
u n i ve r s i t y  o f  co pe n h ag e n  

Targeted deletion of the aquaglyceroporin AQP9 is protective in a mouse model of
Parkinson’s disease

Stahl, Katja; Rahmani, Soulmaz; Prydz, Agnete; Skauli, Nadia; MacAulay, Nanna;
Mylonakou, Maria N.; Torp, Reidun; Skare, Øivind; Berg, Torill; Leergaard, Trygve B.;
Paulsen, Ragnhild E.; Ottersen, Ole P.; Amiry-Moghaddam, Mahmood

Published in:
PLOS ONE

DOI:
10.1371/journal.pone.0194896

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Stahl, K., Rahmani, S., Prydz, A., Skauli, N., MacAulay, N., Mylonakou, M. N., ... Amiry-Moghaddam, M. (2018).
Targeted deletion of the aquaglyceroporin AQP9 is protective in a mouse model of Parkinson’s disease. PLOS
ONE, 13(3), [e0194896]. https://doi.org/10.1371/journal.pone.0194896

Download date: 09. Apr. 2020

https://doi.org/10.1371/journal.pone.0194896
https://doi.org/10.1371/journal.pone.0194896


RESEARCH ARTICLE

Targeted deletion of the aquaglyceroporin

AQP9 is protective in a mouse model of

Parkinson’s disease

Katja Stahl1, Soulmaz Rahmani1, Agnete Prydz1, Nadia Skauli1, Nanna MacAulay2, Maria

N. Mylonakou3, Reidun Torp1, Øivind Skare4, Torill Berg5, Trygve B. Leergaard1, Ragnhild

E. Paulsen6, Ole P. Ottersen1,7, Mahmood Amiry-Moghaddam1*

1 Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of

Oslo, Oslo, Norway, 2 Department of Neuroscience and Pharmacology, Faculty of Health and Medical

Sciences, University of Copenhagen, Copenhagen, Denmark, 3 Centre for Molecular Medicine Norway,

Nordic EMBL Partnership, Norway Biotechnology Centre, University of Oslo, Oslo, Norway, 4 Department of

Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway, 5 Division

of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo,

Oslo, Norway, 6 Department of Pharmaceutical Sciences, School of Pharmacy, University of Oslo, Oslo,

Norway, 7 Karolinska Institutet, Stockholm, Sweden

* mahmo@medisin.uio.no

Abstract

More than 90% of the cases of Parkinson’s disease have unknown etiology. Gradual loss of

dopaminergic neurons of substantia nigra is the main cause of morbidity in this disease.

External factors such as environmental toxins are believed to play a role in the cell loss,

although the cause of the selective vulnerability of dopaminergic neurons remains unknown.

We have previously shown that aquaglyceroporin AQP9 is expressed in dopaminergic neu-

rons and astrocytes of rodent brain. AQP9 is permeable to a broad spectrum of substrates

including purines, pyrimidines, and lactate, in addition to water and glycerol. Here we test

our hypothesis that AQP9 serves as an influx route for exogenous toxins and, hence, may

contribute to the selective vulnerability of nigral dopaminergic (tyrosine hydroxylase-posi-

tive) neurons. Using Xenopus oocytes injected with Aqp9 cRNA, we show that AQP9 is

permeable to the parkinsonogenic toxin 1-methyl-4-phenylpyridinium (MPP+). Stable

expression of AQP9 in HEK cells increases their vulnerability to MPP+ and to arsenite—

another parkinsonogenic toxin. Conversely, targeted deletion of Aqp9 in mice protects nigral

dopaminergic neurons against MPP+ toxicity. A protective effect of Aqp9 deletion was dem-

onstrated in organotypic slice cultures of mouse midbrain exposed to MPP+ in vitro and in

mice subjected to intrastriatal injections of MPP+ in vivo. Seven days after intrastriatal MPP+

injections, the population of tyrosine hydroxylase-positive cells in substantia nigra is reduced

by 48% in Aqp9 knockout mice compared with 67% in WT littermates. Our results show that

AQP9 –selectively expressed in catecholaminergic neurons—is permeable to MPP+ and

suggest that this aquaglyceroporin contributes to the selective vulnerability of nigral dopami-

nergic neurons by providing an entry route for parkinsonogenic toxins. To our knowledge

this is the first evidence implicating a toxin permeable membrane channel in the pathophysi-

ology of Parkinson’s disease.
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Introduction

Parkinson’s disease is one of the most common neurodegenerative disorders, affecting 1–2%

of the population over 50 years [1–4]. This disease is characterized by loss of dopaminergic

neurons in the SNpc with decreased dopamine levels in the basal ganglia [5], and is clinically

manifested by motor dysfunction, including bradykinesia, resting tremor, rigidity and postural

instability, and non-motor symptoms including, but not limited to, cognitive impairment,

mood disorders, sleep disorders, constipation, bladder dysfunction and loss of sense of smell

[6]. Less than 10% of the cases have a strict familial etiology [7]. For sporadic Parkinson’s dis-

ease, the cause of the selective dopaminergic cell death remains unknown, thus restricting the

development of drugs which may halt, stop or reverse the degenerative process. However,

research has identified a possible link to environmental factors targeting mitochondria, and

Parkinson’s disease has been associated with exposure to herbicides, arsenite, and other envi-

ronmental toxins [8–21]. Mechanisms for the selective vulnerability of dopaminergic neurons

to such toxins remain to be elucidated, although there is ample evidence that toxin uptake may

occur through the dopamine transporter [22].

Studies have shown that AQP9 like the dopamine transporter DAT, is expressed in

TH-positive neurons of the SN in rat, mouse and primates [23–26]. At the subcellular

level, AQP9 is localized in the plasma membrane as well as in the inner mitochondrial

membrane [23,26]. AQP9 belongs to the aquaglyceroporin subfamily of water channels and

is permeable to a broad range of substrates including glycerol and urea [27–29], monocar-

boxylates (lactate and β-hydroxybutyrate) [28], purines [28], ammonia [30] and arsenite

[31].

Here, we show that the parkinsonogenic toxin MPP+ permeates Xenopus oocytes injected

with Aqp9 cRNA. Second, we demonstrate that stable expression of AQP9 in HEK cells

increases their vulnerability to this toxin and to arsenite—another toxin associated with PD.

Third, we provide data suggesting that the expression of this water channel contributes to the

selective vulnerability of nigral dopaminergic neurons in mice. Specifically, after intrastriatal

injections of MPP+, Aqp9-/- mice retain a higher number of nigral cells positive for TH than

do WT littermate controls. This is the first evidence suggesting that dopaminergic neurons are

equipped with a plasma membrane channel that contributes to their vulnerability. Our find-

ings may open new avenues for prevention and therapy.

Materials and methods

Heterologous expression in Xenopus laevis oocytes and radio-isotope

permeability

Oocytes were surgically removed from Xenopus laevis frogs (Nasco, USA or National Center

for Scientific Research, France) anesthetized with 2 g/l Tricain, 3-aminobenzoic acid ethyl

ester,(Sigma-Aldrich A-5040) as previously described [32]. The protocol complies with the

European Community guidelines for the use of experimental animals and the experiments

were approved by The Danish National Committee for Animal Studies (2015-15-0201-

00560).

The cDNA encoding rAqp4 and rAqp9 (obtained from Søren Nielsen, Aalborg University)

were subcloned into the expression vector pXOOM [33]. The constructs were linearized

down-stream from the poly-A segments and in vitro transcribed to cRNA using mMessage

mMachine T7 transcription kit (Ambion, Roskilde, Denmark) followed by transcript purifica-

tion using MEGAclear (Ambion). Oocytes were micro-injected with 50 ng cRNA with a
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Nanoject micro injector (Drummond Scientific, Broomall, PA, USA) and kept in Kulori

medium at 18˚C for 3–6 days prior to experiments.

Five to ten uninjected, AQP4-, or AQP9-expressing oocytes were placed in 0.5 ml uptake

solution (in mM: 100 NaCl, 2 KCl, 1 CaCl2, 1 MgCl2, 10 HEPES (pH 7.4)), and either 14[C]

urea (1 μ Ci/ml, 9.25 MBq/ml, Perkin Elmer, MA, USA) or 3[H]MPP+ (3 μ Ci/ml, 1.85 MBq/

ml (GE Healthcare, Little Chalfont, England), and incubated with slight agitation at room

temperature for 3 minutes. The oocytes were washed in wash solution (in mM: 100 choline

chloride, 2 KCl, 1 CaCl2, 1 MgCl2, 10 HEPES, pH 7.4) to remove residual isotope, and subse-

quently lysed individually in scintillation vials with 200 μl SDS. Scintillation fluid (Opti-Fluor,

Perkin Elmer, Skovlunde, Denmark) was added and the radioactive samples counted (Tri-

Carp 2900TR, Perkin Elmer). Data were obtained as counts per minute (CPM)/oocyte and

averaged for each construct. As basal uptake displays batch variation, the average CPM/oocyte

for each batch of oocytes was normalized to that obtained for AQP4-expressing oocytes and

averaged across all seven experiments.

Cell cultures and MTT cell viability assay

Native HEK cells (ATCC, Manassas, VA) an HEK cells stably transfected with YFP-hDAT [34]

were cultured in in Dulbecco’s Modified Eagle Medium high glucose (Gibco Life Technolo-

gies, Paisley, UK) with 10% fetal bovine serum (Biowest, Nuaillé, France) and 1% Penicillin-

streptomycin (Gibco). For HEK cells stably transfected with tetracycline inducible EGFP-

hAQP9 (pTRE-EGFPAQP9) [35,36], expression of EGFP-hAQP9 was induced using 1 μg/ml

doxycycline (Clontech Labs, Takara, CA, USA) overnight, and 0.1 mg/ml Hygromycin B (Invi-

trogen, Carlsbad, CA, USA) and 0.3 mg/ml G418 Geneticin (Gibco) were added for mainte-

nance of the expression.

To confirm protein expression of AQP9 and DAT, WT HEK293 and stably transfected

EGFP-hAQP9 or YFP-hDAT HEK293 cells were plated on coverslips, the cell layer washed

with 0.01 M PBS after 24 hours, then fixed in 4% formaldehyde and permeabilized with 0.1%

Triton X-100 (Sigma Aldrich, St. Louis, MO, USA) in PBS. Following blocking with10% nor-

mal donkey serum in PBS, cells were incubated with the primary antibodies rabbit anti-AQP9

(1:500, AQP91-A, Alpha Diagnostics, San Antonio, TX, USA) or rat anti-DAT (1:800, Merck

Millipore, Billerica, MA, USA), and then with donkey anti-rabbit Cy3 or anti-rat Cy2 second-

ary antibodies (Jackson ImmunoResearch Laboratories, West Grove, USA) diluted 1:1000.

Coverslips were mounted with EverBrite ™ Hardset Mounting Media with DAPI (4’,6-diami-

dino-2-phenylindole) (Biotium Inc., Fremont, CA, USA). A Zeiss LSM5 PASCAL confocal

microscope was used to acquire the images.

HEK293 and YFP-hDAT expressing cells were seeded in 96-well plates at a density of 25

000–35 000 per well. HEK293 cells stably transfected with EGFP-hAQP9 were seeded in media

containing 1μg/mL doxycycline (Clontech Labs, Mountain View, CA, USA) for induction of

AQP9 expression at a density of 50 000 cells per well due to impaired growth. The cultures

were grown for 24 hours before MPP+ iodide (D048, Sigma Aldrich) or arsenite (S7400,

Sigma) was added in 100 μL medium at various concentrations.

Cell metabolic activity was assessed by the MTT assay. After 24 hours incubation, 100 μL

0.5 mg/mL MTT reagent was added to each well in the respective media and the plate incu-

bated at 37˚C 5% CO2 for 3 hours. MTT-containing medium was replaced with 100 μL DMSO

(Sigma) and incubated for 30 minutes at room temperature.

Absorbance was measured at 570 nm with a CLARIOstar plate reader (BMG Labtech,

Ortenberg, Germany). Blank well values without MTT were subtracted as background.
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Animals

All mice were bred and maintained at the animal facility of the Institute of basic medical

sciences, University of Oslo, Norway. Aqp9-/- mice were a kind gift from Søren Nielsen’s

laboratory, University of Aarhus, Denmark [37]. Aqp9-/- mice backcrossed onto a C57BL/6J

background (Jacksons Laboratories) and littermate WT mice of mixed gender were used for

organotypic cultures (5 days old) and stereotaxic surgery (2–10 months old) All animal experi-

ments were prospectively approved by The Norwegian Animal Research Authority (NARA),

project license no FOTS 3730 and 4012, and conducted in accordance with the European

Directive 2010/63/EU. Animals were maintained under standard animal facility conditions on

a 12 hour light/dark cycle, with food and water available ad libitum.

Organotypic slice cultures of the ventral mesencephalon

WT (n = 8) and Aqp9-/- (n = 7) mice were used to prepare organotypic cultures of ventral mes-

encephalon as previously described [38]. In brief, animals were anesthetized with isoflourane

upon decapitation, and the ventral midbrain was isolated and sectioned into slices of 400 μm.

The SNpc was unilaterally exposed to either 30 μM MPP+ (Sigma Aldrich) diluted in 0.01 M

PBS, 60 μM MPP+ in PBS followed by 100 μM phloretin (Sigma) diluted in DMSO (Sigma) or

only PBS (control) [38,39]. Following fixation in 4% formaldehyde (Sigma Aldrich) overnight,

slices were incubated with rabbit anti-TH (1:1000, Chemicon, Billerica, MA, USA) overnight,

and then with Cy3 conjugated donkey anti-rabbit (1:1000, Jackson). Images from the SNpc

were collected with a LSM 5 Pascal Confocal Microscope (Zeiss, Oberkochen, Germany) using

a 20× objective, as previously described [39]. Cells immunostained for TH were counted using

ImageJ.

Intrastriatal injections of MPP+

C57BL/6J WT (n = 34) and Aqp9-/- mice (n = 29) were deeply anesthetized with zoletil mixture

(Zoletil Forte (250 mg/ml), Rompun (20 mg/ml) and Fentanyl (50 μg/ml); 0.1 ml/10 g; intra-

peritoneally) and then subjected to stereotaxic (TSE systems, Bad Homburg, Germany) intras-

triatal injections of MPP+ (7.5 μg dissolved in saline) or saline. 1 μl MPP+ solution or saline

was injected into the striatum 0.6 mm anterior to Bregma, 2.2 mm laterally and 3.2 mm ven-

trally [40]at 12 μl/hr using a syringe pump (Kd Scientific, Holliston, MA, USA). MPP+ was

protected against light during the procedure. The injector was left for 5 minutes to allow diffu-

sion before suture. A heating pad (PanLab, Barcelona, Spain) was used to maintain the body

temperature at 36.5 ± 0.5˚C during the surgery, and the eyes were covered with Vaseline to

avoid drying of the cornea.

Post-operative animal care, behavioral assessments and humane endpoints

The first 24 hrs post-surgery, all animals (total n = 84, MPP+: n = 63, saline: n = 21) were put

on a heating pad overnight and were treated with Rimadyl (0.1 ml/10 g; subcutaneously every

12 hours) to prevent pain, and a mixture of 0.9% saline and 0.9% sucrose (subcutaneously,

every 24 hours) to restore water and energy balance. Animals were fed moisture pellets to

improve food- and water uptake. This treatment was continued for as long as needed until the

animals were sacrificed 7 days after surgery.

All animals were scored daily to evaluate their post-operative condition. Briefly, animals

were assessed daily on a scale from 0–3 for their clinical appearance, including a) weight loss

(0%,<5%, 5–10%, 10–15%) b) inactivity (normal, minor changes, less mobile and isolated,

inactive) c) external appearance (normal, reduced self-care, nose/eye redness and discolored
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fur, curved posture and bristling fur) and d) reaction patterns to external stimuli (normal,

slightly reduced, moderately reduced and less alert, weak or precomatose) giving a total score

ranging from 0–12. Animals reaching a score of�10 were euthanized immediately, whereas

the remaining animals were sacrificed at post-operative day seven (see following sections). The

animal welfare protocol was established in collaboration with the leading veterinary at the ani-

mal department of the host institution.

Apomorphine rotation test. Six days after the lesion, the animals (n = 70) were treated

with apomorphine [41]. The animal was placed in a circular bowl (diameter 20 cm) for 5

minutes to adapt to the environment, then subcutaneously injected with an ice cold and

light protected solution of 0.1 mg/kg apomorphine and 0.2 mg/ml ascorbic acid in saline (all

from Sigma Aldrich). The animal was video recorded for 15 minutes immediately after the

injection. Animals were scored for 360˚ rotational behavior ipsilaterally and contralaterally

to the injection. Data are expressed as net ipsilateral turns (ipsilateral turns—contralateral

turns).

Histological and stereological evaluation of MPP+ lesions and TH-positive

neurons

Seven days post-surgery, animals (n = 27) were deeply anaesthetized (zoletil mixture; 0.1 ml/

10 g; intraperitoneally) and perfusion-fixed with 4% formaldehyde. Brains were dissected,

post-fixed, cryo-protected and coronally sectioned into 40 μm. Sections through striatum and

midbrain were stained with hematoxylin/eosin for histological analysis (S1 Fig). Successive

sections through the SN were immunostained with mouse anti-TH (1:1000, Chemicon) fol-

lowed by incubation with Streptavidin-Biotinylated horseradish peroxidase complex (1:100;

GE Healthcare). Unbiased stereological counting of TH-positive neurons was performed bilat-

erally in the SNpc, SNpr, and VTA of Aqp9-/- and WT mice injected with MPP+ (Aqp9-/-,

n = 8; WT, n = 7) or saline (Aqp9-/-, n = 3; WT, n = 3) as described elsewhere [42,43]. A

detailed description of the stereological counting procedure is provided in S1 File.

High-performance liquid chromatography

HPLC was used to measure the amount of dopamine and its metabolites HVA and DOPAC.

WT and Aqp9-/- animals (n = 6 for each genotype) were anesthetized with isofluorane and sac-

rificed by decapitation seven days post-surgery, and the striatum of each hemisphere (MPP+

injected and control) were dissected out, flash frozen in liquid N2 and stored at -80˚C. The tis-

sue samples were homogenized in 250 μl 0.2 M perchloric acid (4˚C), mixed with an equal

amount of 0.454 μM 2,3-dihydroxybenzoic acid containing 0.135 mM ascorbic acid and cen-

trifuged (20,800 g, 20 minutes, 4˚C). The pellet was dissolved in 0.6 ml 0.1M NaOH and pro-

tein concentration measured by the BCA Assay (Thermo Scientific, Waltham, MA, USA). The

supernatant was mixed with an equal volume of hexane, and allowed 15 minutes to separate

(4˚C). The bottom layer was collected and filtered through a 0.2 μm nylon filter and stored at

-80˚C until analyzed for dopamine on a Shimadzu HPLC monoamines analyzer system. The

samples were run in duplicates at an isocratic flow rate of 0.8 ml/min.

RNA isolation and real time qPCR

Seven days post-surgery, animals (MPP+, n = 7 for each genotype; saline, n = 3 for each geno-

type) were decapitated under isofluorane anesthesia. The brains were dissected out and cut

along the midsagittal line into the injected and control hemisphere. Midbrain, striatum and

neocortex were dissected out from both hemispheres and snap frozen. Total RNA was isolated

from the regional brain samples using the RNeasy Mini Kit (QIAGEN, Hilden, Germany) and
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the relative change in gene expression (ΔΔCt) in the MPP+-treated versus control hemispheres

of WT and Aqp9-/- mice, was assessed as described elsewhere [44]. List of the TaqMan probes

used in the study are shown in S1 Table and a detailed description of the procedure is available

under S1 File.

Statistics

For stereological, HPLC and qPCR analyses, Student’s t-test and Mann–Whitney U tests were

performed using SPSS Statistics (Release 24.0.0.2, IBM Corporation, USA). For oocyte experi-

ments, differences between groups were determined with one-way ANOVA and Dunnett’s

post hoc test in SPSS.

For MTT assays, statistical analysis was performed in SPSS and GraphPad Prism (Ver. 7.03,

GraphPad Software, Inc.). OD570 nm was expressed as percentage of the untreated controls.

Statistical testing was performed by one-way ANOVA with LSD post hoc tests. Additionally,

independent samples t-tests were performed comparing each group. Inhibitory concentration

50% values for arsenite were calculated by nonlinear regression, log(inhibitor) vs response

(three parameters) and a curve fitted. For log transformed data, the concentration 0 was set to

1 nM.

The behavioral tests were analyzed in R (version 3.2.2). For apomorphine rotation test,

ordinary linear regression was used where interaction terms between genotype and treatment

were added. To obtain model robust estimates of standard errors,p-values and confidence

intervals, we used the sandwich function (sandwich package, version 2.3–3) in combination

with the coeftest function (lmtest package, version 0.9–34). For clinical appearance, a linear

mixed model was used, where interaction terms were used to see how the treatment (MPP+ vs

saline) effect differs between genotypes (Aqp9-/- vs WT). The mixed model included a random

intercept for animals. The variance of random effect was allowed to vary with treatment. The

mixed model allowed the variance of the residual term to vary between treatments, and

between days.

For the organotypic data, a linear mixed model was applied. The observations come in

pairs, one observation for each hemisphere of each slice, where one of the hemispheres is

treated (with MPP+ or PBS) and the other is untreated. The effect of the treatment is seen as

the difference in outcome value between these two sides. An interaction term between treat-

ment, side and genotype was used to estimate how the treatment effect of MPP+ and PBS dif-

fered between the two genotypes. The outcome values were ln-transformed prior to analysis

to obtain a better fit to the normal distribution. Random effects were added for section and

slide, with slide nested in section. The residual variance was allowed to vary with treatment

and side.

Data were analyzed using the function lme (nlme package, version 3.1–122). A p-value

<0.05 was considered statistically significant.

Experimental design

Data was blinded for analyses susceptible to human bias. For cell quantitation analysis of the

organotypic cultures, stereology and behavior tests the investigator was blinded to the groups

by third party concealment of treatments.

A minimum of six animals per group was considered as a minimum to estimate statistical

power due to within-group variations. The actual number of included animals was calculated

based on the high mortality rates following exposure to MPP+.
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Results

AQP9 but not AQP4 is permeable to MPP+

To determine if MPP+ is able to permeate AQP9, we expressed AQP9 in Xenopus oocytes and

exposed these oocytes to radiolabeled MPP+ (3[H]MPP+). As controls, we included uninjected

and AQP4-expressing oocytes and determined in parallel uptake of 14[C]-urea which is known

to permeate AQP9 but not AQP4 [28,45]. Following 3[H]MPP+ exposure, AQP9-expressing

oocytes showed a twofold higher level of radioactivity than AQP4-expressing oocytes (Fig 1).

An even larger difference between the two groups of oocytes was found after incubation with
14[C]-urea (ratio AQP9 vs AQP4 containing oocytes: 5.51 ± 0.79). Uninjected and AQP4-ex-

pressing oocytes did not differ in regard to the level of accumulated 3[H]-MPP+ or 14[C]-urea

(Fig 1). In parallel experiments comparing the swelling rates of AQP4-expressing to native

oocytes, we confirmed the functionality of the expressed AQP4.

Stable expression of AQP9 or DAT in HEK cells increases their

vulnerability to MPP+

We compared the toxin sensitivity of HEK293 cells stably expressing YFP-hDAT with that of

cells stably expressing EGFP-hAqp9 (Fig 2A and 2B). Neither DAT nor AQP9 is normally

expressed in HEK293 cells. Expression of EGFP-hAQP9 made these cells sensitive to MPP+, as

did a stable expression of YFP-hDAT (Fig 2C–2G). For hAQP9 expressing cells, a statistically

significant toxic effect was observed already at 0.1 μM MPP+ (Fig 2G). By comparison, an

MPP+ concentration of 1 μM was required to exert a significant toxic effect on hDAT express-

ing cells (Fig 2F). HEK293 cells expressing hAQP9 were clearly more sensitive to the parkinso-

nogenic compound arsenite than were HEK293 cells expressing hDAT (Fig 3).

Aqp9 gene deletion protects nigral dopaminergic cells against MPP+

neurotoxicity ex vivo
Organotypic slice cultures containing SN were used to assess the effect of MPP+ on neurons

expressing TH (Fig 4A). To resolve whether knockout of the Aqp9 gene conferred protection,

MPP+ was applied unilaterally to midbrain slice cultures from WT and Aqp9-/- mice (Fig 4). In

slices of WT animals, application of MPP+ led to loss of TH-positive neurons on the ipsilateral

side (Fig 4B and 4F). Only a few immunopositive elements remained, and most of these were

delicate processes that were scattered in the neuropil of SNpc (Fig 4B). In contrast, MPP+ did

not cause any obvious damage or loss of TH-positive neurons in slices obtained from Aqp9-/-

mice (Fig 4D). In the latter mice, there was no significant difference in the number of TH-posi-

tive neurons between the ipsi- and contralateral sides (Fig 4G). The density of TH-positive

neurons contralateral to MPP+ exposure was lower in slices of WT mice than in slices of

Aqp9-/- mice. This might be attributed to spillover of the toxin to the contralateral side.

Application of phloretin—a blocker of AQP9—mimicked the effect of Aqp9 gene deletion.

Thus, in the presence of 100 μM phloretin, MPP+ did not cause any significant loss of TH-pos-

itive neurons (Fig 4H). Application of PBS in lieu of MPP+ did not cause any cell loss (Fig 4I).

In sum, these experiments indicated that deletion of Aqp9 protects against MPP+ toxicity in
vitro.

Aqp9 gene deletion protects nigral dopaminergic cells against MPP+

neurotoxicity in vivo
Stereological cell counts in the ventral midbrain. Aqp9-/- and littermate WT mice were

subjected to unilateral intrastriatal injections of MPP+ or saline (control). The density of
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dopaminergic neurons was quantified in the SNpc, SNpr and VTA of Aqp9-/- (n = 8 for MPP+,

n = 3 saline) and WT animals (n = 7 for MPP+, n = 3 saline) by unbiased stereological counting

of TH-positive cells in each region [46]. Cell counts for SNpc and VTA are shown in the S2

Table. Gundersen coefficients of error m = 1; [43] ranged from 5–9% for both SNpc and VTA.

Fig 1. Xenopus oocytes expressing AQP9 reveal higher uptake of MPP+. Xenopus oocytes expressing AQP4 or AQP9 and uninjected oocytes were

exposed to 14[C]urea or 3[H]MPP+. Data were obtained as counts per minute (CPM)/oocyte and averaged for each construct. The uptake was

normalized to that of the AQP4-expressing oocytes prior to averaging across the n = 7 experiments with five to ten oocytes included for each

experimental condition. Compared with uninjected oocytes and AQP4 expressing oocytes, oocytes expressing AQP9 accumulate significantly higher

amounts of urea as well as MPP+. Bars are mean ± SEM; �p<0.05, ���; p<0.001.

https://doi.org/10.1371/journal.pone.0194896.g001
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Fig 2. HEK293 cells expressing hAQP9 or hDAT reveal higher sensitivity to MPP+. A-B) Immunofluorescence images of HEK293 cells expressing

EGFP-hAQP9 (A) or YFP-hDAT (B) grown on coverslips confirm plasma membrane localization of the respective constructs (identified by antibodies

to AQP9 or DAT). The cells were counterstained with Hoechst to visualize nuclei. C-G) Native HEK293 cells and HEK293 cells expressing EGFP-

hAQP9 or YFP-hDAT were grown in 96-well plates and exposed to different concentrations of MPP+ (four wells for each concentration). Cell viability

was assessed after 24 hours using the MTT assay. Data were collected from independent plates (n = 3 for each construct) and normalized to respective

untreated cells. Native HEK293 cells show sensitivity to MPP+ only at very high concentrations (~100 μM). Cells expressing hDAT become sensitive at

1 μM MPP+, compared with 0.1 μM for cells expressing hAQP9. Overlay of the dose/response curve for the three groups (D) and the individual curves

for native HEK293 cells (E), YFP-hDAT expressing (F) and EGFP-hAQP9 expressing HEK293 cells (G) are shown. Bars are mean ± SEM. Asterisks:

significantly different from untreated controls; �p<0.05, ��p<0.01, ���p<0.001; crosses: significantly different from previous data point: ++<0.01.

https://doi.org/10.1371/journal.pone.0194896.g002

Fig 3. HEK293 cells expressing EGFP-hAQP9 are more sensitive to arsenite than HEK293 cells expressing YFP-hDAT. A-C) Native HEK293 cells

and HEK293 cells expressing EGFP-hAQP9 or YFP-hDAT were grown in 96-well plates and exposed to different concentrations of arsenite (eight wells

for each concentration). Cell viability was assessed after 24 hours using the MTT assay. Data were collected from independent plates (n = 3 for each

construct) and normalized to respective untreated cells. Both EGFP-hAQP9 and YFP-hDAT expressing cells showed higher sensitivity to arsenite, than

native HEK293 cells, with EGFP-hAQP9 cells being the most sensitive. At the arsenite concentration of 10 μM, stably transfected EGFP-hAQP9 were

the only cells showing toxin sensitivity (A). The curve showing IC50 values for arsenite calculated by nonlinear regression, log(inhibitor) vs response

(three parameters) is shown (B). For log transformed data, the concentration 0 was set to 1 nM. Comparison of the IC50 values shows a significantly

lower IC50 value for the HEK293 cells expressing EGFP-hAQP9 compared to the native HEK293 cells or HEK293 cells expressing YFP-hDAT (C). Bars

are mean ± SEM. Asterisks: significantly different from untreated controls; �p<0.05, ��p<0.01, ���p<0.001; crosses: significantly different from

previous data point: ++ p<0.01.

https://doi.org/10.1371/journal.pone.0194896.g003
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Fig 4. Deletion of Aqp9 protects against MPP+ toxicity in vitro. A) Photomicrograph (left) and schematic

representation (right) of a representative midbrain slice. Site of MPP+ application is indicated in red. B-E)

Immunofluorescence staining of representative midbrain slices from WT (B, C) and Aqp9-/- mice (D, E) showing TH-

positive neurons in the MPP+ treated side (ipsilateral; B, D), and in the control side (contralateral, C, E). Note the

extensive loss of ipsilateral TH-positive neurons in the WT slice (B). F-H) Quantitative analyses of the TH-positive cell

count in slices treated with 30 μM MPP+ (F, G) show significant loss of TH-positive neurons in the ipsilateral

hemisphere of the WT slice (n = 8) (F). No significant difference was observed between the ipsi- and contralateral

hemisphere of Aqp9-/- slices treated with 30 μM MPP+ (n = 7) (G), WT slices treated with a combination of 60 μM

MPP+ and 100 μM phloretine (n = 11) (H), or WT slices treated with saline (n = 8) (G). In WT mice, the TH-positive

cell count contralateral to MPP+ application (F) was lower than the TH-positive cell count in saline treated slices (H),

suggesting spillover of MPP+ from the ipsilateral side. RRF: retrorubral field; Aq: aqueduct; V: ventricle; A9:

population of dopaminergic neurons. Bars are mean ± SEM; ���p<0.001. Scale bar: 100 μm; scale bar inset: 50 μm.

https://doi.org/10.1371/journal.pone.0194896.g004
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Both genotypes showed a significant reduction in the number of TH-positive neurons in the

ipsilateral SNpc following MPP+ injections (S2 Table, Fig 5A–5C). In the ipsilateral SNpc, the

reduction in TH cell number (using the cell count in the contralateral hemisphere as reference)

was significantly lower in Aqp9-/- animals than in WT littermates (47.59% and 67.02%, respec-

tively; p<0.001) (Fig 5B). In the ipsilateral VTA we found a small but significant reduction in

TH-positive neurons in WT animals, but no reduction in Aqp9-/- mice (Fig 5E). As expected,

SNpr contained few TH-positive cells in either mouse line. No significant change was observed

in animals injected with saline, regardless of genotype (p>0.05) (Fig 5D).

Clinical appearance and behavioral assessment. All animals (MPP+: n = 63; saline:

n = 21) were evaluated daily and given a score based on post-operative clinical condition,

where increasing scores reflected progressive symptoms of disease.. Following unilateral stria-

tal treatment with MPP+, both Aqp9-/- and WT mice showed a higher score than control ani-

mals injected with saline (Fig 6A). In total, 10 MPP+ treated animals (6 WT and 4 Aqp9-/-)

were euthanized (n = 4) or died during the three days due to the toxin (n = 6) and were not

included in the analysis.

Animals were tested for ipsilateral rotation behavior day six post-surgery after systemic

treatment with the dopamine agonist apomorphine. The frequency of rotations is expected to

correlate with the extent of dopaminergic cell loss [41]. Significant differences were observed

in net rotations (ipsilateral minus contralateral turns) between animals treated with MPP+

(n = 53) and saline controls (n = 17). The significance levels were p<0.001 for WT and

p = 0.007 for Aqp9-/-. In the MPP+ treated group, net rotational behavior was significantly

lower for Aqp9-/- animals than for WT littermates (2.69 ± 1.91 and 6.33 ± 2.15, respectively

(p = 0.014)) (Fig 6B).

HPLC of dopamine and dopamine metabolites. The levels of dopamine and its metabo-

lites HVA and DOPAC were quantified by HPLC in tissue samples from the ipsi- and contra-

lateral striatum in Aqp9-/- (n = 6) and WT littermates (n = 6), seven days after intrastriatal

injections of MPP+ (Fig 7). MPP+ significantly reduced the mean concentration of dopamine

(ng/mg protein) on the ipsilateral hemisphere, compared to the contralateral side, by ~83%

in WT (p = 0.004) and ~74% in Aqp9-/- mice (p = 0.005) (Fig 7A). In WT mice, the reductions

in HVA and DOPAC were ~68% (p = 0.003) and ~79% (p = 0.009), respectively. In Aqp9-/-

mice, metabolite levels were reduced to ~57% (p = 0.002) for HVA and ~57% (p = 0.009) for

DOPAC (Fig 7B and 7C). The ipsilateral reduction in HVA was significantly more pro-

nounced in WT mice than in Aqp9-/- mice (p = 0.038) (Fig 7B). The same tendency was

observed for dopamine and DOPAC although the difference was not significant (p = 0.063

and 0.059, respectively) (Fig 7A and 7C).

Gene expression levels in Aqp9-/- animals

In the knockout animals, the Aqp9mRNA level was close to the detection limit, as expected. In

WT animals, semi-quantitative real time PCR revealed significantly higher Aqp9mRNA levels

in the midbrain and striatum (79% of the level in midbrain, p = 0.053) than in the neocortex

(59% of the level in midbrain, p = 0.002) (Fig 8A and 8B).

To resolve whether the reduced dopaminergic cell count in the Aqp9-/- mice could be attrib-

uted to compensatory up- or downregulation of other genes, we analyzed the expression of 12

genes (Aqp4, Gfap, Kir4.1, mTOR, Prph, Cat, Ppard, Slc6a3 (DAT), Drd2, Bcl2, Bax and Sod2;
Fig 6C). Only one of these genes (peripherin, Prph) showed an increase in expression level

(~30%) after Aqp9 deletion. For five genes (Slc6a3 (DAT), Drd2, Bcl2, Bax and Sod2), mRNA

levels were assessed in the ipsi- and contralateral midbrain and striatum of animals injected

with MPP+. The relative levels of these transcripts did not differ between Aqp9-/- and WT
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Fig 5. Deletion of Aqp9 protects against MPP+ toxicity in vivo. A) Representative midbrain sections of WT and Aqp9-/- mice, seven days after

treatment with unilateral striatal injection of 7.5 μg MPP+. Cell bodies and processes of the dopaminergic neurons are identified by TH

immunostaining. The visible reduction of the TH immunostained cell bodies in the ipsilateral SNpc is more pronounced in WT than in Aqp9-/- mice. B)

Quantitation of the TH-positive neurons in SNpc is described in the text. TH-positive cell loss, calculated as [(n contra—n ipsi): (n contra)] is

significantly lower in Aqp9-/- mice, where 47.59% of the cells are lost, compared to 67.02% in WT littermates (p<0.001). C) Compared with WT mice,

Aqp9-/- mice show a significantly higher count of TH-positive neurons on the injected side (p<0.001). D) Animals treated with saline showed no

significant loss of TH-positive cells in SNpc, regardless of genotype. E) In WT mice, VTA showed a slight but statistically significant decrease in number

of TH-positive neurons on the ipsilateral side (p = 0.033). No change was observed in VTA of Aqp9-/- mice. The MPP+ treated group consisted of 15

animals (Aqp9-/-, n = 8; WT, n = 7), and the saline group consisted of six animals (Aqp9-/-, n = 3; WT, n = 3). ML, medial lemniscus. Bars are mean ± 2

SEM; n = 6; �p<0.05, ��p<0.01, ���p<0.001. Scale bar, 1000 μm; scale bar inset, 20 μm.

https://doi.org/10.1371/journal.pone.0194896.g005
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Fig 6. Clinical appearance and behavioral tests of WT and Aqp9-/- with unilateral intrastriatal MPP+ injection. A)

Clinical appearance of animals following intrastriatal injections of MPP+ or saline. All animals (MPP+: n = 63; saline:

n = 21) were assessed daily on a scale from 1–3 for their clinical appearance, including weight loss, inactivity, and

reaction patterns, giving a total score ranging from 0–12 (see Results). Following unilateral striatal treatment with

MPP+, both Aqp9-/- and WTs showed a significantly higher score than control animals injected with saline. Aqp9-/- mice

treated with MPP+ showed a lower score than the WT littermates throughout the observation period. Statistical analysis

of data from individual observations revealed significant difference on day 2. B) Following a systemic injection

apomorphine, Aqp9-/- and WT littermates treated with a unilateral striatal injection of 7.5 μg MPP+ tend to spin

towards the injected side. Aqp9-/- (n = 26) show significantly less net rotations (ipsilateral—contralateral turns)

compared to WTs (n = 27), with a net rotation number of 2.69 ± 1.91 compared to 6.33 ± 2.15 (mean ± 2 SEM;

p = 0.014, n = 53). The rotational behavior was not present in animals treated with saline (n = 17).; Boxes are

mean ± 95% CI, bars are maximum and minimum values, �p<0.05.

https://doi.org/10.1371/journal.pone.0194896.g006

Fig 7. HPLC analysis of dopamine and its metabolites. A-C) After unilateral injections of MPP+ in the striatum, the ipsilateral striatum shows a

significant reduction in the concentration of DA (A), HVA (B) and DOPAC (C) compared to the contralateral hemisphere (Aqp9-/-, n = 6; WT, n = 6).

The ipsilateral reduction in HVA is significantly more pronounced in WT mice than in Aqp9-/- mice (p = 0.038). Corresponding p-values for DA and

DOPAC are 0.063 and 0.059, respectively. Bars are mean ± 2 SEM; �p<0.05, �� p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0194896.g007
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animals. In both animals groups, transcript levels of DAT and Drd2were lower on the injected

side than on the contralateral side (Fig 8D–8E). In contrast, in both groups of animals, the

level of Baxwas higher in the ipsilateral striatum than in the striatum contralateral to the injec-

tion (Fig 8H).

Discussion

There is an urgent need to identify the mechanisms underlying the selective vulnerability of

dopaminergic cells, the root cause of Parkinson’s disease. In the majority of cases, Parkinson’s

disease has no clear genetic etiology, thus emphasizing the importance of unravelling the

contribution of environmental factors. Here we show that the parkinsonogenic toxin MPP+

permeates AQP9, an aquaglyceroporin water channel that is selectively expressed in dopami-

nergic neurons, and that a targeted deletion of this water channel affords protection in vitro
and in vivo. We also show that stable expression of AQP9 in HEK cells exacerbates their vul-

nerability to MPP+ and arsenite—another toxin associated with the development of PD. Our

data open for the possibility that toxins and other parkinsonogenic substances access dopami-

nergic neurons through AQP9 and imply that this aquaglyceroporin should be explored as a

new target for pharmacological intervention.

Fig 8. Semiquantitative PCR analyses of gene expression in Aqp9-/- and WT mice brain. A) Semi-quantitative Real-Time PCR revealed significantly

higher Aqp9mRNA levels in the midbrain and striatum than in the neocortex. The level of Aqp9mRNA in neocortex is 59% of that in midbrain

(p = 0.002). The level of Aqp9mRNA in the Aqp9-/- mice was close to the detection limit (n = 7 for each genotype). B) Representative DNA agarose gel

electrophoresis of midbrain samples from WT and Aqp9-/- mice (upper panel), and of three different regions in WT mice (lower panel). These data

support the PCR analysis in A. C) In order to rule out that the reduced dopaminergic cell loss in the Aqp9-/- mice could be attributed to compensatory

up- or downregulation of other genes, an analysis was done of the expression levels of Aqp4, Gfap, Kir4.1,mTOR, Prph,Cat, Ppard, Slc6a3 (DAT), Drd2,

Bcl2, Bax and Sod2. The relative levels of these transcripts did not differ between Aqp9-/- (n = 7) and WT animals (n = 7). D-H). For selected genes the

expression levels were analyzed in the treated and untreated hemispheres. In both groups of animal, the transcript levels ofDrd2were lower in the

striatum on the injected side than in the striatum on the contralateral side (E). In contrast, in both groups of animals, the level of Baxwas higher in the

ipsilateral striatum than in the contralateral one (H). The values indicated in the graphs for DAT, Bcl2 and Sod2 show the values for midbrain, and the

values for Drd2 are for striatum. All values are relative to the values for the corresponding samples from the control hemisphere of the saline treated

mice. Bars are mean ± 2 SEM; ��p<0.005.

https://doi.org/10.1371/journal.pone.0194896.g008
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The dopamine transporter DAT has long been known to provide an entry route for envi-

ronmental and experimental toxins [22]. For obvious reasons, this transporter is not relevant

as a therapeutic target. AQP9, on the other hand, is not critical to brain function [37] and can

be targeted by extant drugs. AQP9 is the first membrane channel that has been associated with

the entry of parkinsonogenic toxins.

Our experiments in frog oocytes established that AQP9 is permeable to MPP+. To compare

the relative significance of AQP9 and DAT we had to resort to cells that normally do not

express these molecules, and that by inference are non-dopaminergic. We chose to use HEK

cells that have been applied extensively for this purpose in previous studies. We found that

AQP9 exacerbates MPP+ toxicity, as does DAT. By contrast, the toxicity of arsenite—another

parkinsonogenic compound—was potentiated by AQP9 only. The expression of DAT failed to

potentiate arsenite toxicity, except at arsenite concentrations exceeding those normally used.

The most salient observation in the present study is that deletion of Aqp9 affords protection

against MPP+. We demonstrate a protective effect in organotypic midbrain cultures, as well as

after MPP+ injections in vivo. Stereological quantification of the density of TH-positive neu-

rons in the SNpc after MPP+ injection in vivo showed a loss of TH-positive neurons of 67% in

WT animals, compared with 48% in Aqp9-/- animals. The reduced cell loss was accompanied

by less pronounced motor dysfunction. The level of the dopamine metabolite HVA in the ipsi-

lateral striatum was about 40% higher in Aqp9-/- animals than in WT, supporting the idea that

deletion of Aqp9 helps protect the nigrostriatal pathway against the deleterious effect of MPP+.

In organotypic cultures we showed that the protective effect of Aqp9 gene deletion was

mimicked by the application of phloretin—an effective blocker of AQP9. This finding indi-

cates that the reduced vulnerability to MPP+ in Aqp9-/- vs. WT mice is due to the deletion of

the Aqp9 gene and not a result of any off-target effect. In agreement, targeted deletion of Aqp9
did not alter the expression level of select genes associated with MPP+-induced cell death.

Taken together with our data showing increased permeability to MPP+ in AQP9-expressing

oocytes, these results suggest that AQP9 is involved in mediating the toxicity of MPP+ by

enabling this toxin to enter dopaminergic neurons. Importantly, as AQP9 is found in the inner

mitochondrial membrane as well as in the plasma membrane [23], this channel may allow

MPP+ and other toxins to permeate the mitochondrial matrix. This is relevant, as the electron

transport chain has been identified as one of several targets of parkinsonogenic toxins [47,48].

Methodological considerations

Here we used an in vivomodel of Parkinson’s disease where MPP+ was injected unilaterally

into the striatum of Aqp9 deficient and WT mice. The injections covered a large part of the

projection field of nigral dopaminergic neurons and thus allowed retrograde transport of toxin

to these neurons. In designing these experiments we aimed for a cell loss of more than 60% in

the SNpc of WT mice, comparable to the cell loss seen in postmortem analyses of patients with

Parkinson’s disease [49]. The dose of MPP+ produced a rather extensive and unspecific dam-

age around the injection site. In midbrain, however, the deleterious effect of MPP+ was largely

restricted to the SN. Specifically, neither genotype showed a substantial loss of dopaminergic

cells in the VTA. The most likely explanation is that the MPP+ injection was discrete enough

to encompass the projection area of nigral neurons without encroaching upon the projections

of those dopaminergic neurons that reside in the VTA.

Compared with WT, Aqp9-/- mice developed less motor dysfunction when exposed to

MPP+. In the apomorphine rotation test, Aqp9-/- mice showed significantly less ipsilateral spin-

ning than WT littermates. Apomorphine is thought to induce contralateral spinning at a high

rate due to supersensitivity of dopaminergic D2 receptors in the striatal nerve terminals [41].
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However, several studies have shown that severe damage to the striatum—similar to that seen

here—induces ipsilateral turning behavior following administration of apomorphine [50–54].

In agreement, we observed a pronounced decrease in the expression level of dopamine D2

receptors in the striatum of both genotypes, reflecting the extensive damage and explaining the

ipsilateral rotation.

In line with the outcome of the apomorphine rotation test, the clinical appearance of MPP+

injected animals, as well as the pronounced drop in dopamine and dopamine metabolites in

the ipsilateral striatum, point to a rather severe local effect of MPP+ injections. Histological

analyses concurred by showing areas of cell loss and immune cell infiltration involving large

parts of the striatum and overlying cortex. The lesion did not extend into the ventral striatum.

The nonspecific nature of the local lesion was distinct from the lesion in midbrain, which likely

is mediated by retrograde transport of the injected toxin. Thus, the midbrain lesion specifically

involved TH-positive neurons in the SNpc, leaving nearby VTA neurons (that normally proj-

ect to the ventral striatum) virtually unharmed.

AQP9 is expressed in dopaminergic midbrain neurons [23,24,26,55] but is also found in

astroglia throughout the brain [23,25,55,56]. This explains why we found Aqp9mRNA in

other brain regions, including the neocortex. However, our regional analysis showed higher

levels of Aqp9mRNA in midbrain and striatum than in neocortex. This is consistent with pre-

vious immunocytochemical data and with the finding that these structures contain a neuronal

as well as an astroglial pool of AQP9 [26].

Acute injections of MPP+ remain a rather crude model for Parkinson’s disease. This calls

for due care when it comes to the interpretation of the present results. In a clinical setting

Parkinson’s disease develops over years, even decades, implying that the present study should

be followed up in more chronic models. However, even with long time exposure to minute

amounts of a putative neurotoxin the vulnerability may be determined by the same factors as

in the acute model i.e., the transport capacity for the toxin or toxins in question. Thus, the

expression level of AQP9 in plasma and mitochondrial membranes might not only explain

the selective vulnerability of dopaminergic neurons within an individual, but possibly also

the differences in vulnerability between individuals. This issue will be pursued in future

studies.

AQP9 vs. DAT

In earlier works the selective sensitivity of SN neurons to parkinsonogenic toxins has been

attributed to the activity of the dopamine transporter DAT [22]. It is well documented that

DAT transports MPP+ [57]. This begs the question whether DAT is the predominant mediator

of MPP+ toxicity, leaving only a minor role for AQP9. We addressed this issue by use of the

MTT assay, which is widely employed to assess the effects of toxins, including MPP+.

We performed the MTT assay in HEK293 cells as these cells do not normally express AQP9

or DAT. HEK293 cells stably transfected with hAQP9 were more sensitive to MPP+ than were

cells stably transfected with hDAT. Notably, while 1 μM MPP+ was required to produce signifi-

cant effects in hDAT expressing cells, 0.1 μM MPP+ was sufficient to induce toxicity in cells

expressing hAQP9. HEK293 cells expressing hAQP9 were also clearly more sensitive to the

parkinsonogenic compound arsenite than were HEK293 cells expressing hDAT. At concentra-

tions up to 10 μM, arsenite had no toxic effects in hDAT expressing HEK293 cells. This is in

line with previous studies that did not detect any difference in arsenite sensitivity between

hDAT expressing HEK293 cells and native HEK293 cells [58]. Only at very high arsenite con-

centrations do hDAT expressing cells differ from native HEK293 cells in terms of their

viability.
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In our in vivomodel, MPP+ caused a significant dopaminergic cell loss also in the Aqp9-/-

animals. This can probably be attributed to the expression of DAT in the nigrostriatal termi-

nals, facilitating uptake of MPP+ also into dopaminergic neurons that are depleted of AQP9

[22]. In midbrain organotypical cultures, the nigrostriatal axons are severed, implying that

MPP+ uptake through AQP9, expressed at high levels in dopaminergic cell bodies [23,26], may

predominate over MPP+ uptake by DAT. This may explain why the protective effect of Aqp9
deletion was more pronounced in the slice cultures than in the in vivomodel.

We conclude that both DAT (a transporter) and AQP9 (a channel) are likely to be involved

in mediating MPP+ toxicity. However, while DAT transports MPP+, it has a rather narrow

substrate specificity that does not encompass the wide range of toxins that have been associ-

ated with the development of Parkinson’s disease. Unlike DAT, which is essential for normal

brain function, AQP9 is not critically involved in any known physiological process in brain.

Thus, Aqp9-/- mice have a rather mild phenotype largely limited to the peripheral organs such

as the liver [37]. Little is known about the roles of AQP9 in human brain as most studies of

AQP9 in humans have focused on the reproductive system and placenta [59–61] If applicable

to humans, the present data suggest that pharmacologic inhibition of AQP9 could be consid-

ered a viable approach to curb the progression of Parkinson’s disease in cases where exposure

to exogenous toxins is documented or suspected as a cause of morbidity.

Importantly, targeted deletion of Aqp9 did not affect the expression level of DAT. Our find-

ing that phloretin treatment mimicked the effect of Aqp9 deletion lends further support to the

idea that the protection observed is a bona fide effect of the targeted deletion and not due to

compensatory up- or downregulation of other genes.

Conclusions and prospects for new therapy

Earlier studies have shown that AQP9 is expressed in midbrain neurons that contain TH—a

marker of dopaminergic neurons [23,24,26,55]. Here, using both in vitro and in vivomodels,

we provide evidence that AQP9 contributes to the selective vulnerability of dopaminergic neu-

rons to exogenous toxins. This is the first study to couple this vulnerability to a specific mem-

brane channel allowing toxin influx. The broad substrate specificity of AQP9 implies that that

this channel might permit entry of a number of compounds that compromise the viability of

dopaminergic neurons. It is of interest in this regard that the Aqp9 gene contains a negative

insulin response element, and that insulin downregulates its expression level [62–64]. Studies

on experimental diabetes in rodents as well as tissue samples from patients with diabetes have

shown an increase in the level of AQP9 mRNA and protein [65,66]. The possibility should be

considered that an upregulation of Aqp9 contributes to the increased prevalence of Parkinson’s

disease among patients with diabetes mellitus type 2 [67].

As pointed out in our discussion, the rather short survival times that are used in such mod-

els do not match the protracted course of disease development in the human condition. This is

a general shortcoming of most current animal models of PD and calls for due care when it

comes to the interpretation of the results. Inspired by the comments of the reviewers we deepen

our discussion of this point in our revised text. As we state in our discussion a natural follow

up of our study is to subject our Aqp9-/- animals to other and more chronic experimental

approaches that more faithfully mimic the progressive and protracted nature of human disease.

Supporting information

S1 Fig. Tissue damage and immune cell infiltration following ipsilateral intrastriatal injec-

tion of MPP+. A-D) Semi-thin sections immunostained for TH (A) or hematoxylin/eosin

(B-D) showing local effect of the MPP+ injections. The site of MPP+ injection (Ipsi) in the
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anterior striatum is indicated by arrow (A). The toxin induces tissue damage in the entire ipsi-

lateral striatum (CPu). Cell loss and immune cell infiltration extended into parts of the overly-

ing neocortex (B-D). Reflecting the tissue damage, the TH immunosignal was blurred, with

loss of the sharp contrast between the corpus callosum (cc), overlying cortex (Cx) and striatum

(CPu) seen on the contralateral (Cont) side. Stippled line outlines the damaged area. Boxed

areas in B are enlarged in C and D. cc, Corpus Callosum; CPu, Caudate-Putamen; Cx, frontal

cortex; LV, Lateral Ventricle. Scale bar: 1000 μm.

(TIF)
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