23] and stomach epithelium, the majority of cellular
structures are rather water permeable even in the absence
of AQPs, most likely via the multitude of water perme-
able cotransporters and uniporters present in these cells
[24–26]. Striking examples are the AQP4-expressing
astrocytes, the water permeability of which is reduced by
only 50% (at 378C) upon AQP4 knock-out [15] or
knock-down [16]. As these cells are extremely water per-
meable to begin with, a 50% reduction of their osmotic
water permeability still leaves them with the ability to
equilibrate with a sudden osmotic challenge of ¡140
mOsm well within a few seconds, at the physiological
temperature of 378C (Fig. 2). It follows that a physiologi-
cally relevant gradual buildup of an osmotic gradient (e.g.
1 mOsm at a time) via altered transport/channel activity
will be instantly equilibrated – whether AQP4 is
expressed or not. This phenomenon was illustrated in an
experimental setting with astrocytic cell swelling in the
absence of an introduced osmotic challenge: During neu-
ronal activity in murine hippocampal slices (achieved by
electric stimulation), the extracellular space (ECS)
shrinks, mainly due to astrocytic cell swelling [27,28].
Genetic deletion of AQP4 did not prevent, or even
reduce, this cell swelling [21], illustrating that the osmotic
water permeability of the astrocytic cell membrane does
not represent the rate-limiting step during astrocytic cell
swelling (at least under these experimental conditions).
We later demonstrated that the stimulus-induced astro-
cytic cell swelling relies on cotransporter-mediated water
transport [27].

Cell volume regulation

For cells to maintain their volume when faced with a
stressor causing alterations in cell volume, their cellular
response depends on a volume sensor coupled to a down-
stream mechanism causing transmembraneous shift of

osmotic particles (either as separate entities or residing
within one molecular transducer). Volume regulation
most likely does not rely on one set of mechanisms but is
rather predicted to depend on the molecular make-up of

Figure 1. Contribution of AQP4 to astrocytic swelling and Ca2+ sig-
naling. A: Cortical slices fromwildtype (filled symbols) and AQP4-defi-
cient (open symbols) mice were exposed to a hyposmotic gradient
(¡20%, 60 mOsm (dashed lines)). Such osmotic challenge induced
astrocytic swelling in slices fromwildtype mice while these were non-
detectable in slices from AQP4-deficient mice (marked with a red
box), monitored with two-photon imaging of slices loadedwith Texas
red hydrazide. Verification of selective dye uptake in astrocytes was
confirmed by two-photon imaging of slices from mice expressing
GFP in astrocytes (Glt-1-EGFP BAC transgenic mice). A larger gradient
of ¡30%, 90 mOsm (solid lines) induced similar swelling in slices
from both strains of mice. B: Astrocytes from wildtype (top panel) and
AQP4-deficient (lower panel) mice were loaded with Rhod2 AM and
exposed to a hyposmotic gradient of ¡20% mOsm. Ca2+ dynamics
weremonitored»200 sec after introduction of the osmotic challenge
(and the equivalent swelling marked with the red box in panel A). At
this time point, wildtype astrocytes displayed Ca2+ spikes while
AQP4-deficient astrocytes did not, presumably due to their absent (or
limited) cell swelling. Modified from [20] with permission.

Figure 2. Characterization of water transport in astrocytes fromwild-
type and AQP4-deficient mice. Primary culture of astrocytes from
wildtype mice (top panel) or APQ4-deficient mice (lower panel) were
faced with a hyposmotic challenge of¡140 mOsm (marked with an
arrow) as obtained by 1:1 dilution of PBS with distilled water. The cel-
lular swelling was monitored at 12�C (left) or 37�C (right) by the cal-
cein quenchingmethod. Modified from [15] with permission.
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each cell type. A range of cotransport mechanisms have
been indicated in cell volume regulation, with the Na+/
K+/2Cl¡ cotransporter and the Na+/H+ exchanger as
prominent inducers of cell swelling following osmotically
induced cell shrinkage and, oppositely, the K+/Cl¡

cotransporter as an inducer of cell shrinkage upon
osmotically induced cell swelling (for review, see
[29-32]). An intricate regulatory pathway involving cell
volume-sensitive kinases of the SPAK/WNK families
leads to (de)phosphorylation of the abovementioned
transporters, which in turn activates or inhibits the rele-
vant set of transporters [33,34] (for review, see [31]) to
promote the appropriate regulatory volume response.
These kinases may be sensitive to cell volume changes
themselves and/or to the altered intracellular Cl¡ concen-
tration coming about by the transmembraneous shift of
water during a large osmotic challenge [35]. An alterna-
tive mechanism involved in acute volume regulation fol-
lowing osmotically-induced cell swelling involves a
concerted activity of plasma membrane K+ and Cl¡

channels. This channel activity results in loss of KCl
across the plasma membrane with a proposed associated
directional water flow. It must be emphasized that this
paradigm exclusively will work provided that both con-
ductive pathways coexist and the electrochemical driving
forces promote efflux of both ions: The principle of elec-
troneutrality states that an equal amount of positive and
negative charges must exist at either side of the mem-
brane (with a miniscule excess of negative charges intra-
cellularly to provide the negative membrane potential),
as the lipid bilayer cannot sustain the large voltages that
would occur given a millimolar excess of either positive
or negative charges on one side of the membrane [36]. It
is thus inconceivable that a buildup of an osmotic gradi-
ent of several mOsm (required for osmotically-induced
water transport) could occur by the activity of a K+ (or
Cl¡ or Na+) channel alone, although promoted as a feasi-
ble manner of driving water movement [37–41]. In the
central nervous system, release of several millimolar K+

into the ECS (to provide the required driving force for
osmotic water efflux) would lead to neuronal depolariza-
tion and enhanced excitability. Such a mechanism may
thus not be a viable manner of cell volume regulation in
the cell structures of the central nervous system.

The activity of a range of different ion channels is
modulated by altered cell volume, prominently so both
K+ channels [42–45] and Cl¡ channels [46–50] (exten-
sively reviewed in [51,52]). This swelling-induced activa-
tion of K+ and Cl¡ channels can occur as a direct sensing

of altered cell volume or, alternatively, secondarily to
swelling-induced intracellular Ca2+ transients. Such Ca2+

dynamics may lead to activation of ion channels such as
Ca2+-dependent K+ channels [53,54] and/or initiation of
cell signaling pathways with downstream activation of
other transport mechanisms effectuating cell volume reg-
ulation. However, the linkage between cellular modula-
tors that cause the volume-mediated Ca2+ dynamics and
molecular pathways effectuating the volume regulatory
response remains unresolved. Several volume-/stretch-
sensitive Ca2+ -permeable channels have been identified
[55–61], one of which is the transient receptor potential
vanilloid 4 (TRPV4) ion channel. TRPV4, also known as
the vanilloid receptor related and osmotically activated
channel (VR-OAC [62]) or the OSM9-like transient
receptor potential channel, member 4 (OTRPC4 [62,63]),
is a nonselective cation channel expressed in many cell
types: i.e. M€uller cells, astrocytes, in neurons of the
circumventricular organs, in mechanosensitive neurons
of the mammalian inner ear hair cells, in the epithelia of
the trachea, oviduct, lung and cochlea, in the airway,
blood vessels, and in certain segments of the kidneys
[62–70], many of which are key mechanosensory and
osmosensory tissues.

TRPV4 – an ion channel sensitive to abrupt
volume changes

TRPV4 is a cation-permeable ion channel originally
described as an osmo-sensor due to its activation by
large hyposmotic challenges [63,71]. With such exter-
nally applied osmotic challenges, co-expression of an(y)
AQP promotes the fast rate of osmotically-induced cell
swelling leading to TRPV4 activation in astrocytes,
M€uller cells, and TRPV4-expressing oocytes [8,9,19,22].
However, TRPV4 activation readily occurred by cell
swelling induced by cotransport of water in the absence
of an externally applied osmotic challenge and presence
of an AQP [9] and TRPV4 is therefore a genuine sensor
of abrupt volume changes irrespective of the origin of
the cell swelling. This observation thus promotes the
term ‘volume-sensitive’ rather than ‘osmo-sensitive’ [9].
Nevertheless, the structural determinant underlying the
repeatedly observed coupling of cell swelling to TRPV4
channel opening [8–11,19,22,62,63] remains
unresolved.

With its robust activation upon cell volume
increase, TRPV4 has been proposed as a candidate to
translate cell swelling to cell volume regulation
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[10,19,54,72-78] via its Ca2+ permeability, which pla-
ces it in a favorable position as a main conductor of
the Ca2+ influx required for volume regulatory mecha-
nisms in some settings. The studies addressing the
role of TRPV4 in regulatory volume responses were
all performed by introduction of a non-physiologically
large hyposmotic challenge, which is likely to intro-
duce experimental confounders that may complicate
the identification of the volume sensor and/or the
molecular mechanisms effectuating the regulatory vol-
ume decrease. Of note, as TRPV4-mediated Ca2+

influx, in itself, cannot generate regulatory volume
decrease, TRPV4 activity must necessarily couple to
downstream effectors, currently unidentified, which
then promote the loss of electrolytes and water.

Contribution of TRPV4 to cell volume regulation
during physiological relevant events

To investigate a potential role for TRPV4 in regulating
cell volume during a physiologically relevant cell swelling
in situ, independent on an applied osmotic gradient, we
approximated a native setting by using acute hippocam-
pal brain slices from rats. Neuronal activity in the brain
causes release of K+ into the ECS where astrocytes act as
K+ sinks�to prevent extracellular K+ accumulation and a
subsequent widespread depolarization [28,79–82]. In
parallel with the management of K+, the ECS shrinks
[27,28,83-85], a phenomenon primarily attributed to the
swelling of nearby astrocytic structures [83,85–86]. Thus
electrical stimulation resulting in synaptic activity leads
to a brief change in cell volume without application of an
osmotic gradient to the test solution. This experimental
scenario allowed us to test the involvement of TRPV4 in
the return of astrocytic cell volume following the stimu-
lus-evoked cell swelling. The relative change in size of the
ECS was monitored via a tetramethyl ammonium
(TMA+)-sensitive microelectrode upon bath application
of TMA+ (1.5 mM) as described in detail in [27,28]. In
brief: Electrical stimulation of the CA1 Schaeffer collater-
als of the hippocampus results in a shrinkage of the ECS
and thus an increase in concentration of the membrane
impermeable TMA+. This volume trace then serves as an
indirect readout of (astrocytic) cell swelling; see represen-
tative traces of stimulus-evoked ECS shrinkage illustrated
in (Fig. 3A-C, left). To resolve the involvement of TRPV4
in the volume response, the non-selective TRPV4 inhibi-
tor ruthenium red (RR; 1mM) was applied to the record-
ing chamber and the volume response recorded after

»6 min (Fig. 3A). An additional volume response was
recorded after another 10 min of inhibitor incubation to
ensure that the inhibitor had reached its full effect at the
time of recording (for all test conditions). Inhibition of
TRPV4 caused a slight increase in peak ECS shrinkage
(to 105.5§ 1.4% of control, p< 0.05, n = 7 slices from 4
rats) (Fig. 3A, right) but did not affect the regulatory

Figure 3. TRPV4 plays a minor, if any, role in regulating astrocyte
volume during stimulus-evoked ECS shrinkage in acute hippo-
campal slices from rats. Ion-sensitive microelectrodes were
employed to measure the relative size of the ECS upon addition
of 1.5 mM TMA+ to the test solution. A-C, left: Representative
recordings of the relative ECS obtained in CA1 (stratum radiatum)
upon electrical stimulation (20 Hz; indicated by black bar) from
slices treated with RR (A), HC067047 (B) or GSK101 (C). The black
traces illustrate the control condition and the colored traces the
one obtained in the presence of either antagonists or agonist. A-
C, right: Normalized data on the peak amplitude, and decay con-
stants. D: Representative Western blot illustrating the expression
of TRPV4 in whole hippocampal tissue homogenate (20 mg total
protein/lane), in an astrocyte-enriched fraction of hippocampus
(20 mg total protein/lane), and in TRPV4-expressing- and unin-
jected Xenopus oocytes (amount of protein corresponding to 0.5
oocyte). The analysis was performed with two sets of individual
samples all run as duplicates. Data presented as mean § SEM
and statistical significance determined with a Student’s paired
t-test. �; p < 0.05, ns; not significant.
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volume decrease as the rate of return to baseline volume
was undisturbed (the decay constant was 104.7 § 2.4%
of control, p = 0.10), see (Fig. 3A, right). In a similar fash-
ion, the more specific TRPV4 inhibitor HC067047
(1 mM) affected the peak ECS shrinkage (116.9 § 4.7%
of control, p < 0.05, n = 5 slices from 3 rats), (Fig. 3B,
right) but did not influence the return of the ECS back to
baseline as evaluated from the decay constant (106.5 §
7.5% of control, p = 0.43) (Fig. 3B, right). Activation of
TRPV4 with the agonist GSK1016790A (GSK101;
100 nM, Fig. 3C) had no significant effect on the ECS
dynamics in hippocampal brain slices (peak amplitude
amounting to 115.0§ 6.4% of control, p = 0.13 (Fig. 3C,
right), and the decay constant to 107.7§ 9.5%, n = 6 sli-
ces from 4 rats (Fig. 3C, right)). Taken together, there
appears to be little, if any, effect on astrocytic regulatory
volume mechanisms of either blocking or activating
TRPV4 during stimulus-evoked ECS shrinkage in acute
hippocampal slices from rats. Notably, during the experi-
mental paradigm, no osmotic gradients were introduced
and the induced cell volume change occurred solely as
the result of synaptic activity. TRPV4 expression in hip-
pocampal astrocytes was previously demonstrated by
immunocytochemistry [11,87–92]. However, the cortical
TRPV4 expression was later shown confined to a subset
(»30%) of astrocytes [93] and the astrocytic TRPV4
transcript level reported to be fairly low [94,95]. To deter-
mine TRPV4 expression in rat hippocampus, we per-
formed Western blotting analysis on homogenates
obtained from rat hippocampi (P21) and from astrocyte-
enriched fractions (P20-23) [96]. Efficient antibody rec-
ognition was verified in membrane preparations from
uninjected and rat TRPV4-expressing Xenopus laevis
oocytes [9], and GAPDH was used as loading control.
Although we did not detect TRPV4 expression in 20 mg
loaded protein (Fig. 3G), another research group detected
hippocampal TRPV4 expression by Western blot upon
loading a 4-fold larger quantity of lysate [88]. The dis-
crepancy between the data obtained by transcriptomics,
Western blot, and immunohistochemistry may indicate a
low expression of TRPV4 in astrocytes in situ and/or in a
select subset of astrocytes, as detected in cortex [93].

Conclusion

Volume regulation is an essential property of all cell
types and a range of volume-sensing ion channels and
transporters have been revealed and implicated in cell
volume regulation throughout the years. Nevertheless,

the finer details regarding exactly how volume changes
occur in physiology, and which mechanisms are
involved in returning cell volume to its origin, remain
largely unresolved. TRPV4 is a well-established sensor
of volume changes, although predominantly during
swift cell swelling [9]. Regardless, its implication in
the subsequent cell volume regulatory events is less
evident, and possibly not even pertinent under more
physiological experimental conditions, in which cell
swelling is obtained in the absence of externally
applied osmotic gradients. For reasons of technical
ease, experimenters often introduce such non-physio-
logically large osmotic gradients to study the ensuing
volume-dependent activity of transporters and ion
channels. While cell swelling/shrinkage is readily
obtained in this manner, mammalian cells hardly
experience these conditions in situ and we may simply
be studying a different rate-limiting step under such
circumstances. Cells exposed to an osmotic gradient
ought to swell to a similar degree, whether or not an
AQP is expressed, and whether or not the osmotic
gradient is applied externally or from altered cellular
transport activity in vivo. However, the rate with
which it swells will depend on expression of an AQP.
Abrupt introduction of a large osmotic gradient will
thus allow investigation of cellular responses to a swift
cell swelling of a magnitude and speed rarely observed
in physiology and most prominently in settings with
expression of an AQP. As a range of pathologies are
associated with altered fluid dynamics, it is imperative
that the research field as a whole obtains better tools
as well as understanding of the molecular mechanisms
underlying these fascinating volume regulatory prop-
erties. Our aim with this follow-up article is to pin-
point a few potential pit-falls along the path to reach
this understanding.

Abbreviations
AQP4 aquaporin 4
ECS extracellular space
GAPDH Glyceraldehyde 3-phosphate

dehydrogenase
GSK101 GSK1016790A
OTRPC4 OSM9-like transient receptor potential

channel, member 4
RR ruthenium red
SPAK/WNK SPS1-related proline/alanine-rich

kinase/with no lysine
TMA+ tetramethyl ammonium
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TRPV4 Transient receptor potential vanilloid 4
VR-OAC vanilloid receptor related and osmoti-

cally activated channel
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